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Abstract

Background

A key challenge in the emerging field of single-cell RNA-Seq is to characterize pheno-

typic diversity between cells and visualize this information in an informative manner.

A common technique when dealing with high-dimensional data is to project the data to

2 or 3 dimensions for visualization. However, there are a variety of methods to achieve

this result and once projected, it can be difficult to ascribe biological significance to

the observed features. Additionally, when analyzing single-cell data, the relationship

between cells can be obscured by technical confounders such as variable gene capture

rates.

Results

To aid in the analysis and interpretation of single-cell RNA-Seq data, we have developed

FastProject, a software tool which analyzes a gene expression matrix and produces a

dynamic output report in which two-dimensional projections of the data can be ex-

plored. Annotated gene sets (referred to as gene ’signatures’) are incorporated so that

features in the projections can be understood in relation to the biological processes

they might represent. FastProject provides a novel method of scoring each cell against

a gene signature so as to minimize the effect of missed transcripts as well as a method

to rank signature-projection pairings so that meaningful associations can be quickly

identified. Additionally, FastProject is written with a modular architecture and de-

signed to serve as a platform for incorporating and comparing new projection methods

and gene selection algorithms.

Conclusions

Here we present FastProject, a software package for two-dimensional visualization of

single cell data, which utilizes a plethora of projection methods and provides a way to

systematically investigate the biological relevance of these low dimensional representa-

tions by incorporating domain knowledge.
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Background

In an analogous manner to the maturation of RNA-Seq methodologies, single-cell RNA-Seq

(scRNA-Seq) is now in its infancy and requires new computational tools to realize its full po-

tential for dissecting and understanding the functional meaning of cell-to-cell heterogeneity

[1, 2]. Visualization methods provide an effective strategy for inspecting and characterizing

the phenotypic diversity between cells. In a typical scenario, the analysis begins with a

matrix of expression levels of thousands of genes in hundreds of cells. An appealing way

to make sense out of this immense data is to project it into a two dimensional scatter-plot,

where each cell is represented by a single point. While such representations provide an easy

way to see obvious stratification of cells into a taxonomy of discrete types, they can also

provide more nuanced views of gradual transitions, reflecting for instance, developmental

processes [3], physical locations [4], or the cell cycle [5]. Indeed, supplementing these two-

dimensional views with additional, phenotypical information (e.g. the expression level of

marker genes) can be used to provide the correct context, and make the observed diversity

between cells interpretable [6, 7]).

There are three main challenges in making effective use of such visualizations for scRNA-

Seq data. The first challenge is selecting an appropriate method for dimensionality reduction

(projection) among candidates such as principal component analysis (PCA) [1, 2], inde-

pendent component analysis (ICA) [3] or various non-linear methods such as t-distributed

stochastic neighbor embedding (t-SNE) [8], each of which may highlight different aspects of

the data. Once a projection is created, a second challenge is to interpret its biological sig-

nificance, namely which cellular phenotypes [7] or processes [9] are most responsible for the

resulting arrangement of cells. Lastly, scRNA-Seq can be difficult to correctly interpret due

to technical confounders such as differences in gene capture rates. Performing functional

interpretation on the input data without accounting for this effect may lead to incorrect

interpretation of the biological meaning of cell-to-cell heterogeneity.

Introducing FastProject

To address these issues, we have developed FastProject, a software tool for the visualization

and interpretation of scRNA-Seq data. FastProject allows the user to explore a gene expres-

sion matrix using a plethora of two-dimensional visualization methods. To interpret these

two-dimensional plots, we use the concept of biological signatures - sets of genes that repre-

sent a dichotomy between two cellular states of interest [7] (e.g. epithelial to mesenchymal

transition [2]). We evaluate the extent to which these phenotypic dichotomies are reflected

in the projections (i.e. to what extent do neighboring cells in the projection have similar

values for the genes included in the signature), and highlight the significant projection-
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signature pairs. This analysis is made possible in single cells by modeling the probability

that a missed transcript was actually expressed in the cell, and using these probabilities

when evaluating signature scores on samples to minimize the effect of variable capture rates

between cells. As a source for biological signatures, we use publicly available datasets that

consist of comparative information from hundreds of studies (e.g. MSigDB [10]), which can

be supplemented by the user to include any other gene signatures of interest. Through this

automated analysis, FastProject therefore provides a systematic view of the main axes of

variation in the data, along with their possible biological meaning.

It is important to clarify up-front that FastProject is not a normalization tool. Indeed,

it has been observed by us and others that without proper normalization scRNA-Seq data

can be heavily confounded by technical factors such as library depth and complexity [7].

We strongly advocate the use of scRNA-Seq normalization tools (e.g. based on [5] or [7])

prior to any downstream analysis, and we assume that the data has been normalized prior

to input to FastProject. Nevertheless, since scRNA-Seq tend to be characterized by strong

zero-inflation, we conduct our biological signatures analysis while paying close attention and

controlling for possible effects of gene dropout events (false negatives).

When running FastProject, processing is done upfront (10-30 minutes on typical data

sets), producing dozens of projection maps (using different algorithms and parameteriza-

tions) and their functional annotation, which can be inspected through an interactive HTML

report. Because processing is performed upfront, the user can quickly switch between dif-

ferent projection maps in the output report as well as share the results with colleagues who

would not themselves need to install FastProject. Importantly, FastProject has been written

to be easily extensible so that it may serve as a general platform for deploying and evaluat-

ing new gene filtering schemes, false-negative estimation methods, or projection techniques.

Instructions for developers on how to augment FastProject are detailed in the FastProject

wiki hosted at https://github.com/YosefLab/FastProject/wiki.

Implementation

Overview

The steps involved in the FastProject processing pipeline are depicted in Figure 1. The soft-

ware starts with an evaluation of false negative rates, later used to down-weight the effect of

drop-outs on the biological signature analysis. It then selects sufficiently variable genes for

further analysis using increasingly stringent criteria. With these genes in hand, FastProject

uses 11 different projection methods (summarized below) to calculate two dimensional coor-

dinate for each cell. Based on a user-provided database of gene signatures it then computes
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Figure 1: The FastProject Pipeline A) Diagram describing the FastProject pipeline. A gene expression matrix

is taken as input (left), and the resulting output report (right) combines low dimensional-representations of the

input with gene signatures to highlight signatures which best explain features in the data. B) Configurations for the

projection that can be selected among in the output report.
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a score for every cell/signature pair and uses a randomization test to identify statistically

significant projection-signature associations. Importantly, the confounding effect of missed

transcripts is mitigated by estimating the probability that each undetected gene was actu-

ally expressed in the cell, and down-weighting the contributions of these measurements in

downstream analysis (similar to [7]). Altogether, FastProject outputs 76 possible projec-

tions (a combination of choosing different gene filtering criteria, whether or not the data was

reduced to significant PCs prior to projection, and the final projection method) along with

their functional annotations, which can be interactively inspected through a user-friendly

HTML report (Figures 1b, and 3). The results are also provided in the form of text files

(including signature scores, projection coordinates etc.), which can be used for downstream

analysis.

False-Negative estimates

To account for expressed transcripts that are not detected (false negatives) due to the limita-

tions in sensitivity [1, 11], an initial step in the processing pipeline is to evaluate these rates

so that the subsequent analysis can down-weight the contribution of less reliably measured

transcripts. This is done by estimating a false negative rate for each cell individually (as

different cells within a sample can have different levels of library quality and cell integrity)

using a set of human housekeeping genes [12]. Our procedure derives from the assumption

that housekeeping genes are missed due to technical errors (i.e. all housekeeping genes are

constitutively expressed), and that the probability of missing a transcript is related to its

average expression level in the expressing cells. Importantly, as the appropriate set of consti-

tutively expressed genes may differ from study to study and between organisms, FastProject

can accept a user-defined housekeeping list. Our estimation of false negative rates is built

on and extends upon our previous work [7]. For each housekeeping gene, we estimate its

mean expression level by taking the average of non-zero measurements for the gene. We

then use the estimated means to group the genes into 30 quantiles, and denote the mean

of genes in quantile 1 ≤ q ≤ 30 as µq. For each cell j and quantile q, we then compute

Fqj as the proportion of genes from q that are not detected by j. Based on our assumption

of constitutive expression, we treat Fiq as an empirical estimate to the dropout rates (i.e.

probability that a gene is not observed, conditioned that it is expressed). We use the Fjq

values to fit a sigmoid function F̂j(·) that describes the observed dropout rates as a function

the genes’ average expression when detected (Figure 1A):

F̂j(x) = 1/(1 + exp(−αj · (x− βj))) (1)

where the estimated parameters αj and βj minimize the residual sum of squares (RSS)
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term:

30∑
q=1

(F̂j(µq)− Fjq)2 (2)

Applying the fitted function globally for all genes, we estimate the conditional prob-

ability for a dropout event for gene i in cell j as: P (Gene i is not detected in cell j |
Gene i is expressed by cell j) = F̂j(µi) where µi is the average of gene i’s expression level

when detected. Finally, we estimate the prior probabilities for detection and expression of

each gene in order to evaluate the false negative probabilities, P (Gene i is expressed by cell j |
Gene i is not detected in cell j), as described in the Methods section. These probability es-

timates are used further in the pipeline to reduce the effect of missed transcripts when

evaluating signature scores and generating projections.

The fitted sigmoids F̂j(·) can also be used to provide an overall evaluation of the abun-

dance of false negatives in each cell j by taking the area under the curve. This in turn

provides a way to identify and exclude poor quality samples, assuming that such samples

have higher dropout rates. Such quality control filter (on cells) is available in FastProject

and can be enabled when running the pipeline (it is turned off by default). With this op-

tion enabled, samples that score 1.6 median absolute deviation (MAD) units worse than

the median quality score are removed prior to calculating signatures and low-dimensional

projections.

Generating 2-dimensional projections

Gene filtering

Selecting an informative set of genes is necessary for obtaining biologically meaningful pat-

terns of variability between cells. To this end, FastProject applies a strict pre-filtering step

that discards genes detected in less than a threshold number of cells. The default threshold

is 20% of the input cells, however this is configurable as an input option. Subsequently,

FastProject produces projections that derive from all pre-filtered genes as well as subsets

thereof, calculated using two filtering schemes. The first selects bi-modal genes, using the

Hartigan’s Dip Test (p < 0.05). The second selects highly-variable genes, based on their

Fano-factor (σ2/µ where µ is the average expression and σ the standard deviation across all

cells). To select candidates with high Fano-factor, genes are first stratified into 30 quantiles

according to µ, and within each quantile genes are retained if their Fano-factor is more than

2 MAD above the quantile’s median Fano-factor.
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Projection Methods

The variety of methods available for the task of dimensionality reduction each come with

strengths and weaknesses. For instance, projections of scRNA-Seq data based on PCA [7],

provide an appealing guarantee about the preservation of variation, and makes the contri-

bution of individual genes readily interpretable [6]. However, the underlying assumptions

of PCA may not necessarily be supported by single cell data. In particular, PCA is a lin-

ear transformation, which may not be able to accurately capture non-linear relationships

in the data (i.e. if the data is embedded within a non-linear low-dimensional manifold).

Additionally, PCA posits that the projection axes should be uncorrelated, which again may

not necessarily result in the most informative representation. The same criticisms apply for

other linear methods such as ICA[3]. A complementary, and commonly used approach (t-

SNE[8]) uses a non-linear projection that aims to preserve the structure in the data locally.

However, while this method aims to ensure that points that are close in the high dimen-

sional space will be close (with high probability) in the low dimensionality embedding, more

global relations are not directly interpretable from the results. To avoid the issue of choos-

ing up-front between these different options, FastProject uses these methods plus additional

non-linear projection methods, including: ISOMAP [13] (using four nearest neighbors when

defining the adjacency graph), PCA with a radial basis function (RBF) kernel (with kernel

coefficient of 1
Number of genes ), Multi-Dimensional Scaling (MDS), and Spectral Embedding

[14] (with Graph laplacian formed using k-nearest neighbors with k = Number of cells
10 ). For

the linear PCA we consider three combinations of principal components (1st and 2nd, 1st

and 3rd, 2nd and 3rd); and for tSNE we use two perplexity values (10 and 30), totaling in 11

projection methods overall. All methods are run as implemented in the Scikit-Learn pack-

age for Python[15]. After each projection, the resulting sets of 2-dimensional coordinates

are mean-centered and scaled such that the average r2 = [x coordinate]2 + [y coordinate]2

equals 1. This standardization is performed so that signature-projection scores (defined

below) are more comparable between projections.

Incorporating False-Negative estimates into Projections

Non-linear methods such as t-SNE have been shown to effectively combine with PCA. In

this approach, PCA is performed first (using only highly variable genes), and only PCs that

explain significantly more variance than expected by chance are retained. The resulting

low-dimensional data points (yet of dimension of typically more than 2), are postulated to

represent a cleaner version of the data, and are then embedded in two dimensions using

the non-linear approaches. To allow for this option, FastProject generates two outputs

for each non-linear projection method: with and without PCA prior to projection. To
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accomplish this, the software employs a randomization scheme similar to [16] to select the

top principal components with statistically significant contribution to the overall variance

(p < 0.05). The number of PCs selected by this procedure is enforced to be at least 5. All

the subsequent non-linear projections are done based on this reduced-dimension matrix (in

a typical scRNA-Seq dataset, the selected number of PCs is between 10 to 15). To provide a

way for evaluating the effects of this reduction, FastProject also runs the complete analysis

on the original, non-reduced matrix. When PCA is performed (either as a preceding step to

the non-linear projections, or as a separate projection method), we use a weighted covariance

matrix to account for the false negative rate estimates (similar to [7]). Entries in the weighted

covariance matrix are calculated as:

cov(Xa, Xb) =

∑
j(Xaj −Xa)(Xbj −Xb)wajwbj∑

j wajwbj
(3)

where Xij is the log-transformed expression of gene i in cell j and w represents the matrix

of weights of equivalent size, defined as:

wij =

{
P (i not expressed in j | i not detected in j) Xij = 0

1 Xij 6= 0
(4)

Signature-Based Analysis

To interpret the biological meaning of the organization of cells in the resulting two di-

mensional maps, FastProject incorporates domain knowledge through the input of gene

”signatures” [7]. The signatures can reflect a comparative analysis between two conditions

of interest and consist of a set of genes, each of which is labeled as either ”up-regulated” or

”down-regulated” in that comparison. Signatures, such as these, are based off of annotations

of cell states obtained from public databases (e.g. the Immsig collection[10]), or provided by

the user. For each signature, a score is computed against each cell by aggregating over the

weighted expression level of its genes. Specifically, for signature S and cell j, the respective

signature score Rs(j) is calculated as:

Rs(j) =
∑
i∈S

signS(i) ·X ′ij · wij/
∑
i∈S

wij (5)

Where X ′ij is the standardized (Z-normalized across all cells) log expression level of gene

i in cell j, wij is the estimated False-Negative weight (defined above), and signS(i) = −1

for genes in the ”down-regulated” set and +1 otherwise. Notably, signatures can also be

undirected, in which case the sign value is set to +1 for all member genes.
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Projections vs. Signatures

A signature-projection consistency score is calculated to evaluate how well each projection

reflects the phenotypic variation that is captured by each signature. To this end, for each

pair of signature, s, and projection, p, we compute a signature consistency score representing

the extent to which neighboring points in the projection have similar signature scores. This

is done by calculating for each cell j, an estimated signature rank r̂sp(j) based on its location

in the two dimensional plot:

r̂sp(j) =

∑
k 6=j rs(k)e∆2

jk/α
2∑

k 6=j e
∆2
jk/α

2
(6)

where ∆jk is the Euclidean distance between cells j and k in the projection, α defines

an effective neighborhood size (set to 0.33 by default), and rs(j) is the rank of the signature

score for cell j (i.e. a rank transformation of the quantitative signature scores RS). The

signature-projection consistency is then determined by the respective goodness of fit:

Consistency(s, p) = median(|r̂sp − rs|) (7)

In this way, each signature/projection pairing is scored based on how similar signature

scores are for samples located nearby in the projection space. To identify significantly

consistent signature/projection pairs, we use signatures of randomly selected genes to create

empirical background distributions of signature scores. We compare the consistency scores

computed for the original signatures with those of the random ones, obtaining P-values

using a Z-test and correcting for multiple hypothesis testing using the Benjamini Hochberg

procedure. We observed that the distribution parameters of scores generated by random

signatures varied with the number of genes in the signature. To account for this, separate

distributions are generated for different signature sizes (10, 20, 50, 100, and 200 genes)

and when assessing the significant of a signature score, the score is compared against the

background distribution with the most similar number of genes. In the output, we report

all the signatures that had a significant match (FDR < 0.05) with at least one projection.

Results

Software

FastProject has been implemented as a command line Python package. As an input the

software receives: (1) an expression matrix in a tab-delimited format (genes in rows, cells

in columns). (2) a set of gene signatures, using the standard GMT format. Such sets of

directed signatures are publicly available from various databases, such as MsigDB[10] (e.g.
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including signaling effects of genetic and chemical perturbations, cell cycle signatures, and

comparison of cell types) and NetPath[17] (transcriptional effects of signaling cascades).

Un-directed gene sets are naturally more abundant, and can be drawn from resources such

as Gene Ontology[18], KEGG[19, 20], and MSigDB[10] (note that the latter includes much

of the information in the former two). Importantly, the user can also upload his/her own

signatures that reflect a phenotype of interest. For instance, in the example below, we study

glioblastoma cells, and use signatures derived from microarray experiments, which define

different tumor sub-types. FastProject also accepts pre-computed signatures, namely, an

association of cells with pre-computed values. These can be categorical (e.g. annotations of

clusters, computed by a different tool); or numerical (e.g. additional meta data associated

with cells; e.g. levels of a handful of proteins, or technical factors such as library complexity;

see Methods section for description of how pre-computed signatures are analyzed).

FastProject will calculate projections, signature scores, and their associations, covering

all the options above (totaling in 76 different projections; Figure 1b). To examine the extent

to which the projections are affected by zero values, FastProject treats the sample quality

score (defined above), and the percentage of genes with zero expression as pre-computed

signatures and evaluates their association with each projection method. The output is

provided as an HTML file (Figure 3), where projections, signatures and their associations

can be inspected interactively. Additionally, a data export feature embedded in the HTML

report allows the generation of tab-delimited text files that depict the output projection

coordinates, signature scores, and other relevant information. The source code, running,

examples and user manual are bundled with this manuscript submission and also hosted at

https://github.com/YosefLab/FastProject.

Extending FastProject

FastProject has been designed using a modular architecture so that new projection methods

or criteria to filter genes can easily be added to the pipeline. Since dimensionality reduction

is still an active research area, this allows new methods to easily be compared against more

traditional approaches. For example, the recently proposed ZIFA algorithm[21] can be added

by appending the following lines to Projections.py:

from ZIFA import block ZIFA , ZIFA

def apply ZIFA ( pro j data , p r o j w e i g h t s=None ) :

Z , model params = ZIFA . f i tMode l ( p ro j da ta .T, 2 ) ;

r e turn Z ;

pro j methods [ ’ZIFA ’ ] = apply ZIFA ;
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This is documented in the software wiki, hosted with the project repository at

https://github.com/YosefLab/FastProject/wiki.

Proof of Concept

We applied FastProject to a recently published data sets of tumor cells from five glioblastoma

patients[2]. The analyzed data, consisting of 430 single cells with mRNA abundance in units

of transcripts per million (TPM) and normalized as described in [2], was downloaded from

the Gene Expression Omnibus, accession number GSE57872. We applied FastProject on

this data, using a large collection of both ”signed” (i.e. up- and down- regulated genes) and

”unsigned” signatures from MSig DB (the C2 (curated), H (Hallmark), and C7 (Immune

signatures) collections) and NetPath[17]. As a first check, we explored the distributions of

signature consistency scores obtained for the original vs. random signatures, and compared

the results to an application of FastProject on randomized datasets, where the entries in each

column (Cell) were shuffled (i.e. maintaining the percentage of zeroes in every cell; Figures

2a-b). As expected, we see pronounced differences between the original input signatures

and the randomized ones when FastProject is applied on the non-shuffled data, and these

differences disappear when we apply FastProject on the randomized data. As a second

test, we evaluated the extent by which the signature consistency scores are biased by the

abundance of zero-values in the analyzed cells. As expected, when we do not down-weigh

the potential false negative entries, the signature consistency scores highly correlate with

the amount of zeroes in each cell; namely the analysis primarily reflect what might be a

result of technical dropouts. Conversely, down-weighing the false negatives corrects this

bias (Figures 2c-d). We repeated this procedure using a second dataset of scRNA-Seq data

from mouse dendritic cells responding to antigen stimulation [1], obtaining similar results

(Figure S1).

Examining the output report of FastProject (Figure 3a), we first observe that the various

projection methods correctly stratify the cells according to their respective donors (Figure

3b). More importantly, FastProject automatically picks up on several of the most important

features in this data, providing a proof of concept for its utility as an unbiased analysis

tool. Specifically, the two dimensional position of the cells is highly consistent with their

scoring according to an epithelial to mesenchymal transition signature, which is a strong

marker of poor prognosis[22, 23]. The two dimensional positions are also associated with

signatures of other key pathways altered in cancer, including immune and hypoxic responses

as detailed below. While these observations were made using a general database of signatures

(MSigDB), we supplemented our analysis with case-specific signatures - in this case gene

signatures from TCGA that are predictive of Glioblastoma subtypes[23] to provide further
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Figure 2: Behavior of Signature Scores Behavior of signature scores calculated on the human glioblastoma

scRNA-seq data from Patel et al, 2014 [2]. A) Distribution of Signature/Projection consistency scores across four

different types of signatures, Signed (signed immunological signatures from MSigDB), Unsigned (various unsigned

hallmark and pathway signatures from MSigDB), Random Signed (signed signatures with randomly selected genes),

and Random Unsigned (unsigned signatures with randomly selected genes). Consistency scores normalized by the

mean of the Random Unsigned scores. B) Distribution of Signature/Projection consistency scores for data in which

gene expression levels have been shuffled within each cell. C) Distribution of the Pearson’s correlation coefficient

between signature scores and a confounding variable - the proportion of undetected genes in a sample. D) Same as

C), but signature scores have been calculated by simply taking the unweighted average of log expression level for

genes in the signature. Note how with the simple method in D, signatures tend to be much more strongly correlated

with the confounding variable.
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support. As expected we see high level of concordance between the TCGA-derived scores of

the Mesenchymal tumor sub-type and the epithelial to mesenchymal transition signatures

from MSigDB. We also see the mirror image of the cell ranking when we consider the

TCGA-derived signature of the Proneural tumor subtype of glioblastoma.

In addition to the HTML report, FastProject outputs all the cell-signature scores in

textual format. Taking advantage of this feature, we were able to more closely inspect the

relationship between the different pathways that were highly correlated with the two dimen-

sional positions and reveal new associations in the data. Considering the top ranked signa-

tures (p < 1e− 15 for at least one projection method), and filtering overlapping signatures

(Jaccard coefficient > 30%; 63 signatures remaining), we observe a clear pattern of signature

clusters (Figure 4). Interestingly, the mesenchymal signature is positively correlated with

the expression of coagulation/complement genes (whose expression in the glioblastoma cells

studied here was already verified by [2]). Both signatures are also correlated with the TNFα

signaling, which supports previous findings concerning the role of this pathway in mesenchy-

mal emergence[24]. On the other hand, the mesenchymal signature is negatively correlated

with a hypoxia signature. While hypoxic regions are characteristic in solid tumors[25], this

inverse correlation is surprising and possibly aligned with the up-regulation of angiogenetic

markers in mesenchymal glioblastoma tumors[22]. Finally, we see a strong negative corre-

lation with a signature of response to the PPARγ agonist rosiglitazone, which aligns with

previous observations of beneficial effects PPARγ agonists have in glioblastoma[26, 27, 28].

In addition to the inter-donor variation, FastProject’s visualization also highlights poten-

tially important variation within a tumor. Indeed, the cells from patient MGH31 (Figure

3b, purple) are clearly divided in accordance to the two programs mentioned above - with

cells with low mesenchymal and high hypoxic score on one side and the mirror image on the

other.

The glioblastoma case study underscores the utility of FastPtroject as a tool for scRNA-

Seq data exploration. Starting from a normalized input matrix of gene expression in single

cells, and a generic set of signatures, it clearly highlighted some of the main sources for

phenotypic variation between cells, and the relation between these sources. Such insights

provide an important first step in working with data sets an immense and as complex as

the one presented here.

Conclusions

FastProject is a flexible, comprehensive, and automated pipeline that combines multiple

techniques for the analysis of scRNA-Seq. It provides a first glance on the main axes of

variation in the data (captured by projections of interest) and their biological meaning (the
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Figure 3: FastProject Output Report Screenshot of FastProject interactive output report. 1) Controls for

changing which genes were used when generating the projection and whether or not PCA was applied first. 2) Table

displaying significance of the consistency score for each signature/projection pairing. Each row represents a signature

and each column, a projection method. Clicking a cell in the table selects a signature and projection. 3) Scatter

plot showing the selected projection annotated (color) with signature scores from the selected signature. 4) Heatmap

showing average expression level of genes within each cluster. The clustering method can be changed through the

dropdown menu in the same panel. B) Corresponding scatterplot when selecting projection tSNE30 and the Patient

signature. C) Scatterplot for a signature representing response to the PPARγ agonist rosiglitazone.
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Spearman correlation coefficient

Figure 4: Discovering Correlations between Signatures FastProject makes its data amenable to further

analysis by outputting signature scores and projection coordinates in text format. Shown here is a covariance matrix

between top-ranked signatures (p < 1e−15 for at least one projection method) after removing overlapping signatures

(Jaccard coefficient > 30%) revealing signatures with similar patterns of expression.
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biological signatures that may explain the organization of cells within the projections). The

tool was designed with a flexible API in mind, with the aim of establishing a general platform

that will be used by the scRNA-Seq research community for deployment and evaluation of

future methods, such as normalization, batch correction, removal of undesired effects (cell

cycle, drop-outs), gene/ cell filtering, and dimensionality reduction.

Methods

False-Negative estimates

Let P (Eij | Not Dij) denote the probability that a gene i is expressed in cell j conditioned

that it is not detected (i.e. probability for a false negative). To estimate this probability we

first estimate the priors for the detection, P (Dij), and expression, P (Eij), events:

For P (Dij) we use the percentage of cells that detect gene i (expression > 0), which we

denote as Fi. For P (Eij), one approach would be to use:

P (Eij) =
P (Eij and Dij)

P (Dij | Eij)

=
P (Dij)

P (Dij | Eij)

≈ Fi
1− 1/(1 + exp(−αj · (µi − µj0)))

(8)

where µi is the average of gene i’s log expression when detected. However, in order to

get a more robust estimation, we use the population mean of the conditional probability,

taking: P (Eij) ≈ Fi
1
N

∑N
k=1 P (Dkj |Ekj)

where N is the number of cells in the dataset. For

P (Not Dij | Eij) the F̂j(·) functions estimated for each cell (defined in Eq. 1) are used.

Combining these terms, the full expression is:

P (Eij | Dij) =
P (Not Dij | Eij)P (Eij)

P (Not Dij)

=
P (Not Dij | Eij) Fi

1−1/(1+exp(−αj ·(µi−µj0)))

1− Fi

(9)

Notably, on occasions where the detection rate in some cells is higher than the prior estimate,

this formulation results in a negative value. We therefore restrict the estimate to the range

[0, 1] by applying a clipping operation.

Clustering

For each of the projections, the FastProject HTML report includes a simple clustering

analysis using the cells’ positioning in the respective two dimensional map. Specifically,

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 12, 2016. ; https://doi.org/10.1101/043463doi: bioRxiv preprint 

https://doi.org/10.1101/043463


samples are clustered based on Euclidean distance in the two-dimensional space using k-

means with different k values. These clusters are used when rendering a heat-map below

the projection showing the (per cluster) average z-score of expression for each gene in the

signature.

Evaluating the consistency of projections and categorical pre-computed

signatures

A different method is used to evaluate the significance of signature/projection pairings when

operating on pre-computed signatures. For numerical pre-computed signatures, the assigned

values are shuffled among cells and for each iteration of this procedure, the signature/projec-

tion consistency score is evaluated. P-values are then assessed by comparing the unshuffled

score against this distribution using a Z-test as above. For factor signatures, it is necessary

to calculated the consistency score in a different manner. To this end, for each pair of sig-

nature s and projection p we compute a signature consistency score representing the extent

to which neighboring points in the projection are assigned to the same category. First, we

evaluate a neighborhood-consistency score for every cell:

L̂sp(j) =

∑
k 6=j δs(j, k)e−

∆2
jk

α2∑
k 6=j e

−
∆2
jk

α2

(10)

where

δs(j, k) =

{
1 samples k and j have the same label

0 otherwise
(11)

In this way, L̂sp(i) is closer to 1 if most of sample i’s neighbors have the same label. The

signature-projection consistency is then determined by a measure of the overall consistency:

Consistency(s, p) = median(1− L̂sp(j)) (12)

These consistency scores are compared against a distribution of scores calculated from

shuffled label assignments to assess significance using a Z-test as above.
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Additional Files

Additional File 1 — Behavior of Signature Scores: Alternate Data

Set

Behavior of signature scores calculated from the LPS-stimulated dendritic cells of Shalek et al

2014 [1]. A) Distribution of Signature/Projection consistency scores across four different types

of signatures, Signed (signed immunological signatures from MSigDB), Unsigned (various unsigned

hallmark and pathway signatures from MSigDB), Random Signed (signed signatures with randomly

selected genes), and Random Unsigned (unsigned signatures with randomly selected genes). B)

Distribution of Signature/Projection consistency scores for data in which gene expression levels

have been shuffled within each cell. C) Distribution of the Pearson’s correlation coefficient between

signature scores and a confounding variable - the proportion of undetected genes in a sample. D)

Same as C), but signature scores have been calculated by simply taking the unweighted average of

log expression level for genes in the signature. (PNG)

Additional file 2 — Sample FastProject Output Report

Sample FastProject output html report and associated text files. To view the report, extract the

archive and open results.html in a web browser.

Additional file 3 — Sample FastProject Input Files

Demonstrates how to run FastProject

Additional file 4 — FastProject software archive

The FastProject package at the time of publication. However, to obtain the most recent version,

it is recommended that the reader follows the instructions at the FastProject GitHub repository

located at https://github.com/YosefLab/FastProject.
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