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Abstract 
Summary: High-throughput synthetic lethal RNA interference (RNAi) screen experiments shed im-
portant insights on the filed of cancer researches and drug discovery, but a comprehensive software 
for analyzing the data was not available yet. We present synlet, an R package provided a complete 
pipeline to process the synthetic lethal RNAi screens data. Synlet provides several methods to ac-
cess the screen quality, including Z’ factor and data visualization. B-score and fraction of control or 
samples normalization methods are implemented in the package. More importantly, synlet facilitates 
the process of hits selection by implementing several algorithms, providing the possibility to identify 
high confidence targets. 
Availability:	
  The source code is freely available in Bioconductor (http://bioconductor.org/).	
  
Contact:	
  c.shao@Dkfz-Heidelberg.de 

 
 

1 Introduction  
The RNA interference (RNAi) technique allows knockdown of specific 
genes and quickly becomes a vital tool in exploring biological questions. 
Recent developments in RNAi methodology combine silencing of a 
single gene together with the genomeic methods to make it feasible to 
target the complete genome (Mohr et al., 2014). For example, high-
throughput RNAi screens could be performed in 384-wells microplates, 
in which each well may contain reagents (for example, small interfering 
RNA (siRNA)) designed for a specific gene. An interesting extension of 
the RNAi screen is the synthetic lethal screens that focus on identifying 
genes lead to higher mortality rate under certain conditions or genetic 
mutations, shedding important insights on the fields of cancer research as 
it provides an straightforward approach to identify genes mainly support 
the growth of cancer cells (Ngo et al., 2006; Schlabach et al., 2008; Luo 
et al., 2009). 

Many tools are available in handling the high-throughput RNAi 
screens data. CellHTS (Boutros et al., 2006) and RNAither (Rieber et al., 
2009) are R packages that provide comprehensive pipelines for the 
screen data from quality accessment to hits selection. ScreenSifter (Ku-
mar et al., 2013) provides a user-friendly interface to manage multiple 

RNAi screen projects. HTSanalyzeR (Wang et al., 2011) focuses on 
enrichment and network analysis of screen results by combining several 
well known software. However, to the best of our knowledge, there is no 
software provided an automated pipeline for analyzing the synthetic 
lethal RNAi screen data. 

Here we present synlet, an R package building a complete analysis 
pipeline for synthetic lethal RNAi screen data. Synlet provides various 
ways to check RNAi screen quality, including the widely used Z’ factor 
(Zhang, 1999) and several visualization tools. The raw screen data could 
be normalized by the B-scores method (Malo et al., 2006), fraction of 
control or fraction of samples (Birmingham et al., 2009). Finally, synlet 
allows to select genes with synthetic lethal effect by several algorithms, 
including Student’s t-test, median ± k median absolute deviation (Chung 
et al., 2008), rank products (Breitling et al., 2004; Hong et al., 2006) and 
redundant siRNA activity (König et al., 2007). A scheme described the 
analyzing pipeline is shown in Figure 1, which includes four major steps 
(S1 to S4) and major functions implemented. 
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Fig. 1.  Synthetic RNAi analysis pipeline. The scheme describes the working flow and 

major functions in synlet.  

2 Package description 
2.1 Input Data format 

Synlet requires the screen data stored in the format of data frame, 
which is simple to generate and manipulate. Eight columns are mandato-
ry for the data, including “PLATE”, “MASTER_PLATE”, 
“WELL_CONTENT_NAME”, “EXPERIMENT_TYPE”, 
“EXPERIMENT_MODIFICATION”, “ROW_NAME”, “COL_NAME” 
and “READOUT”. “PLATE” is the basic screen unit in the experiments, 
several control and treatment “PLATE”s construct a 
“MASTER_PLATE”. The hits selection steps are usually performed 
based on “MASTER_PLATE”. “WELL_CONTENT_NAME” shows the 
siRNA id and targeted genes in each well. The microplate wells contain-
ing negative or positive control siRNA are specified in 
“EXPERIMENT_TYPE”. The treatment and control plates are labeled in 
“EXPERIMENT_MODIFICATION”. An example dataset is included in 
the R package.  
 
2.2 Quality control and data visualization 
There are several ways to check the RNAi screen quality in synlet. Z 
factor and Z’ factor (Zhang, 1999), which are commonly used in quality 
accessment, could be easily calculated for each plate. In addtion, the data 
visualization play a important role in identifying possible technical varia-
tions, like the edge effect or failures of negative or positive control siR-
NAs. Synlet implemented several functions to plot RNAi screen data. It 
is feasible to plot the raw RNAi screen data of all plates as a heatmap 
with the same layout as the experiments, providing an overview of data 
quality (Supplementary Figure S1). The scatter plots are employed to 
represent the screen output of all plates by colorful dots, highlighting the 
effect of control siRNAs (Supplementary Figure S2). Further, synlet 
could plot the raw and normalized screen results of a single gene in the 
control and treatment plates together with Z’ factor, which is helpful to 

examine the knockdown effect of interested genes in detail (Supplemen-
tary Figure S3). 
 
2.3 Normalization of data 
The purpose of normalization is to remove unwanted technical variations 
in screen experiments and prepare the data for the downstream analysis. 
Proper normalization of raw output is an important step in correctly 
interpreting the screen results. Synlet provides different methods to 
normalize the data: the B-score approach, fraction of control and fraction 
of samples. B-scores are robust normalized value against row and col-
umn bias generated by the two-way median polish algorithm and divi-
sion of adjusted median absolute deviation (Malo et al., 2006). In frac-
tion of control and fraction of samples normalization, raw output of wells 
are divided by the mean or median of control siRNAs and whole plate 
output, respectively (Birmingham et al., 2009). 
 
2.4 Hits selection 
The main goal of sythentic lethal RNAi screen experiements is to identi-
fy genes (hits) led to reliable difference in mortality between treatment 
and control plates. It could be a difficult task because of cell heterogenei-
ty, reagent efficiency, etc. Synlet tries to improve the results of hits se-
lection by employing several algorithms that explore knockdown effect 
from different directions, including student’s t-test, median ± k median 
absolute deviation (Chung et al., 2008), rank products (Breitling et al., 
2004) and redundant siRNA activity (RSA) (König et al., 2007). 
    Student’s t-test is commonly used to test whether the mean from two 
samples are identical, thus it could be a helpful strategy in identifying 
synthetic lethal genes (Whitehurst et al., 2007). The B-scores calculated 
from control and treatment plates are used since they are robust to outli-
ers in the data. The multiple comparison problem is addressed by the 
Benjamini and Hochberg method (Benjamini and Hochberg, 1995). 
     Hits selection based on median ± k median absolute deviation (MAD) 
is an recommended appraoch in RNAi screen data analysis due to the 
easy calculation and robustness to outliers revealed in the real data and 
simulation study (Chung et al., 2008). Normalized screen outputs that 
are k MADs away from median of the plate provide evidences for hits 
selection. Synlet calculates the median and MAD based on the ratio 
between treatment and control plates, where raw data are normalized by 
fraction of control or fraction of samples normalization. By default k is 
set to be three. 
    The rank products algorithm is a non-parametric statistic method 
proposed to find consistently up/down-regulated genes between treat-
ment and controls replicates in microarray data and has been successfully 
used in analyzing the RNAi screen data (Rieber et al., 2009). It has sev-
eral advantages over the parametric Student’s t-test, including clear 
biological meaning, fewer assumptions of the data and improved perfor-
mance. Synlet uses the rank products method to compare the normalized 
screen results between treatment and control plates and identified siR-
NAs accelerating or hampering cell growth. P-value, false positive pre-
dictions and fold changes are provided to facilitate hits selection. 
    Redundant siRNA activity (RSA) is a distiguished method proposed 
for RNAi screen data that systemically employs the information provid-
ed by multiple siRNAs targeting a single gene to reduce the off-target 
and improve confirmation rate. Briefly, RSA calculates a P-value for the 
rank distribution of multiple siRNAs silenced the same gene under the 
background of all siRNA signals in the experiment by iterative hyperge-
ometric distribution formula (König et al., 2007). Compared to the 
methods mentioned above, siRNAs targeted the same genes have identi-
cal P-value, and genes with several moderately effect siRNAs may have 
smaller P-value than genes with fewer strong effect siRNAs. Synlet 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2016. ; https://doi.org/10.1101/043570doi: bioRxiv preprint 

https://doi.org/10.1101/043570
http://creativecommons.org/licenses/by-nc-nd/4.0/


provides a wrapper function to use the RSA R codes and applies the 
algorithm to the ratio between treatment and control signals normalized 
by fraction of control or fraction of samples. 

3 Conclusion 
The synlet package provides an all-in-one toolbox to analyze synthetic 
lethal RNAi screen data from quality control and visualization to hits 
selection. Several tools are implemented in the package to display the 
complete experiment signals and individual gene single. Synlet empha-
sizes the hits selection step, in which several methods with different 
statistic property are included. This package will likely facilitate the 
analysis of RNAi screen data and shed insights on cancer researches and 
drug discovery. 
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