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Abstract 

Heterogeneity in terms of tumor characteristics, prognosis, and survival among cancer 

patients has been a persistent problem for many decades. Currently, prognosis and outcome 

predictions are made based on clinical factors and/or by incorporating molecular profiling data. 

However, inaccurate prognosis and prediction may result by using only clinical or molecular 

information directly. One of the main shortcomings of past studies is the failure to incorporate 

prior biological information into the predictive model, given strong evidence of pathway-based 

genetic nature of cancer, i.e. the potential for oncogenes to be grouped into pathways based on 

biological functions such as cell survival, proliferation and metastatic dissemination. 

To address this problem, we propose a two-stage procedure to incorporate pathway 

information into the prognostic modeling using large-scale gene expression data. In the first 

stage, we fit all predictors within each pathway using penalized Cox model (Lasso, Ridge and 

Elastic Net) and Bayesian hierarchical Cox model. In the second stage, we combine the cross-

validated prognostic scores of all pathways obtained in the first stage as new predictors to build 

an integrated prognostic model for prediction. We apply the proposed method to analyze breast 

cancer data from The Cancer Genome Atlas (TCGA), predicting overall survival using clinical 

data and gene expression profiling. The data includes ~20000 genes mapped into 109 pathways 

for 505 patients. The results show that the proposed approach not only improves survival 

prediction compared with the alternative analysis that ignores the pathway information, but also 

identifies significant biological pathways.  
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INTRODUCTION 

Over the past three decades, remarkable improvement has been achieved in cancer 

treatment in the United States, with the annual death rate from cancer declining 1.4% for women, 

1.8% for men, and 2.3% for children ages 0-10 years from 2002 to 2011 (EDWARDS et al. 2014). 

However, the problem that has persisted in cancer treatment is the heterogeneity of prognostic 

prediction across patients (BARILLOT 2013). This heterogeneity is, for the most part, genetically 

determined and rooted in the molecular profile of patients. A Precision medicine initiative has 

been introduced by White House to expand cancer genomics research as a short-term goal to 

develop better prevention and treatment methods for more cancers (COLLINS and VARMUS 2015). 

Recent high-throughput technologies can easily and robustly generated large-scale molecular 

profiling data, including genomic, epi-genomic, transcriptomic, and proteomic markers offers 

extraordinary opportunities to integrate clinical and genomic data in prediction models, 

improving understanding of inter-individual differences that may be critical for the application of 

precision medicine strategies (BARILLOT 2013; COLLINS and VARMUS 2015).  

The recent development of molecular signatures to predict recurrence of breast, colon and 

prostate cancers are notable and clinically useful but may not be sufficient to achieve the goals of 

precision medicine (MOOK et al. 2007; POHL and LENZ 2008; ENG et al. 2013). Gene signatures 

across different studies with very few overlapped genes can have similar prediction results which 

suggests there is some underlying mechanism (VAN DE VIJVER et al. 2002; WANG et al. 2005; 

SOTIRIOU and PICCART 2007). According to the analysis of 24 pancreatic tumors by Jones et al 

(2008), altered genes varied greatly across tumors but the pathways with the altered genes 

remain largely the same, which indicates that the statistical methods focusing on individual genes 

may be underpowered. It has also been revealed that the genetic nature of cancer is pathway-

based, that is, oncogenes can be grouped into pathways based on biological functions such as cell 
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survival, proliferation and metastatic dissemination (BARILLOT 2013; HUANG et al. 2014). Based 

on the observation that multiple genes in the same biological processes appear to be 

dysfunctional regardless of cancer type, gene pathways information is likely a more robust 

biological phenomenon (BILD et al. 2006). Various public databases (e.g., KEGG) can be 

accessed online or in R package to provide the biological information about pathways which may 

provide valuable improvement to prognosis and prediction (KANEHISA and GOTO 2000). Thus 

methods incorporating higher-order information of functional units in cancer, i.e., pathways, 

have been the focus of recent investigations (JONES 2008; JONES et al. 2008; LEE et al. 2008; 

REYAL et al. 2008; ABRAHAM et al. 2010; TESCHENDORFF et al. 2010; ENG et al. 2013; HUANG 

et al. 2014). Among those previous studies, Abraham et al. adopted a gene set statistic to provide 

stability of prognostic signatures instead of individual genes (ABRAHAM et al. 2010). Huang et al. 

converted the gene matrix to a pathway matrix through “principal curve”, similar to principal 

components analysis (HUANG et al. 2014). Both of these two methods did not incorporate 

outcome when generating the pathways scores from the individual genes. Other sophisticated 

statistical methods have been developed for variable selection with grouped predictors or 

pathways using an “all-in-all-out” idea, meaning that when one predictor in a group is chosen, 

then all variables in that group are chosen (PARK et al. 2007; WEI and LI 2007; JONES 2008). 

Other methods that could address the above shortcomings have also been developed, however, 

leading to increased computational complexity and potentially instability of models when the 

number of predictors is large (HUANG et al. 2009; ZHOU 2010; ENG et al. 2013). Eng et al. (2013) 

proposed a method to reduce the computational complexity by incorporating a binary outcome to 

stand for decreased or increased risk score in each pathway which inferred potentially loss of 

information.     
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In this article, to address some of the above shortcomings, we propose a two-stage 

procedure to incorporate pathway information into the prognostic models using large-scale gene 

expression data. In the first stage, we fit all predictors within each pathway using penalized Cox 

model (Lasso, Ridge and Elastic Net) and Bayesian hierarchical Cox model. In the second stage, 

we combine the cross-validated prognostic scores of all pathways obtained in the first stage as 

new predictors to build an integrated super prognostic model for prediction. We used the 

proposed method to analyze a breast cancer data set from The Cancer Genome Atlas (TCGA) 

project for predicting overall survival using gene expression profiling.  

Breast cancer is the second most commonly diagnosed malignancy after skin cancer in 

women (HUANG et al. 2014). It is estimated to be the third leading cause of cancer death after 

lung cancer and rectal/colon cancer in 2015 (NCI 2015). It is widely understood that breast 

cancer can be categorized into four clinical subtypes: Luminal A, Luminal B, Triple 

Negative/Basal like and Her2 and the survival/metastasis outcomes differ significantly among 

these four subtypes (CAREY et al. 2006; O'BRIEN et al. 2010; HAQUE et al. 2012). However, it is 

increasingly being realized that using only the clinical subtypes cannot discriminate breast 

cancers patients, and that better prediction of prognosis is needed. The breast cancer data set 

from TCGA includes ~20000 genes mapped into 109 pathways for 505 patients. The results 

show that the proposed approach not only improves survival prediction compared with the 

alternative analysis that ignores the pathway information, but also identifies significant 

biological pathways.  

 

METHODS 

Cox proportional hazards models 
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Cox regression is the commonly used method for analyzing censored survival data (VAN 

HOUWELINGGEN and PUTTER 2012), for which the hazard function of survival time T takes the form: 

0( | ) ( ) exp( )h t X h t X β=  

where 0 ( )h t  is the baseline hazard function,  X and β  are the vectors of predictors and coefficients, 

respectively, and X β  is the linear predictor or called the prognostic index. The coefficients β  

are estimated by maximizing the partial log-likelihood: 
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where the censoring indicator di takes 1 if the observed survival time ti for individual i is 

uncensored and 0 if it is censored, and ( )iR t  is the risk set at time it . For molecular data, the 

number of coefficients is much larger than the number of individuals and/or covariates are 

usually highly correlated, where Cox regression is not directly applicable. 

Ridge, lasso and elastic-net Cox models. The elastic net is a widely used penalization 

approach to handle high-dimensional models, which adds the elastic-net penalty to the log-

likelihood function and estimates the parameters β  by maximizing the penalized log-

likelihood(ZOU and HASTIE 2005; HASTIE et al. 2009; FRIEDMAN et al. 2010; SIMON et al. 2011; 

HASTIE et al. 2015). For the Cox models described above, we estimate the parameters β  by 

maximizing the penalized partial log-likelihood:   
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where α  ( 0 1α≤ ≤ ) is a predetermined elastic-net parameter, λ  ( 0λ ≥ ) is a penalty parameter, 

and ( )pl β  is the partial log-likelihood of the Cox model. The penalty parameter λ  controls the 

overall strength of penalty and the size of the coefficients; for a smallλ , many coefficients can 

be large, and for a large λ , many coefficients will be shrunk towards zero. The elastic net 

includes the lasso ( 1α = ) and ridge Cox regression ( 0α = ) as special cases (TIBSHIRANI 1997; 

GUI and LI 2005; VAN HOUWELINGEN et al. 2006; SIMON et al. 2011; VAN HOUWELINGGEN and 

PUTTER 2012). 

 The ridge, lasso and elastic net Cox models can be fitted by the cyclic coordinate descent 

algorithm, which successively optimizes the penalized log-likelihood over each parameter with 

others fixed and cycles repeatedly until convergence. The cyclic coordinate descent algorithm 

has been implemented in the R package glmnet. The package glmnet can quickly fit the elastic-

net Cox models over a grid of values of λ  covering the entire range, giving a sequence of 

models for users to choose from. Cross-validation is the most widely used method to select an 

optimal value λ  (e.g., an optimal Cox model) that gives minimum cross-validated error. 

Bayesian hierarchical Cox model. hierarchical model is an efficient approach to 

handling high-dimensional data, where the regression coefficients are themselves modeled 

(GELMAN and HILL 2007; GELMAN et al. 2014). Hierarchical models are more easily interpreted 

and handled in the Bayesian framework where the distribution of the coefficient is the prior 

distribution, and statistical inference is based on the posterior estimation. The commonly used 

prior is the double-exponential (or Laplace) prior distribution (PARK and CASELLA 2008; YI and 

XU 2008; YI and MA 2012): 
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where the scale s
 
is shrinkage parameter and controls the amount of shrinkage; a smaller scale s 

induces stronger shrinkage and thus forces the estimates of jβ
 
towards the prior mean zero.  For 

the hierarchical Cox model with the double-exponential prior, the log posterior distribution of the 

parameters can be expressed as  
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We fit the hierarchical Cox model by finding the posterior modes of the parameters, i.e., 

estimating the parameters by maximizing the log posterior distribution. We have developed an 

algorithm for fitting the hierarchical Cox model by incorporating an EM procedure into the usual 

Newton-Raphson algorithm for fitting classical Cox models. Our algorithm has been 

implemented in R package BhGLM (http://www.ssg.uab.edu/bhglm/).  

 

Relation of hierarchical Cox model to the Lasso  

The Lasso is equivalent to hierarchical Cox model with the double-exponential prior 

����� � ��

�
exp�	
������, if one estimates the mode of the posterior distribution. With the 

double-exponential prior, therefore, the relation between hyper-parameter inverse scale � and 

penalty tuning parameter λ of Lasso is � � 1/�nλ�. 

 

Optimizing the penalty by cross-validation and selection of inverse scale 
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The penalized Cox model estimate of the previous section depends heavily on the penalty 

tuning parameter λ. If λ is taken too small, the model boils down to the conventional model 

virtually with no penalty and the solution still degenerates. If λ is taken too large, all the 

coefficients are estimated to virtually zero. The tuning parameter is estimated using 10-fold 

cross-validation over 10 repeats by maximizing the cross-validated partial likelihood 

(CVPL) ����� (VAN HOUWELINGEN et al. 2006; SIMON et al. 2011): 

����� � ∑ ����������� 	 ������	
�
� ���������  

������ is the estimate of β from all the data except the k-th part, ���������� is the partial likelihood 

of all the data points and �������������� is the partial likelihood excluding part k of the data. By 

subtracting the log-partial likelihood evaluated on the non-left out data from that evaluated on 

the full data, we can make efficient use of the death times of the left out data in relation to the 

death times of all the data. We choose the λ value which maximizes �����. Hyper-parameter 

inverse scale � in hierarchical Cox model is estimated using conversion from estimated tuning 

parameter λ of Lasso with � �  1/�
��. 

 

Two-Stage Approach for Pathway Integration 

Intuitively, we can simultaneously fit all the genes in one model. In some previous 

studies, penalized Cox model (Lasso, Ridge and Elastic Net) have been used to analyze genomic 

data with this gene-based single model approach (RAPPAPORT 2007; BOVELSTAD et al. 2009; 

JACOB 2009; ZHANG et al. 2013; YUAN et al. 2014; ZHAO et al. 2014). However, due to high-

dimension of genomic data, fitting one model including all genes can lead to instability of 
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predictive model, and may result in bad prediction performance with the increased model 

complexity.  

Here we used an two-stage procedure for combining multiple pathways to build a 

prediction model, inspired by the super learner of van der Laan et al. (2007) (VAN DER LAAN et al. 

2007; VAN HOUWELINGEN and PUTTER 2011). The two-stage procedure for building the 

prognostic model by combining multiple biological pathways is presented in Figure 1.  

(Insert Figure 1 here) 

Using the notations from Figure 1, gene expression could be divided into G groups (e.g., 

pathways), ��: � � 1, … , �, with the g-th group Gg containing Jg variables. Overlapping is 

common in this analysis, that is, a gene could belong to multiple functional pathways. In the first 

stage, we fit all the predictors within g-th group (pathway) using the hierarchical Cox model or 

penalized Cox regression. For g-th pathway, we have hazard function: 0( | ) ( )exp( )g g g
i ih t X h t X β=

and obtain the estimate of prognostic score, !

� � "


����, for each individual. To prevent over-

fitting, instead of calculating the prognostic indices directly, we estimated cross-validated 

prognostic scores using leave-one-out cross-validation (LOOCV). The prognostic scores were 

calculated for i-th testing set using the parameters �����
� estimated from (i-1) training set. That is, 

!���,
�
� � !


���
� � "

������
� . In the second stage, we combine the cross-validated prognostic 

scores from all pathways as new predictors to build a super prognostic model for prediction: 

0 1
( | ) ( )exp( )

G g g
i ig

h t h tη η α
=

= ∑ . 10-fold cross-validation over 10 repeats was used to evaluate the 

predictive performance of the super prognostic model. 

 

Evaluating the predictive performance 
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To assess the prognostic utility of the fitted model, we need to evaluate the quality of the 

fitted model and its predictive value. There are several ways to measure the performance of a 

Cox model (STEYERBERG 2009; VAN HOUWELINGGEN and PUTTER 2012): 1) Concordance 

Index (C-index) (HARRELL et al. 1996): traditional measurement to determine the concordance 

between the observed survival times and predicted survival times. The performance is better 

when the C-index is greater; 2) CVPL: as mentioned above as �����, is a general measurement 

of model quality and prediction;  3) Prediction Error: Measuring prediction error is an 

important way to evaluate predictive performance of a survival model. The most popular 

measure of prediction error is the Brier score, which is defined as (VAN HOUWELINGGEN and 

PUTTER 2012): 2
0 0( , ( | )) ( ( | ))Brier y S t x y S t x= − , where 0( | )S t x  is the estimated survival 

probability of an individual beyond t0 given the predictor x;  4) Pre-validated Kaplan Meier 

Analysis: We transform the continuous cross-validated prognostic score !

���
� from the super 

prognostic model into a categorical factor based on the median of !

���
� and give the Kaplan 

Meier plot and log-rank test by comparing the 2 groups splitting by median. This allows us to 

compare statistical significance and prediction performance between models. 

 

APPLICATION TO TCGA BREAST CANCER DATA 

Data Collection 

1071 tumor samples of breast cancer were selected from TCGA breast cancer project. All 

data including clinical information, microarray mRNA gene expression were downloaded from 

TCGA as of February 2015 using the TCGA-Assembler (ZHU et al. 2014). Overall survival (OS) 

is the outcome of interest. We downloaded and analyzed the processed level 3 (log2 lowess 
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normalized (cy5/cy3) collapsed by gene symbol) gene expression data. It represents up-

regulation or down-regulation of a gene compared relative to the reference population (ZHAO et 

al. 2014).  

 

Data Preprocessing 

54 samples were removed for missing or zero overall survival time. 17815 features across 

533 samples were profiled for gene expression, which includes a total of 1571 missing 

observations. Simple imputation with mean values across samples was adopted to fill the missing 

values. For further analysis, only 505 samples were kept for whom survival time and gene 

expression were both available. Among these 505 patients, only 65 were dead and thus the event 

rate was 12.9%.   

 

Pathway Analysis 

To construct the pathways, we used genome annotation tools, KEGG (KANEHISA and 

GOTO 2000), to map genes to pathways. After mapping gene symbols to Entrez ids, 17252 

probes were kept. We mapped all the probes to KEGG pathways using the R annotation package 

RDAVIDWebService (FRESNO and FERNANDEZ 2013). 3181 probes were mapped to 109 

pathways.  

 

Two-Stage Approach for integrating pathways 

Separately analyzing gene expression data in each pathway. We compared Lasso, 

Ridge, Elastic Net (α = 0.5) regression and hierarchical Cox models to build predictive model 

and calculate the LOOCV prognostic scores in each pathway in the first stage. The tuning 
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parameters in Lasso, Ridge and Elastic Net regressions were estimated by 10-fold cross-

validation over 10 repeats. We obtained the estimated tuning parameter λ from Lasso in each 

pathway. We used �� � 1/
�, �� � 1/
� # 0.03 and �� � 0.08 as the scales of the double-

exponential prior for hierarchical Cox model. The table Appendix 1 shows the cross-validated 

partial likelihood (CVPL) and C-index for each pathway from LOOCV for the hierarchical Cox 

models ( �� � 1/
�, �� � 1/
� # 0.03 and �� � 0.08, respectively), Lasso, Ridge and Elastic 

Net Cox regression, respectively.  

 

Combining all pathways for survival prediction. In the second stage, only pathways 

with C-index greater than 0.5 were kept to build a super prognostic model. A super prognostic 

model was built with the cross-validated prognostic scores of all filtered pathways estimated in 

the first stage as new predictors. We used hierarchical Cox model with double exponential prior 

to fit this super prognostic model. 10-fold cross-validation over 10 repeats was also carried out to 

validate the second stage super prognostic models. To select the prior scales for hierarchical Cox 

models, we calculated CVPL from 10-fold cross-validation for different prior scales (0.08, 0.10, 

0.12, 0.14, 0.16, 0.18, 0.20, and 0.22) and the scale with highest CVPL was chosen. Table 1 

shows CVPL, C-index and corresponding prior scales for hierarchical Cox models for all two-

stage Lasso-hierarchical Cox Model, two-stage Ridge-hierarchical Cox Model, two-stage Elastic 

Net-hierarchical Cox Model and three two-stage hierarchical-hierarchical Cox Model ( �� �

1/
� , �� � 1/
� # 0.03  and �� � 0.08 , respectively). CVPL for two-stage hierarchical-

hierarchical Cox Model (�� � 1/
� and �� � 1/
� # 0.03) and two-stage Lasso-hierarchical 

Cox Model are -337.170 (7.187), -333.358 (1.971) and -340.058 (4.215). C-index for two-stage 

hierarchical-hierarchical Cox Model (�� � 1/
� and �� � 1/
� # 0.03) and two-stage Lasso-

hierarchical Cox Model are 0.760 (0.015), 0.748 (0.013) and 0.725 (0.014).  
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(Insert Table 1 here) 

 

Prediction Performance Comparison between Single Model Analysis and Two-stage 

Approach 

To compare the predictive performance with the two-stage approach, a joint Lasso and 

joint hierarchical Cox model were built which simultaneously fit all 3181 genes from 109 

pathways. The tuning parameter λ in joint Lasso was estimated to be 0.057 by 10-fold cross-

validation over 10 repeats. We used � � 1/
� �0.035 as the scale of the double-exponential 

prior for joint hierarchical Cox model. 10-fold cross-validation over 10 repeats was used to 

validate joint Lasso and joint hierarchical Cox model. CVPL and C-index for both joint Lasso 

and joint hierarchical Cox model are presented in Table 2. CVPL and C-index for joint Lasso are 

-364.845 (0.949) and 0.507 (0.023), respectively. CVPL and C-index for joint hierarchical Cox 

model are -363.554 (0.626) and 0.572 (0.023), respectively. Both of them had worse prediction 

performance than our proposed two-stage combination method.  

(Insert Table 2 here) 

The predictive performance of the models was also assessed by Brier scores. Figure 1 

shows the Brier prediction errors for two-stage hierarchical-hierarchical Cox Model ( �� �

1/
� , �� � 1/
� # 0.03 ), two-stage Lasso-hierarchical Cox Model, and two-stage Ridge-

hierarchical Cox Model, the hierarchical Cox fitted pathway with the best predictive 

performance and joint Lasso. Our two-stage models all had significantly improvement in 

reducing prediction error compared with best hierarchical Cox fitted pathway or joint Lasso.  

(Insert Figure 2 here) 
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Pathway Selection  

Figure 3 shows the estimated coefficients and p-values for two-stage Lasso-hierarchical 

Cox Model and two-stage hierarchical-hierarchical Cox Model (�� � 1/
�). Pathways with p-

values less than 0.05 are labeled in Figure 3. We compared all significant pathways with core 

cancer pathways discussed in Eng et al. (2013) and listed those consistent core cancer pathways 

in Table 3.  

(Insert Figure 3 and Table 3 here) 
 
 
 

Risk Group Stratification 

In order to demonstrate the potential for using two-stage approach to stratify patients into 

risk groups, we split the patients by the median of the cross-validated prognostic scores into two 

groups. Those patients with cross-validated prognostic score greater than the median were 

categorized as low-risk group; while patients with cross-validated prognostic score less than the 

median were categorized as high-risk group. The Kaplan-Meier curves for low-risk and high-risk 

groups from joint Lasso, joint hierarchical Cox model, two-stage Lasso-hierarchical (L-H) model 

and two-stage hierarchical-hierarchical (H-H) model (�� � 1/
�) are shown in Figure 4. Log-

rank tests are carried out for each model. Both two-stage L-H and H-H models have significant 

differences of Kaplan Meier curves between low-risk group and high-risk group (p-value = 

4.69e-11, p-value = 5.81e-11, respectively). Both joint Lasso and joint hierarchical Cox model 

have non-significant differences of Kaplan Meier curves between two groups (p-value = 0.242, 

p-value = 0.231, respectively). 

(Insert Figure 4 here) 
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DISCUSSION 

The heterogeneity of prognostic prediction in cancers has been a persisted problem for 

decades (BARILLOT 2013). It is now realized that cancer is a fundamentally disease of genome 

and can be understood by identifying the abnormal genes and proteins that are associated with 

the risk of developing cancer. Some statistical and machine learning methods have been used to 

analyze genomic data with gene-based approach to search for gene signature and to predict 

prognosis (RAPPAPORT 2007; BOVELSTAD et al. 2009; JACOB 2009; ZHANG et al. 2013; YUAN et 

al. 2014; ZHAO et al. 2014). Due to the complicated genetic nature of cancer and potentially 

underpowered statistical analysis of gene-based approach, it was suggested by Vogelstein that 

the complexity of cancer should be handled based on pathway-centric instead of gene-centric 

perspectives (JONES 2008). Oncogenes and tumor suppressor genes have been well studied and 

can be arranged into signaling pathways according to their biological functions such as cell 

survival, proliferation and metastatic dissemination. Other studies have investigated methods to 

analyze high-throughput cancer genomics data based on functional units, i.e. pathways (GOEMAN 

and BUHLMANN 2007; LEE et al. 2008; REYAL et al. 2008; ABRAHAM et al. 2010; 

TESCHENDORFF et al. 2010).  

Our two-stage approach is developed to incorporate the functional structure of pathways 

to predict survival for cancer patients. Different from some previous methods that summarize 

pathway score using only gene information or positive/negative signs, our method incorporates 

the correlation with survival information in the calculating individual pathway information. 

Besides, we use cross-validated prognostic score as pathway score to be used in the second stage, 

which not only prevents overfitting and can be easily carried out, but also gives an unbiased view 

on the contribution of the different information from pathways to the prediction model. Our 
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approach identified some important pathways, consistent with the core cancer pathways in Eng et 

al. (2013). Furthermore, all our two-stage approach pathway-based methods performed 

uniformly better than the gene-based joint models using Lasso or hierarchical cox model in terms 

of C-index, CVPL and reduced prediction error. Primarily, it can be seen that the highest C-index 

among the two-stage pathway-based model (0.760) is improved from the performance of both 

joint gene-based models (C-index = 0.507; 0.572 respectively) by around 0.2. Meanwhile, the 

Brier prediction errors of all two-stage models have been reduced from gene-based joint models 

greatly. The Kaplan-Meier analysis between low-risk and high–risk groups dichotomized by 

two-stage pathway-based models (p-value = 4.69e-11, p-value = 5.81e-11, respectively) have a 

remarkable performance in discriminating the prognostic effects between different patients 

compared with both joint gene-based models (p-value = 0.242, p-value = 0.231, respectively). 

Furthermore, among two-stage methods, the performance is dependent in the method selected to 

calculate the pathway score in the first stage. Lasso and hierarchical Cox models with the two 

estimated priors ( �� � 1/
�  and  �� � 1/
� # 0.03 ) perform uniformly better than Ridge, 

Elastic Net and hierarchical Cox model with prior (�� � 0.08).  

Our approach is also capable of identifying core pathways in cancer. Mitogen-activated 

protein kinase (MAPK) pathways are important in controlling fundamental cellular processes, i.e. 

growth, proliferation, differentiation, migration and apoptosis (DHILLON et al. 2007). When 

abnormally activated, MAPK pathways can lead to the progression of cancer (USSAR and VOSS 

2004; MCCUBREY et al. 2007). Another pathway, the mammalian target of rapamycin (mTOR), 

also plays an essential role in the regulation of cell proliferation, growth, differentiation, 

migration and survival. Similarly to MAPK pathways, the dysregulation of mTOR signaling 

happens in various human tumors, resulting in higher susceptibility to inhibitors of mTOR 
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(HUANG and HOUGHTON 2003). The Hedgehog pathway regulates many fundamental processes 

including stem cell maintenance, cell differentiation, tissue polarity and cell proliferation. It has 

been demonstrated that inappropriate activation of Hedgehog pathway occurs in various cancers 

such as brain, gastrointestinal, lung, breast and prostate cancers (GUPTA et al. 2010). 

Furthermore, the JAK-STAT pathway is also identified in our approach. This pathway regulates 

in various cellular processes such as stem cell maintenance, apoptosis and the inflammatory 

response and was found frequently dysregulated in diverse types of cancer (THOMAS et al. 2015). 

However, there are some potential limitations in this method. We implemented our 

approach only in microarray gene expression data from TCGA breast cancer project. There are 

many other platforms in gene expression data, such as RNA-Seq data. It may require additional 

constraints for the RNA-Seq data to be implemented into the model. Another potential limitation 

is that only 3181 mapped genes among the nearly 20000 expressed genes were fitted in the 

model, suggesting potentially loss of gene information.  

Despite the above potential limitations, our two-stage pathway-based approach performs 

better in predicting overall survival of breast cancer and is able to identify important cancer 

pathways. In the future, we will apply our approach in other levels of genomic data, e.g. DNA 

methylation, miRNA and copy number alterations, for more than 30 types of cancer. We will 

also continue to develop more efficient ways to combine different levels of genomic data as well 

as clinical biomarkers into our proposed method to better predict cancer survival.  
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Figure Legends 
 
 
Figure 1. Flowchart of the two-stage prognostic model. 

 

Figure 2. Brier prediction errors for  Two-stage hierarchical-hierarchical Cox Model (�� � 1/
� 

and  �� � 1/
� # 0.03 ), Two-stage Lasso-hierarchical Cox Model, Two-stage Ridge-

hierarchical Cox Model, Best hierarchical Cox Fitted Pathway, and joint Lasso, listed 

successively as black, blue, red, green, light blue, and yellow dash lines. 

 

Figure 3. Estimated Coefficients and P-values of two-stage Lasso-hierarchical Cox model and 

two-stage hierarchical-hierarchical Cox model (�� � 1/
�), left column is the list of pathways; 

while the right column is the p-value for each pathway. 

 

Figure 4. Kaplan-Meier Curves for low-risk and high-risk groups from joint Lasso, joint 

hierarchical Cox model, two-stage Lasso-hierarchical (L-H) model and two-stage hierarchical-

hierarchical (H-H) model (�� � 1/
�), p-values are calculated using log-rank test. Red dash line 

is for all tumors; green solid line is for low-risk group; blue solid line is for high-risk group. 
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Figure 2. Brier prediction errors for  Two-stage hierarchical-hierarchical Cox Model (�� � 1/
� 
and  �� � 1/
� # 0.03 ), Two-stage Lasso-hierarchical Cox Model, Two-stage Ridge-
hierarchical Cox Model, Best hierarchical Cox Fitted Pathway, and joint Lasso. 
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Figure 3. Estimated Coefficients and P-values of two-stage Lasso-hierarchical Cox model and 
two-stage hierarchical-hierarchical Cox model (�� � 1/
�). 
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Figure 4. Kaplan-Meier Curves for low-risk and high-risk groups from joint Lasso, joint 
hierarchical Cox model, two-stage Lasso-hierarchical (L-H) model and two-stage hierarchical-
hierarchical (H-H) model (�� � 1/
�), p-values are calculated using log-rank test.  
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Table 1. Prediction Performance Comparison between Different Two-stage Models. 
 
 

Model 
Number of 
Pathways 

CVPL C-index 
Prior Scale Second 
Stage hierarchical 

Model 

Two-stage Lasso-
hierarchical Cox Model 

75 -340.058 (4.215) 0.725 (0.014) 0.20 

Two-stage Ridge-
hierarchical Cox Model 

88 -353.444 (2.373) 0.640 (0.021) 0.10 

Two-stage Elastic Net-
hierarchical Cox Model 

( α=0.5) 
74 -340.893 (2.435) 0.711 (0.012) 0.16 

Two-stage hierarchical-
hierarchical Cox Model 

(�� � 1/
� ) 
77 -337.170 (7.187) 0.760 (0.015) 0.26 

Two-stage hierarchical-
hierarchical Cox Model 
(�� � 1/
� # 0.03) 

77 -333.358 (1.971) 0.748 (0.013) 0.14 

Two-stage hierarchical-
hierarchical Cox Model 

(�� � 0.08) 
70 -347.459 (2.796) 0.692 (0.014) 0.16 
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Table 2. Prediction performance comparison between two single models. 
 

Model Joint Lasso Joint Hierarchical Cox Model 

Number of Genes* 3181 3181 

CVPL -364.845 (0.949) -363.554 (0.626) 

C-index 0.507 (0.023) 0.572 (0.023) 
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Table 3. Pathway selection comparison between two-stage Lasso-hierarchical Cox model 
and two-stage hierarchical-hierarchical Cox model ((� � )/*+). 
 

 

 

Two-stage Lasso-hierarchical model Two-stage Hierarchical-hierarchical model (�� � 1/
�) 

hsa04010:MAPK signaling pathway hsa04010:MAPK signaling pathway 

hsa04630:Jak-STAT signaling pathway hsa04150:mTOR signaling pathway 

 hsa04340:Hedgehog signaling pathway 

 hsa04630:Jak-STAT signaling pathway 
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