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Abstract 12	
  

Invertebrates lack the cellular and physiological machinery of the adaptive 13	
  

immune system, but show specificity in their immune response [1, 2] and 14	
  

immune priming [3-11]. Functionally, immune priming is comparable to 15	
  

immune memory in vertebrates. Individuals that have survived exposure to a 16	
  

given parasite are better protected against subsequent exposures. Protection 17	
  

may be cross-reactive (e.g. [12]), but demonstrations of persistent and 18	
  

specific protection in invertebrates are increasing [3, 5]. This immune priming 19	
  

can cross generations ("trans-generational" immune priming) [4, 8], preparing 20	
  

offspring for the prevailing parasite environment. While these phenomena 21	
  

gain increasing support, the mechanistic foundations underlying such immune 22	
  

priming, both within and across generations, remain largely unknown. Using a 23	
  

transcriptomic approach, we show a bacterial challenge to bumblebee 24	
  

queens, known to induce trans-generational immune priming, alters daughter 25	
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(worker) gene expression. Daughters, even when unchallenged themselves, 26	
  

constitutively express a core set of the genes induced upon direct bacterial 27	
  

exposure, including high expression of antimicrobial peptides, a beta-glucan 28	
  

receptor protein implicated in bacterial recognition and the induction of the toll 29	
  

signaling pathway[13], and slit-3 which is important in honeybee immunity[14].  30	
  

Maternal challenge results in a distinct upregulation of their daughters’ 31	
  

immune system, with a signature overlapping with the induced individual 32	
  

response to a direct immune challenge. This will mediate mother-offspring 33	
  

protection, but also associated costs related to reconfiguration of constitutive 34	
  

immune expression. Identification of conserved immune pathways in memory-35	
  

like responses has important implications for our understanding of the innate 36	
  

immune system, including the innate components in vertebrates, which share 37	
  

many of these pathways[15]. 38	
  

 39	
  

Author Summary 40	
  

Invertebrate individuals surviving exposure to an infectious disease can 41	
  

become better at fighting future infection by that same disease. This 42	
  

protection, known as immune priming, can even be transferred to the 43	
  

individuals’ offspring. The functional outcome is very similar to that 44	
  

of vertebrate immune memory, but the mechanisms of how invertebrates 45	
  

achieve immune priming within an individual or across generations remain 46	
  

enigmatic. We found that bumblebee daughters of mothers exposed to a 47	
  

simulated bacterial infection express strongly many of the genes that they 48	
  

would activate if they were themselves infected. Our results show how 49	
  

immune priming across generations might be produced in bumblebees. Many 50	
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parts of the invertebrate immune system are shared with us, and thus our 51	
  

study also sheds a light on how diverse immune memory-like effects could be 52	
  

achieved.  53	
  

 54	
  

Introduction 55	
  

Parasites, broadly construed to include both macro- and microparasites, are 56	
  

ubiquitous and can cause significant damage to their hosts. As a 57	
  

consequence, parasites represent a major selective force for any organism. 58	
  

Hosts, in turn, have adaptations that prevent parasite establishment and 59	
  

reduce the costs of having an infection. These adaptations, which can be 60	
  

broadly viewed as elements of a defense system, notably including the 61	
  

immune response, range in their specificity, their mode of action, and the 62	
  

nature of regulation. As investment into immunity is costly on multiple 63	
  

levels[16], the most efficient investment into immunity will be a function of the 64	
  

prevailing pressure from parasites (likelihood of encounter and virulence) and 65	
  

demands imposed by other life-history traits. On an ecological scale, there will 66	
  

therefore be a benefit to a plastic adjustment of immune investment relevant 67	
  

for sufficiently accurate "perceived" risk of parasitism. This perception may be 68	
  

related to ecological conditions, such as crowding[17], but may also result 69	
  

from prior immunological experience with parasites. In particular, hosts can 70	
  

encounter the same parasites multiple times within their lifetime, and across 71	
  

generations. If hosts encounter the same parasite repeatedly, some form of 72	
  

memory, which would improve resistance to that same parasite upon re-73	
  

exposure, will be adaptive.  74	
  

 75	
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The best-studied and classic example of an adjustment in immune responses 76	
  

in relation to a prior parasite exposure is the adaptive immune system of 77	
  

vertebrates. The adaptive immune system, which produces specific and long-78	
  

lasting protection against subsequent exposure to the same parasite, is based 79	
  

on a repertoire of specialized lymphocytes and its molecular underpinnings 80	
  

are well characterized[18]. There is growing evidence that functionally 81	
  

comparable processes may exist in other organisms[19, 20]. To avoid 82	
  

mechanism-based confusion in terms, these phenomena so far described for 83	
  

several invertebrates[19], plants[20, 21] or even bacteria[22], are frequently 84	
  

referred to as 'immune priming'. Astonishingly, induced protection against 85	
  

parasites in these systems can traverse generations, a phenomenon known 86	
  

as trans-generational immune priming [23-25]. 87	
  

  88	
  

The molecular understanding of immune priming outside of the adaptive 89	
  

immune system of vertebrates is still in its infancy. Some progress has been 90	
  

made in understanding these mechanisms insects[26, 27] and plants[28]. 91	
  

Invertebrates are particularly important to understand in this regard as they 92	
  

share a number of conserved characteristics of the innate immune system 93	
  

with vertebrates, including humans[29]. The potential for these innate immune 94	
  

components to exhibit a memory-like response is an intriguing possibility[30, 95	
  

31]. While invertebrates may serve as a valuable model for understanding 96	
  

memory-like phenomena produced solely by innate immune system, the 97	
  

mechanisms remain enigmatic. Studies have identified the roll of the toll 98	
  

pathway and phagocytosis within an individual’s life[10] in Drosophila 99	
  

melanogaster; and cellular mechanisms are suspected for mosquitoes [9]. 100	
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   101	
  

Here we investigate patterns of gene expression underlying the phenomenon 102	
  

of trans-generational immune priming in a social insect, the bumblebee 103	
  

Bombus terrestris. In social insects, such as bumblebees, temporal and 104	
  

spatial overlap of worker offspring and their mothers will mean that they are 105	
  

faced with a parasite threat that can, with a high probability, be predicted from 106	
  

the mother’s prior immunological experience. B. terrestris, is a model of 107	
  

ecological host-parasite interactions that shows a specific immune response 108	
  

[1, 2, 32, 33], and within-individual [5, 34] and trans- generational [4, 6] 109	
  

immune priming. Daughters of bacterial-challenged queens show elevated 110	
  

antibacterial responses, but pay costs in terms of resistance to distinct 111	
  

parasites[5, 7]. The mechanisms underlying these responses are unknown.  112	
  

 113	
  

We injected B. terrestris queens with a heat-inactivated inoculum of the Gram-114	
  

positive bacterium Arthobacter globiformis, in the same manner as previous 115	
  

studies demonstrating trans-generational immunity[6, 7], To gain some insight 116	
  

into the molecular foundations of observed trans-generational immunity in this 117	
  

system we measured genome-wide expression of subsequently produced 118	
  

naïve daughters (Arthrobacter-Naïve [AN] treatment) relative to the 119	
  

expression of naïve daughters born from unchallenged mothers (Naïve-Naïve 120	
  

[NN] treatment). We further contrast this memory response with the immune 121	
  

response of daughters that are exposed to the bacterial challenge, but whose 122	
  

mothers were naïve (Naïve-Arthrobacter [NA] treatment).  123	
  

 124	
  

Results 125	
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Whole genome expression, as measured by mRNA sequencing on the 126	
  

Illumina HiSeq platform revealed that when workers from unchallenged, 127	
  

naïve, mothers were directly challenged with the bacterial inoculum (NA) they 128	
  

responded with significant differential expression of 327 genes (Table S1). 129	
  

Naïve workers from challenged mothers (AN) significantly altered the 130	
  

expression of only 21 genes (Table S2), but 20 of these are shared with the 131	
  

direct induced response (NA) (Fig 1). These shared genes (Fig 2) include all 132	
  

known bumblebee antimicrobial peptides (abaecin, two apidaecins, defensin, 133	
  

hymenoptaecin) and a number of additional known immune genes such as 134	
  

battenin, laccase-2, slit-3, and yellow. The only gene differentially expressed 135	
  

in the primed condition, but not under direct induction, codes for 136	
  

LOC100644816, a 53aa hydrophobic (58.49% of residues) peptide with 137	
  

homology to Mast Cell Degranulating Peptide (MCDP) from another 138	
  

bumblebee, B. pennsylvanicus.  139	
  

 140	
  

We confirmed the patterns determined by the whole genome transcriptome 141	
  

approach (Fig 2) by targeted qPCR of a suite of immune genes (Table S3). 142	
  

Our qPCR results agree with our transcriptomic results for all tested genes. 143	
  

This included the high constitutive expression of the antimicrobial peptides 144	
  

and additionally of a beta-glucan receptor protein (BGRP, Fig S1, Table S4) in 145	
  

naïve offspring of immune-challenged mothers (AN). There was a trend for 146	
  

higher BGRP expression in the transcriptome of workers from challenged 147	
  

mothers, but this was not significant after correction for multiple testing (P < 148	
  

0.01 before correction, 0.072 after correction). Differential expression of this 149	
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receptor may be particularly relevant as it can trigger the toll signaling 150	
  

pathway and downstream antimicrobial peptide production. 151	
  

 152	
  

 Figure 1: The number of differentially expressed genes in naïve worker 153	
  

offspring of mother queens that were injected with heat killed Gram-positive 154	
  

bacterium (Arthrobacter globiformis) (trans-generational immunity treatment; 155	
  

AN), and worker offspring from naïve mother queens but themselves exposed 156	
  

to an immune challenge of A. globiformis (induced immune response 157	
  

condition; NA). The expression of these genes is measured relative to that of 158	
  

naïve worker offspring of naïve mothers (NN). 159	
  

 160	
  

We identified a number of different isoforms for putative immune response 161	
  

genes, including for antimicrobial peptides (Fig S2-17: abaecin 162	
  

[LOC100631078], 4 isoforms; both apidaecins [LOC100649867], 2 isoforms, 163	
  

and [LOC100648499], 3 isoforms, aminopeptidase [LOC100645702], 164	
  

tetraspannin [LOC100651747], a venom protease [LOC100651916], an 165	
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uncharacterized protein shared only within honeybees and bumblebees 166	
  

[LOC100645125], and a novel gene [NC_015763.1:3848320-3855802] with 167	
  

sequence homology to A. mellifera cuticular protein 14. We also identified two 168	
  

dscam like genes with multiple isoforms (Supplemental Fig S18-21; 169	
  

LOC100644003, 12 isoforms; LOC100649765, 9 isoforms). Among the 170	
  

significantly differentially expressed genes, isoform transcript abundance did 171	
  

not vary significantly among conditions. 172	
  

 173	
  

Figure 2: Log 2 fold expression based on RNAseq data (relative to naïve 174	
  

worker offspring from naïve mother queens) for all genes that are significantly 175	
  

differentially expressed in the trans-generational priming condition (naïve 176	
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offspring of challenged mothers, blue). We also show the expression of 177	
  

challenged workers from naïve mothers (red) to demonstrate the similarity of 178	
  

the induced response to a direct challenge to the signature of trans-179	
  

generational immunity. All differentially expressed genes here are also 180	
  

significantly differentially expressed upon direct challenge, except for 181	
  

LOC100644816, which encodes for mast cell degranulating peptide. qPCR 182	
  

confirmation of these results can be found in Fig. S1. 183	
  

 184	
  

 185	
  

Discussion 186	
  

We found that offspring workers which had never been exposed themselves 187	
  

("naive workers") but whose mothers were exposed to a bacterial immune 188	
  

challenge express a strikingly pathogen exposure-like immune response, as 189	
  

compared to offspring workers from naïve mothers. In fact, all but one of the 190	
  

differentially expressed genes in this priming condition were shared with 191	
  

workers that were directly immune challenged with the same bacterium. This 192	
  

indicates a major reconfiguration of the constitutively expressed immune gene 193	
  

profile, and is one that will likely confer appropriate benefits in the face of 194	
  

specific parasites, but may also result in the costs previously described when 195	
  

there is mismatch between the maternal parasite environment and the 196	
  

offspring parasite environment[7]. These results give us an insight into the 197	
  

innate immune-related molecular pathways at the base of invertebrate 198	
  

immune priming across generations.   199	
  

 200	
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Among the differentially expressed genes, all of the antimicrobial peptides are 201	
  

upregulated. It is particularly noteworthy that these are the end-point of the 202	
  

immune response, indicating an immediate readiness of defense in trans-203	
  

generationally primed individuals. We also find increased expression in a 204	
  

number of other immunologically important genes including yellow and 205	
  

laccase-2, which are involved in the melanization response [35, 36], battenin, 206	
  

the D. melanogaster homolog of which (CLN3) regulates JNK signaling[37], 207	
  

and slit-3 which is induced upon bacterial challenge in honeybees and the 208	
  

leaf-cutting ant Atta cephalotes (a.k.a. IRP30)[14]. We also found that a beta-209	
  

glucan receptor protein (BGRP) was more highly expressed in naïve workers 210	
  

of challenged queens. BGRPs induce the toll signaling pathway in 211	
  

invertebrates[13]. The only gene that was differentially expressed in the 212	
  

primed condition, but not in directly challenge workers, was the mast cell 213	
  

degranulating peptide (MCDP), which is found in venom[38]. MCDP, neuro- 214	
  

and immunotoxic, is named for its degranulating effect on vertebrate 215	
  

granulocytes[38, 39]. Whether this peptide also has the same effect on 216	
  

invertebrate granulocytes (a class of haemocytes) that are important for 217	
  

phagocytosis[40] is unknown. Intra-generationally primed Drosophila 218	
  

melanogaster, utilize the toll pathway and phagocytosis, but not antimicrobial 219	
  

peptides[10] that appear to play an important role here.  220	
  

 221	
  

The down syndrome cell adhesion molecule (dscam) is implicated in immune 222	
  

defenses, and because of its ability to produce prodigious numbers of 223	
  

isoforms[25] has been proposed as a possible mechanism for specific 224	
  

immune memory[41]. We detect two dscam like genes that produce multiple 225	
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isoforms. These genes nor their isoforms are not, however, differentially 226	
  

expressed in the priming condition or in workers that are directly exposed to 227	
  

the bacterium. While this does not rule out a role for dscam isoforms in 228	
  

immune priming, it suggests that differential expression of isoforms is not a 229	
  

major component of trans-generational antibacterial immune priming in this 230	
  

system.  231	
  

 232	
  

The elevated constitutive gene expression into adulthood of a holometabolous 233	
  

insect, with its associated tissue rearrangements, is testament to the 234	
  

persistence of the trans-generational priming in the innate immune system. 235	
  

Evidence in insects of elevated constitutive expression of immune-related 236	
  

genes that is precipitated by immune experiences in prior generations is 237	
  

important beyond a demonstration of the underlying mechanistic foundations 238	
  

of trans-generational immunity. It will also have important consequences for 239	
  

the fitness costs associated with this phenomenon, which will influence the 240	
  

conditions under which it may be expected to evolve and be maintained by 241	
  

selection. Elevated immune investment comes at a cost to an organism 242	
  

through resource trade-offs and other routes [42]. Higher constitutive 243	
  

expression of immunity in naïve offspring may constrain their investment into 244	
  

other life-history traits, especially under conditions where resources are 245	
  

scarce. The striking signature of gene expression related to trans-generational 246	
  

immunity is also likely to underpin other related costs, including increased 247	
  

susceptibility to a distinct parasite infection, as has been demonstrated in this 248	
  

system [7].  249	
  

 250	
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Evidence is mounting that the evolutionarily ancient innate immune system is 251	
  

able to retain information about immune history in both vertebrates and 252	
  

invertebrates[43], which translates to better defenses upon subsequent 253	
  

exposure. This priming effect is observed both within the lifetime of an 254	
  

individual and between parents and offspring. Trans-generational immune 255	
  

priming likely evolved as a part of parental care and investment into offspring. 256	
  

This may be particularly important in social insects, such as B. terrestris, 257	
  

where generations overlap and related individuals very intimately share an 258	
  

environment - including parasites - in a closed, populous, highly interactive 259	
  

colony. While our study does not attempt to identify the mechanisms involved 260	
  

in transfer of immune compounds to the offspring, a recent paper in 261	
  

honeybees identified the yolk protein vitellogenin as playing a role in binding 262	
  

and transferring bacterial cell components to eggs[44]. Here we find that 263	
  

trans-generationally primed workers - even if not infected themselves - 264	
  

increase transcription of antimicrobial peptides (that in part are under the 265	
  

control of the toll signaling pathway) and a key recognition protein that 266	
  

induces toll signaling. This transcriptional signature resembles an abridged 267	
  

version of the normal response to infection, suggesting that B. terrestris 268	
  

achieves trans-generational protection by sequestering the existing induced 269	
  

responses into prophylactic constitutive expression to prevent parasite 270	
  

establishment. A recent study in moths found elevated ovary expression of 271	
  

some immune genes in daughters of challenged mothers, hinting that these 272	
  

responses may even be transmitted across multiple generations[45]. The 273	
  

conserved nature of these innate immune pathways suggests that the 274	
  

patterns detected here may also underlie immune experience based immune 275	
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system plasticity not only invertebrates, but also in the innate immune system 276	
  

of vertebrates. 277	
  

 278	
  

 279	
  

Materials and Methods 280	
  

Experimental methods 281	
  

We collected queens as they emerged from hibernation in spring 2013 in 282	
  

northern Switzerland and maintained them under standard colony 283	
  

establishment conditions[1]. All of the colonies used for this experiment were 284	
  

microscopically checked for common infections twice and found to be clear of 285	
  

identifiable infection. On their production by the colonies, young queens 286	
  

(gynes) were removed and mated to males from unrelated colonies. We 287	
  

designed the matings such that sister queens from one colony were mated to 288	
  

males all derived from a single colony to produce comparable genetic 289	
  

backgrounds for matching across treatments. Five days after mating, we 290	
  

hibernated the queens for 48 days at 4C. Seven-days after removal from 291	
  

hibernation we either injected queens to the challenged with 2 µl of 108 292	
  

colony-forming-units/mL of Arthrobacter globiformis (DSM 20124) that had 293	
  

been heat inactivated by heating at 95C for 5 min, washed three times and 294	
  

resuspended in ringer saline solution. Naive, unchallenged queens were 295	
  

handled similarly but not injected. We then allowed queens to found colonies 296	
  

in the lab. We used three sister queen colony sets. We deliberately used 297	
  

these second generation colonies to exclude unknown maternal effects 298	
  

outside of our treatments. Emerging adult worker offspring from naïve queens 299	
  

were uniformly distributed to a naive group (NN) or an induced treatment 300	
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(NA).  In the induced treatment, daughters five-days post-eclosion received an 301	
  

injection of 2 µl of 108 colony-forming-units/mL of A. globiformis prepared as 302	
  

above replicated twice per condition, per colony, (NA: naïve queens, A. 303	
  

globiformis exposed worker daughters) and were snap frozen in liquid 304	
  

nitrogen 24hrs after injection. Naïve group workers (NN) were handled 305	
  

similarly, but not injected, and frozen at the same time. Similarly, we took 306	
  

workers from queens that were exposed to the bacterial challenge and 307	
  

handled and froze them as above (AN). We extracted RNA from the workers 308	
  

following the same protocols as in [1] but using whole abdomens. For RNA 309	
  

sequencing we pooled the RNA from two individual workers per queen and 310	
  

treatment combination. The sequencing used the Illumina HiSeq 2000 311	
  

platform and was done at the Beijing Genomics Institute.  312	
  

 313	
  

After removing adapters and poor quality reads we mapped the reads to the 314	
  

B. terrestris genome[46] with Tophat2[47] in two ways. First, using the 315	
  

annotated transcripts (-G option) to assess differential expression of known 316	
  

genes, and second, without this restriction to assess isoform variation. We 317	
  

identified differentially expressed genes using Cuffdiff[48, 49]. In both cases 318	
  

we used the current version of the B. terrestris genome (Bterr_1.0) with the 319	
  

accompanying gtf annotation file. We limited the maximum intron size to 50kb. 320	
  

The analyses compared the expression of naïve daughters of challenged 321	
  

mothers (AN) vs naïve daughters of naïve mothers (NN), and separately 322	
  

compared the induced response (NA) to the baseline expression of NN 323	
  

workers.  324	
  

 325	
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From un-pooled offspring samples described above, we also synthesized 326	
  

cDNA using the QuantiTect Reverse Transcription Kit (Qiagen) following the 327	
  

manufacturers instructions. In addition, cDNA was synthesized from offspring 328	
  

of queens from three additional matched genetic background providing further 329	
  

AN, NA and NN samples. One of these colonies had duplicate offspring for 330	
  

each treatment, while the other two colonies had one replicate offspring. Prior 331	
  

to cDNA synthesis potential DNA contamination was removed from all RNA 332	
  

samples using the Turbo DNA-free kit (Ambion) according to the 333	
  

manufacturers instructions. In the reverse transcribed samples, we quantified 334	
  

the expression of 25 immune genes relative to two invariant housekeeping 335	
  

genes (elongation factor 1α and ribosomal protein L13 based on their scores 336	
  

in geNorm, qBase plus, biogazelle) and analyzed as in[1]. Full details of these 337	
  

genes and their primers are in Table S5. We used the mean difference in 338	
  

expression of the target gene from the composite housekeeping gene (dCt) 339	
  

from each colony for subsequent analyses. We transformed the mean dCt 340	
  

value for each gene using Yeo-Johnson transformations to improve normality 341	
  

and homoscedasticity and used paired t-tests within colony genetic 342	
  

background to assess statistical differences between NN and AN treatments 343	
  

and between NN and NA treatments (Table S6). 344	
  

 345	
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