
1 
 

Strength of functional signature correlates with effect size in autism  1 

 2 

Authors:  3 

Sara Ballouz,1  4 
Jesse Gillis*,1   5 

Affiliations:  6 

1 The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 7 

11724, USA 8 

* Corresponding author: Dr J Gillis, The Stanley Institute for Cognitive Genomics, Cold Spring Harbor 9 

Laboratory, Cold Spring Harbor 11724, NY, USA 10 

JG: jgillis@cshl.edu  11 

SB: sballouz@cshl.edu   12 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2017. ; https://doi.org/10.1101/043422doi: bioRxiv preprint 

mailto:jgillis@cshl.edu
mailto:sballouz@cshl.edu
https://doi.org/10.1101/043422
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract  1 

Background  2 

Disagreements over genetic signatures associated with disease have been particularly prominent in the 3 

field of psychiatric genetics, creating a sharp divide between disease burdens attributed to common and 4 

rare variation, with study designs independently targeting each. Meta-analysis within each of these 5 

study designs is routine, whether using raw data or summary statistics, but combining results across 6 

study designs is atypical. However, tests of functional convergence are used across all study designs, 7 

where candidate gene sets are assessed for overlaps with previously known properties.  This suggests 8 

one possible avenue for combining not study data, but the functional conclusions that they reach. 9 

Method  10 

In this work, we test for functional convergence in autism spectrum disorder (ASD) across different 11 

study types, and specifically whether the degree to which a gene is implicated in autism is correlated 12 

with the degree to which it drives functional convergence.  Because different study designs are 13 

distinguishable by their differences in effect size, this also provides a unified means of incorporating the 14 

impact of study design into the analysis of convergence.  15 

Results  16 

We detected remarkably significant positive trends in aggregate (p < 2.2e-16) with 14 individually 17 

significant properties (FDR<0.01), many in areas researchers have targeted based on different reasoning, 18 

such as the fragile X mental retardation protein (FMRP) interactor enrichment (FDR 0.003).  19 

We are also able to detect novel technical effects and we see that network enrichment from protein-20 

protein interaction data is heavily confounded with study design, arising readily in control data.  21 

Conclusions  22 
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We see a convergent functional signal for a subset of known and novel functions in ASD from all sources 1 

of genetic variation. Meta-analytic approaches explicitly accounting for different study designs can be 2 

adapted to other diseases to discover novel functional associations and increase statistical power. 3 

Keywords  4 

 autism spectrum disorder;  rare variation; common variation; loss-of-function; recurrence; effect sizes; 5 

functional enrichment;  gene candidate score;  meta-analysis  6 
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Background 1 

Over the last decade, enormous progress has been made in characterizing sources of DNA variation 2 

contributing to disease. Most of this progress has been enabled by study designs which are carefully 3 

tailored to exploit technologies targeting particular classes of variation. Researchers have used 4 

chromosomal analysis arrays [1-4], genotyping arrays [5-8], whole-exome sequencing (WES)[9-14], and 5 

whole genome sequencing (WGS)[15, 16], to identify risk loci and alleles. The results from these studies 6 

cannot be naively compared; common variants are limited to regions of the genome with known 7 

variation (a SNP is known) but only reach significance with large numbers, while rare or ultra-rare 8 

variants are conditioned on not being in this list of common variants. Trio and quad studies are used 9 

mainly in WES and WGS study designs, while large case and control cohorts are required for signals in 10 

genome-wide association studies (GWAS). Thus for each study design, we are asking distinct questions 11 

that relate to the population prevalence, disease mechanism, burden and risk.  12 

Within each study, however, it is commonplace to look to overlapping functional properties of candidate 13 

disease genes to find the biologically meaningful signal among the positive results. Candidate genes are 14 

prioritized based on enrichment analyses in pathways related to the phenotype (e.g., neuronal activity 15 

regulation) or some other disease feature shared by the genes (e.g., expression in the brain). If these 16 

methods return no significant results, more complex methods are performed to extract common 17 

features from the disease gene set [17], such as co-regulatory module detection from co-expression 18 

networks [18] or binding from protein-protein interaction (PPI) networks [19]. Regardless of the study 19 

design, the analysis with respect to functional convergence follows a similar (and largely separable) 20 

design:  genes selected as hits are tested for the presence of some joint signature with the null provided 21 

by genes which are not hits.  By the same logic that suggests testing hits for functional convergence 22 

relative to the background, we hypothesize that sets of genes which are “strong” hits will show more 23 

functional convergence than those which are “weak” hits. 24 
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We suggest that the degree of functional convergence may by hypothesized to vary (monotonically) 1 

with the degree to which genes are causal for the disease.  Genes only weakly causal, whether due to 2 

high false positive rates in the study design or low effect sizes, are not strongly implicated as sharing a 3 

joint role by their co-occurrence as disease-related. For instance, disease candidates from GWAS have 4 

low relative risks (and therefore low effect sizes) as they are inherited common variation in the 5 

population. On the other hand, de novo mutations are a form of genetic variation which evolutionary 6 

forces have had little time to act upon [20] (e.g., unless embryonically lethal), and are of high risk (and 7 

high effect sizes). Studies also suffer from type I errors (false positives), and this too should be reflected 8 

in an aggregate disease signal of the candidate genes, as quantified by their common functional 9 

properties. A set of genes with de novo mutations will show a strong aggregate disease signal, while we 10 

might expect a weaker signal from the gene candidates from GWAS [21]. Measuring their ‘functional 11 

convergence’, as determined by a gene set enrichment test or network analysis, we can thus exploit our 12 

knowledge of gene candidates’ effect sizes and false positive rates. For a true disease property, we 13 

expect the correlation between gene set effect size and functional convergence to be strong, and for a 14 

weak or artifactual property, we expect no significant correlation. 15 

We propose to test this hypothesis by running a meta-analytic study on autism spectrum disorder (ASD 16 

[MIM 209850]) candidates across numerous genetic studies and over a wide range of gene properties 17 

and functions.  ASD is a neurodevelopmental disease commonly characterized by behavioral traits such 18 

as poor social and communication skills [22]. In more severe cases, ASD is comorbid with mild to severe 19 

intellectual disability, facial and cranial dysmorphology and gastrointestinal disorders. Perhaps because 20 

of grouping these multiple and sometimes distinct phenotypes into one disorder, and the complexity of 21 

behavior as a trait, understanding the genetic architecture of this cognitive disease has been non-trivial 22 

[23]. The genetic component of ASD is estimated to be 50-60% [24], however there are still a substantial 23 

number of cases where the underlying genetic factors of the disease are unknown. Due to these levels 24 
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of heterogeneity, multiple studies and study designs have been used to determine the underlying 1 

genetics which we make use of here. Taking these different studies, we construct several disease gene 2 

candidate collections, each containing genes of similar levels of risk, as determined by their odds ratios 3 

and relative risks. On every gene collection, we run a number of analyses, calculating the functional 4 

convergence using standard enrichment methods, and more complex network analysis enrichments. By 5 

exploiting trends in targeted genetic variation and their known effect sizes, we demonstrate it is 6 

possible to discriminate biologically convergent signals from likely technical artifacts at a very fine 7 

resolution. The disease properties with strong trend signals are largely consistent with the known 8 

literature on ASD (e.g., FMRP interactor enrichment) but we also see a few otherwise interesting 9 

properties as unlikely to be disease specific. Particularly protein-protein interaction networks and some 10 

co-expression networks, which extract artifactual signals from the study design, show signals in control 11 

data using that study design. Our focus here is on autism due to our interest in the disorder, its well-12 

powered data, and also its phenotypic and genetic heterogeneity.   13 

Methods  14 

Study design 15 

An overview of our study design and method is shown in Fig 1. Briefly, we start by characterizing the 16 

ASD gene sets collected for this analysis. Each study’s results were collapsed individually into a set of 17 

genes, with an estimated average effect size for that candidate set (Fig 1A). We calculate a functional 18 

effect (e.g., statistical overlaps with known functions, Fig 1B) for disease-specific and more general gene 19 

properties. We then calculate the correlation of these functional convergences with the estimated effect 20 

size of that variant class (Fig 1C). More specifically, we test to see if the set of genes with high effect 21 

sizes have strong relative functional convergences as measured by a functional enrichment of some 22 

disease property across them, and those with low effect sizes, have weaker functional signals. We apply 23 
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this test to numerous functional properties on candidate gene sets from a variety of study designs. 1 

Functions with positive correlations (positive trends) we believe will show signatures that are likely 2 

associated with autism and can be used for further functional characterization of the disease. 3 

Throughout our work we refer to the “effect size” as the disease burden or risk of a gene candidate (or 4 

the average of such values within a gene set), and the “functional convergence” as the significance of a 5 

functional test for a disease gene set after controlling for the set size.  6 

Study data 7 

Disease gene candidate sets 8 

We first collected candidate disease gene sets from available autism studies. We selected the largest 9 

study of whole-exome sequencing (WES) of families from the Simons Simplex Collection (SSC)[25]. We 10 

defined different sets of genes from over 2000 gene candidates, splitting into recurrent (at least 2 11 

probands having the mutation) and non-recurrent mutations, according to mutation type (loss-of-12 

function, missense and silent mutations). We selected copy number variant (CNV) data also from the 13 

individuals in the SSC [26], and parsed it into similar sets. We then used the CNVs as parsed by Gilman et 14 

al.[3], which prioritized genes with their NETBAG algorithm. For GWAS gene sets, we generated two lists 15 

from the Psychiatric Genomics Consortium (PGC) study on autism and related psychiatric disorders [23]:  16 

one from the reported gene list and a second list of all adjacent genes as listed in the GWAS NHGRI-EBI 17 

catalog [6]. For our control and test gene sets, we took all the GWAs data in the GWAs catalog [6], 18 

totaling over 1,396 traits across 2,066 studies. For each trait, we created gene lists with the reported 19 

genes. We conditioned on traits with at least 27 genes, which left us with approximately 200 traits.  Our 20 

negative control sets included using the genes with mutations in the unaffected siblings of the probands 21 

from the SSC studies.  Overall, we had 11 gene sets for the main autism analysis, and 148 trait gene sets 22 

from GWAS.  23 
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Gene functional annotation data  1 

Co-expression networks  2 

The majority of recent studies used co-expression networks from BrainSpan to illustrate network 3 

convergence among disease genes of ASD (e.g., see [27-29]). In a similar fashion, we generated a brain 4 

specific network from the BrainSpan RNA-seq data (578 samples). In addition to this, we generated an 5 

aggregate co-expression network from 28 brain tissue and cell specific microarray experiments (3,362 6 

samples). For more general networks, we used our aggregate RNA-seq and microarray co-expression 7 

networks as previously described in Ballouz et al, [30]. In brief, these are the aggregates of 50 networks 8 

(1,970 samples) and 43 networks (5,134) samples respectively, across various tissues, cell types and 9 

conditions. As a comparison to the aggregate networks we recommend, we constructed and tested 10 

individual networks from single experiments that are more commonly used. This includes tissue-specific 11 

co-expression networks from the GTEx data [31] (29 tissues), and age specific co-expression networks (5 12 

age groups). As additional tests, we took a further 227 RNA-seq expression datasets with at least 20 13 

samples within each experiment from GEMMA [8], and have generated a further 454 individual human 14 

co-expression networks, using all annotated transcripts (30K, GENCODE [32]), and then only protein-15 

coding genes (18K).   16 

Protein-protein interaction networks 17 

We used the human physical protein-protein interactions from BIOGRID (version 3.2.121)[33] and 18 

created a binary protein-protein interaction network, where each protein was a node and each protein-19 

protein interaction is an edge. Because of the sparseness of the network, we extended the network by 20 

modelling indirect connections [34], taking the inverse minimum path length between two proteins as 21 

the weighted edge, with a maximum distance of 6 jumps roughly as described in Gillis et al,[35]. We 22 

repeated this for alternate PPI datasets including: I2D [36] (v 2.9), HPRD [37] (Release 9), HIPPIE [38] 23 
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(v1.8), IntAct [39], the CCSB interactome database [40](HI-III v2.2), STRING [41](v 10), and PIPs [42]. A 1 

non-interacting protein-protein network was created from data from the negatome [43](v2).  2 

Gene sets and collections 3 

We considered common functional gene sets and neurological specific sets, as used in numerous 4 

studies, as gene sets to test for ASD candidate enrichment. These included the post synaptic density 5 

(HPSD) gene set [44], synapse sets [45], the synaptosome [46], chromatin remodelling set [47], fragile X 6 

mental retardation protein (FMRP) set [48], and gene essentiality [49]. For more standard sets, we also 7 

took the Gene Ontology [50] (GO) terms (April 2015) and KEGG pathways [51]. For each GO term, we 8 

only used evidence codes that were not inferred electronically, propagated annotations through the 9 

ontology (parent node terms inherited the genes of their leaf node terms). To minimize redundancy 10 

from GO, we restricted our enrichment analyses to GO terms groups with sizes between 20 to 1000 11 

genes. While these GO terms and KEGG groups are used in the enrichment analyses (with the full 12 

multiple hypothesis test correction penalty). As an extension to the original study, we collected 13 

alternate gene property sets for more functional enrichment tests. For this we used all the collections 14 

from MSigDB [7] (gene sets H, C1-C7). We calculated the multifunctionality of a gene based on the 15 

number of times a gene is seen as being annotated to a function (using GO, see [52]).  16 

Disease gene score sets 17 

We used disease gene scoring methods that rank genes according to likely having damaging effects if 18 

they are mutated. This included the Residual Variation Intolerance Score (RVIS)[53], haploinsufficiency 19 

(HI) scores [54], mutational rates and constrained gene scores and probabilities (pLI) from ExAC [55].  20 

Expression data  21 

To obtain brain specific expression and differential expression information, we used three common and 22 

large sample size brain-specific transcriptomic sets. These included the Human Brain Transcriptome 23 
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(GSE25159)[56], BrainSpan [39] and the Human Prefrontal Cortex transcriptome (GSE30272)[57]. We 1 

divided the samples into fetal (post-conception week – PCW) and post-birth stages, and performed a 2 

straightforward differential expression (DE) fold change analysis (averaging across these stages)[58].  3 

Calculating average disease effect sizes  4 

For the 11 candidate disease and control gene sets (Table 1, Fig 2A), we ranked the set according to the 5 

overall or average “effect size” of the genes within it. For the de novo mutation candidates, we took the 6 

ratio of observed counts of mutations to silent mutations within the study for that class of mutations, 7 

and then the ratio of those odds between siblings to probands (as calculated in Sanders et al,[10]). To 8 

calculate this effect size for the GWAS results, we took the average odds ratios from the individual 9 

studies of each the SNP, which ranged between 1.01-1.1. For the control sets (siblings and the silent 10 

mutations), we took the effect size to be null. We then ranked the sets based on these overall effect 11 

sizes. After these calculations, we end up with three general classes: null effects (as controls), weak 12 

effects (missense and common variants) and strong effects (rarer loss-of-function and copy number 13 

variants).  14 

Calculating functional convergences  15 

Our functional tests, described below, return p-values which are dependent on the size of the gene set 16 

being considered. The statistical tests differ depending on the mode of analysis (e.g., enrichment or 17 

network), but by ‘functional convergence’ we simply mean significance (p-value) after correcting for the 18 

set size, typically by downsampling. For the downsampling, we took a subset of genes, recalculated the 19 

p-value and then took geometric means of the adjusted p-values. Throughout, where we write 20 

‘functional convergence’ it is possible to read ‘p-value after correcting for set size’.  21 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2017. ; https://doi.org/10.1101/043422doi: bioRxiv preprint 

https://doi.org/10.1101/043422
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

Network connectivity 1 

We measure the clustering of sets of genes within networks through the use of a network modularity 2 

calculation. We compare the degree of connections a gene has to all the genes in the network (global 3 

node degree), and to those of interest within the sub-network they form (local node degree). The null 4 

expectation is that genes will be connected equally well to genes within the sub-network as to those 5 

outside. Genes with large positive residuals have more weighted internal connections than external 6 

connections, implying a well inter-connected module. We test the significance of this distribution of 7 

residuals to a null set (random similarly sized set of genes, Mann-Whitney-Wilcoxon test, wilcox.test in 8 

R) to determine our test statistic.  9 

Gene set enrichment testing 10 

As a way to determine the level of enrichment of the candidate gene sets within other functional sets, 11 

we used a hypergeometric test with multiple test correction (phyper in R). The downsampled p-value 12 

was used as the functional convergence measure.  13 

Disease gene property testing  14 

For the disease gene scoring properties, we tested the significance of the scores of the candidate genes 15 

using the Mann-Whitney-Wilcoxon test (wilcox.test in R). The functional convergence was the p-value of 16 

this test.  17 

Measuring functional convergence trends  18 

For each gene property tested, we then measured the “trend” by calculating the correlation of the 19 

ranked functional effect sizes of our gene sets, whereby the gene sets are ordered according to their 20 

effect size ranks. A positive correlation is one where the function tested is correlated with our ordering. 21 

We computed this using Spearman’s rank coefficient to capture the degree of variation, but the 22 

significant subsets identified are generally robust to choice of measurement metric such as the 23 
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Pearson’s coefficient.  We limited our functional convergence tests to the subset of functions where at 1 

least one gene set of the 11 showed a significant functional convergence signal (p<0.05).  In essence this 2 

filtering removes gene sets where there are, for example, no overlaps with any disease sets and should 3 

not affect our analysis.   4 

Determining significance of the functional convergence trends   5 

To calculate a null, we permute the labels of the gene sets, and calculate the functional convergence 6 

trends.  Note that in the ranked case, this is simply the null distribution of a spearman correlation, with 7 

similarly associated significances.  We first filter for functional tests where any one of the disease and 8 

control gene sets have a functional convergence of 0.05, but report both pre- and post- filtering results. 9 

Because our hypothesis (and test) are concerned with the ordering of functional effect sizes, filtering so 10 

that the data has at least one significant value changes the null distribution only slightly (e.g., probability 11 

of ties).  We calculate the number of significant correlations based on the false discovery rate (FDR) at 12 

0.01 and 0.05. Known confounds of disease gene sets are gene length [59] and gene multifunctionality, 13 

and to test this we generated matched gene set controls by sampling genes with similar gene lengths, 14 

GO multifunctionality and disease multifunctionality measures. Using the ranked CDS (coding DNA 15 

sequence) region of the genes, we generated sets of genes of similar ranked length distributions to the 16 

11 real gene sets in the analysis. Downsampled, we then ran the analyses on these gene sets that are 17 

specifically not involved in the phenotype. This was repeated for multifunctionality as calculated using 18 

GO and then disease (using Phenocarta [60]).   19 

Results 20 

Little overlap of the autism candidate genes across gene sets of different effect sizes  21 

We find genes with loss-of-function de novo mutations to be little implicated in GWA studies, with only 22 

4 candidate genes overlapping those two sets (Fig 2B, hypergeometric test p=0.76). Interestingly, the 23 
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more recurrent genes in the loss-of-function de novo set, the more unlikely they are to be found in other 1 

gene sets. For gene sets with the lower average effect sizes (e.g., the genes with missense mutations), 2 

their overlap with other gene sets is greater, in particular with the control sets (Fig 2B, hypergeometric 3 

tests p~4.4e-3 to 2.4e-6). The de novo variants are conditioned on being rare (low frequency) and novel 4 

by not appearing in the parents. The SNPs used in GWAS are generally conditioned on being common by 5 

having minor allele frequencies greater than 0.05 [61]. Even if this filtering is done on the variant level, 6 

and not on the gene level, it still creates selection trends within our observations of variants and thus 7 

genes. This is possibly a version of Berkson’s effect[62] – where selecting for an outcome generates 8 

negative correlations between potential causes for it. An additional cause is largely technical; since 9 

we’ve conditioned on frequency, genes with higher mutability are depleted in our rare lists, and 10 

enriched in our common lists. Thus the lack of overlap is at least potentially not largely reflective of 11 

underlying genetics or biology, but likely due to the selection bias in obtaining them. There is also poor 12 

overlap within the rarer variation itself, for instance of genes within CNVs and those with loss-of-13 

function SNVs (3 genes, p~0.37); there is generally a discrepancy between study designs focused on 14 

(different) sources of rare variation, and not just rare versus common. It should be noted that whether 15 

biological or technical, the lack of overlap does nothing to discredit either common or rare variation as a 16 

contributor to the disease – but highlights the need for a framework to combine and analyze the results 17 

of these studies that is aware of these biases and can distinguish biology from technical effects.  18 

 Functional convergence trends as shown through enrichment and connectivity tests 19 

While enrichment analysis is comparatively straightforward, we demonstrate an example in Fig 3A using 20 

the genes with de novo loss-of-function mutations from Iossifov et al,[1] (341 genes) and their overlap 21 

with essential genes (see Methods). In Fig 3A, we represent this enrichment test as a Venn diagram of 22 

the overlap of the candidate disease gene set with the essential gene set, and calculate the significance 23 

of the overlap with a hypergeometric test (n=82, p~9.8e-9). We continue this analysis on the other 24 
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candidate disease gene sets from recent ASD studies, varying across study designs and technologies 1 

(WES, GWAS and arrays). Splitting each gene set by mutational class, recurrence and gender, we 2 

perform the same hypergeometric tests. To make comparable assessments between studies and gene 3 

sets, we calculate the functional convergence by downsampling – selecting a subset of genes within that 4 

set and averaging the results over a 1000 permutations (schematic in Fig 3B). Taking a representative set 5 

of studies (Table 1), we use the degree of disease effect to rank these sets, noting that recurrence leads 6 

to a higher effect size even for variation and study designs of the same class by reducing the number of 7 

false positives. Placing the controls sets on the far left, and the highest disease rank set (recurrent de 8 

novo loss-of-function genes) on the far right, and plotting their functional effect values, we observe an 9 

upward trend (Fig 3C Spearman’s rs=0.95, Fisher’s transformation p<8.24e-06). The slope (i.e., the 10 

correlation) of this trend line represents the “functional convergence trend”, with higher correlations 11 

indicating higher functional effects.  12 

A less common (likely due to complexity) yet important functional test is network connectivity. Genes 13 

that are co-regulated or form parts of a functional unit, protein complex or pathway, are preferentially 14 

co-expressed, and this information is captured in co-expression networks. We next demonstrate how 15 

network-style effect sizes can be similarly calculated through a modularity analysis. In Fig 3D, we plot 16 

the global node degrees (x-axis) against their connectivity to the remainder of genes in the set (y-axis). 17 

In the null (grey line), the genes would be connected to other autism genes in proportion to the 18 

incidence of those genes within the genome. Deviations from this null across all genes generate excess 19 

modularity within this set (studentized residuals shown in inset Fig 3D) and determine the statistical 20 

results reported for the set overall (Wilcoxon test). A large number of genes are highly interconnected in 21 

this set, as shown by the number of points above the line (Wilcoxon test on the studentized residuals, 22 

p~7.83e-41). It is important to note that this network analysis is calculated against the empirical null for 23 

each gene individually (x-axis) and so is unaffected by any gene-specific bias (such as length). Only 24 
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higher-order topological properties across gene-gene relationships for a given gene can produce a 1 

signal. Even assortativity, the tendency for genes of high node degree to preferentially interact, is quite 2 

low within this data (r=0.064). As in the previous steps, we repeat the network connectivity tests across 3 

all gene sets (Fig 3E), also downsampling to calculate the functional convergence. Once again, gene sets 4 

with higher proportion of burden genes correlate with functional convergence tests (Fig 3E, Spearman’s 5 

rs=0.69, Fisher’s transformation p<0.02). 6 

A subset of functional properties are correlated with disease effect sizes 7 

We extend our analysis to other disease gene property tests, and calculate their effect size correlations, 8 

plotting the distribution of correlations in Fig 4A (4210 functional tests performed, 4164 with calculable 9 

correlations).  We then calculated the null distribution for the variation across effect sizes by permuting 10 

the estimated effect size for each real set and rerunning our analysis. Only limiting our functional tests 11 

to those where we had at least one gene set returning a significant enrichment signal , we observe a 12 

strong signal (61 tests, Fig 4A, 14 functions FDR<0.01 Table 2).  Reducing the stringency of the 13 

underlying enrichment (383 tests, Fig 4B), we observe a weaker signal (10 functions FDR<0.01.  14 

Removing the underlying enrichment constraint, we observe that most functional tests are ordered 15 

consistent with the null, with a few highly correlated functions (Fig 4C enrichment at positive end, 3 16 

functions FDR<0.01).  The results are broadly reassuring that some weak artifact is not driving the 17 

tendency of the functional convergence and effect size to be correlated because that correlation occurs 18 

almost exclusively where the underlying tests themselves are detecting significance.  In other words, the 19 

ordering of significances is only non-random where the underlying values are also non-random.  We 20 

focus on the 14 functional properties identified in the first filtered assessment (Table 2).  21 

Each property can be defined by its vector of effect sizes across gene sets and so we can cluster the 22 

properties by their Euclidean distance in this space. Taking the 61 properties and highlighting the 23 
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properties that are significant (FDR 0.01), they split into approximately 7 clusters and a singleton (Fig 1 

4E). The interesting clusters are 1 and 7 as they have the highest correlations (as depicted by the dark 2 

purple scale), and a stronger significant signal from the de novo set (white/yellow in heatmap). Cluster 1, 3 

specifically, has the most consistent trends and contains the expression analyses (overexpression and 4 

fold change), the gene essentiality scores and some of the neural gene sets. Cluster 3 has the co-5 

expression networks clustered, and the mutational probabilities, but is slightly weaker as the control 6 

sets also show some enrichment. Cluster 5 contains most of the GO groups. Cluster 6 has some tests 7 

which are functionally enriched in the CNV and missense gene sets but are not significantly enriched for 8 

any of the genes in the de novo recurrent gene set and are thus not showing a substantially positive 9 

functional convergence trend. The clustering speaks to the similarity of some of the tests (i.e., GO 10 

groups clustering), but also to a likely neuronal signature across the disease gene sets.  11 

Significant functional properties are consistent with the autism literature  12 

One of the properties with the highest correlation was network connectivity in the BrainSpan co-13 

expression network; however, all disease gene sets had a significant functional convergence with 14 

Brainspan, indicating that in addition to the real signal, there is a background signal affecting even 15 

control data. In particular, the signal from the silent recurrent mutations in the probands (functional 16 

convergence p=7.5e-7) shows that control data subject to only one study design may select genes in a 17 

highly non-random pattern. Most top scoring disease properties are consistent with the literature on 18 

autism candidates such as average RVIS and haploinsufficiency scores, [63] along with gene length and 19 

enrichment for FMRP interactors. RVIS scores are highly enriched in the loss-of-function recurrent set 20 

and the CNVs, but not significant in any of the other sets (Fig 5A); as with any meta-analysis significance 21 

in any one set is not necessary for aggregate significance. Genes with high haploinsufficiency scores – 22 

those that cannot maintain normal function with a single copy - are overrepresented in the loss-of-23 

function recurrent genes, and there is also a significant effect in the GWAS results. Many interaction 24 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2017. ; https://doi.org/10.1101/043422doi: bioRxiv preprint 

https://doi.org/10.1101/043422
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

networks and traditional functional categories appear to be poor candidates to determine convergence 1 

in disease genes, as they cluster control gene sets and sets of low effects as well as those of disease 2 

genes. For instance, the extended PPI network has a high effect in the sibling controls sets (e.g., silent 3 

functional convergence p~1.3e-5, Fig 5B).GO terms and KEGG pathways typically do not survive 4 

correcting for multiple testing, although there is a general deviation from the null and the extremal GO 5 

functions are concordant with the known literature (e.g., GO: 0016568  chromatin modification 6 

hypergeometric test p~1e-3 for the de novo recurrent set or GO: 0048667 cell morphogenesis involved 7 

in neuron differentiation, hypergeometric test p~0.04 for the CNV set). So although functional 8 

convergence trends are concentrated in more clearly disease related -properties such as RVIS, 9 

traditional functional categories from, e.g., GO remain of modest use.  10 

Robustness and relative contributions of study designs and variants  11 

In order to determine whether the functional convergence trend rose preferentially from a subset of 12 

studies, we conducted a series of robustness analyses (Additional file 1: Fig S1). Ideally, the significant 13 

functional convergence trend we see is due only to effect size estimates across studies which are 14 

themselves robust. Nor do we want the trends to be strongly affected by ordering of the gene sets with 15 

similar effect sizes. Even though the average effect sizes for the GWAS sets were the same, the number 16 

of false positives within these sets varies, and this was incorporated into the ranking scheme. It is also 17 

arguable that the silent mutations in the probands may have some regulatory effect, or are false 18 

negatives.  As a more stringent test, we removed whole classes of variants from the analyses (e.g., all 19 

the controls or all the common/weaker gene sets) and calculated the trends once again (Additional file 20 

1: Fig S1D-F). This is a negative control experiment in the sense that if the functional convergence trend 21 

arises meta-analytically, it should be largely robust to changing things we are not certain about (e.g., as 22 

above, whether effect sizes are 1.1 or 1.09) and not robust to changing things we are certain about 23 

(common variants play some role in autism). Removing either controls, genes sets with the highest 24 
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effects or the common variants from the trend analyses removes all the number of significant 1 

correlations although some deviation from the null remained (Additional file 1: Fig S1). When rare 2 

variants are excluded, the distribution of correlations is most similar to the null, but still significantly 3 

different (Student’s paired T-test p~0.03), while the total significance of the test is closest to the full 4 

version when common variation is excluded (Student’s paired T-test p~8.2e-7). Since our common data 5 

is likely the weakest due to the tremendous focus of autism data collection toward rare variation in the 6 

SSC, this makes sense, but common variation still contributes substantial joint signal. These tests 7 

confirm that the approximate order of gene sets by effect sizes correctly drives the results and that we 8 

are robust to minor variation in the exact effect sizes listed, but do rely on the joint use of the extremely 9 

divergent study results (rare and common) within the meta-analysis to attain significant results.  10 

To control for the impact of gene length and multifunctionality (number of functions a gene is listed as 11 

possessing), we repeated a control version of our analyses.  In this case, the real disease gene sets were 12 

swapped out with gene sets matched with respect to multifunctionality or length.  We then reran the 13 

evaluation of functional convergence trends to determine if any previously identified properties arise as 14 

correlated with these control sets (ordered by their match to a specific disease sets, e.g., gene length 15 

distribution).  Repeating the analysis in this control case, we find the derived correlations are for the 16 

most part extremely similar to the null (reference). We can additionally use these controls versions as a 17 

slightly more stringent null distribution for expected correlations when we evaluate the real disease 18 

sets.  In the analysis where we do not condition on the underling tests having reached some level of 19 

significance (as in Fig 4A), we see even more correlations passing significance (Additional file 1: Fig S2), 20 

indicating the multifunctionality or gene length do little to explain the general trends we see.  21 

Promiscuous or absent enrichment have both historically been problematic within disease gene data; 22 

both diminish the specificity of functional results. When too many functions are returned from an 23 
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analysis, we need to cherry pick and with too few, we have no “leads” and are left in the dark. We 1 

suggest that the strong aggregate effect we see and small number of significant functions is likely near 2 

to a useful and biologically plausible type of specificity for downstream analysis, as suggested by the fact 3 

that ad hoc filtering (i.e., top ten lists) usually are at about this level when not constrained by 4 

significance. Our set of functional tests and results are shown in Additional file 2:  Table S1 and the full 5 

data set is available online. 6 

One potential failure mode of this analysis comes from the GWAs we have used. Because the number of 7 

autism GWAs available and well-powered for analysis was relatively small, we used a combined 8 

psychiatric genomics dataset, which included bipolar and schizophrenia. We now wish to test how 9 

specific our results were to our disease and not a signal of GWAs in general. We repeated our analysis 10 

using each of the 148 GWAS traits in the GWAS catalog that had enough genes to be included in our 11 

tests. We did not recalculate the effect sizes specifically for each, but used the mean estimates from the 12 

autism set. Using the number of correlations calculated as significant to rank the 148 traits, the top ten 13 

traits include the autism and schizophrenia GWAs, and a few larger studies such as “Body mass index” 14 

(Additional file 1: Fig S3).  This is a fairly striking confirmation of our original hypothesis:  the degree of 15 

correlation between functional convergence is so specific that it correctly distinguishes particular 16 

disease sets as belonging to the same trend (as defined by a particular disease). The larger GWAs, also 17 

found in the top 10, are not related to psychiatric disorders show a signal in very broad disease 18 

properties, such as the gene mutability scores.  19 

Expanding the functional gene tests show no further significant properties 20 

We wished to see if we could find other significant associations if we expanded our repertoire of 21 

functions within each type of test. Our first set of network analyses focused on general aggregate co-22 

expression networks and brain sample only aggregates. In most analyses, researchers use individual 23 
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datasets to build their networks and we wished to compare our results to these. Thus we expanded our 1 

tests to a total of 540 networks. We repeated the same analysis, using an additional 6 PPI networks, 76 2 

condition specific networks (tissues, sex, and age), and a further 454 RNAseq co-expression networks 3 

(227 across 18K protein coding genes and 227 across 30K transcripts).  Once again, we see functional 4 

convergence across almost all the gene sets with little ordered trend by effect size. The network 5 

convergence exists in even the control data and is therefore likely due to study selection biases alone; 6 

none pass an FDR of 0.01 (Additional file 1: Fig S4A).  7 

Initially, we focused on expression data for the brain, but were curious about how tissue-specific these 8 

patterns were, or whether the genes were generally highly expressed. To this end, we repeated the 9 

expression analyses using tissue specific expression datasets from GTEx data [31]. We were also curious 10 

to determine if we could see sex specific differences, and used additional data from the GEUVADIS 11 

project [64]. Repeating the functional convergence trends on all these expression datasets shows little 12 

to no significant expression in the individual gene sets, and no significant functional correlations 13 

(Additional file 1: Fig S4B). The functional test with the greatest correlation were also from brain 14 

specific expression datasets (rs=0.78).  15 

One last set of gene properties typically used by researchers in their analyses are the curated gene sets 16 

from MSigDB. We repeated our analyses on all 8 collections, and calculated the functional convergence 17 

trends, using the hypergeometric test as in the case of calculating enrichment in GO. The gene sets 18 

range from curated data sets from the known literature, to computationally derived gene sets from 19 

cancer microarrays. Perhaps unsurprisingly, we see no enrichment in these gene sets (Additional file 1: 20 

Fig S5), as most are inflammatory or oncogenic collections, or versions of GO terms and KEGG pathways 21 

which we had already found to have no enrichment.     22 
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Discussion  1 

Our contribution in this work has been to establish that there is a significant correlation between the 2 

effect size of candidate autism genes and the degree to which tests assessing their functional 3 

convergence find a signal. As with any meta-analysis, the hope is that by incorporating multiple data, the 4 

aggregate signal may be stronger.  While our work suggests an approach to do this and shows strong 5 

statistical trends, we anticipate that divisions in the field of genetics may play some role in the 6 

interpretation of this work [65, 66].  GWAS researchers may question the power of our GWAS analysis 7 

and assume that if it just had a large enough ‘N’, it alone would be the dominant player in understanding 8 

psychiatric disease.  Similarly, they may suspect rare variants of reflecting ‘anomalous’ versions of the 9 

disorder and thus think they are less likely to be specifically linked to autism. Rare variant researchers 10 

may question the precision of the data underlying our rare variant analysis and assume that if we just 11 

had large enough ‘N’ to remove false positives, it would be the dominant player in understanding 12 

psychiatric disease.  Similarly, they may suspect that GWAS data is affected by confounds such as 13 

population stratification. Both reactions are perfectly reasonable.  Our analysis does not establish that 14 

all functional properties are distributed across all classes of autism, but rather, for a subset, there is a 15 

very significant trend.  This is further supported by the functions that arise being either of specific 16 

relevance to autism or of well-known importance to disease in general; however, even this division 17 

implies that we are capturing multiple factors affecting the genetic architecture of disease.  18 

Likewise, our specific experimental design for assessing a relationship between functional convergence 19 

and effect size may well be open to elaboration and emendation.  Our principle interest was in ensuring 20 

that any observed trends would be reflective of tests and data used within the literature and not choices 21 

of our own. Thus, we aimed for the simplest and most conventional means of assessing functional 22 

convergence and focused on being exhaustive (in terms of properties) within this domain, rather than 23 

optimizing our design for observing functional convergence trends.  We also developed a framework 24 
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which is readily extensible to new tests, regardless of their form or complexity.  In each case, the test 1 

can be equivalently applied to the downsampled disease gene sets and the significance of any 2 

correlation simply calculated as would be conventional via permutation test. This is both simple, 3 

general, and allows easy comparison across studies using the equivalent approach; however, more 4 

theoretically grounded or alternative means of calculating functional convergence trends are surely 5 

possible.  Particular weaknesses in our design are our use of non-parametric tests and downsampling to 6 

control for set size.  These are, we think, natural choices for robustness but more finely tuned 7 

alternatives are likely to exist and could easily be a target of research since our results suggests the 8 

observation of key functional convergence trends is highly robust and salient within the data.    9 

As the number of disease gene sets expands, and further refinement of risk assessment is achieved, the 10 

resolution of functional convergence trends should grow. Indeed, incorporating effect size as a meta-11 

analytic constraint offers a diverse range of novel applications. That integration may be across study 12 

designs and classes of variation, as we have done, or may involve phenotype or other properties. So, for 13 

example, one could determine functional convergence trends that grow or shrink depending on how 14 

patients were classified, or even broken down in a sex-specific manner for interpreting protective 15 

effects. More broadly, as data and the means for obtaining it grows, techniques to statistically assess its 16 

structured dependencies will grow more useful and important. Our robustness analysis speaks to this in 17 

that while we are robust to modest losses of data, it is clear that more data will only improve the signals 18 

of the individual classes. More finely-tuned effect size estimates and better separations of the gene sets 19 

and variant classifications will also help refine the distinction between biological and artifactual signals, 20 

ideally allowing us conduct yet more focused study designs in a productive feedback loop.  21 
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Conclusions  1 

In this work we have found that the stronger the effect size of autism candidate genes, the more likely 2 

they are to exhibit a joint functional signal.  The functional properties identified exhibit some specificity 3 

to autism and neuropsychiatric disease (e.g. FMRP interactors), but also some more general links to 4 

disease (e.g., RVIS).  While there remains substantial heterogeneity between study designs and the 5 

genetic architectures of disease which they may uncover, we have shown that there is some 6 

commonality across study designs.  The commonality across study designs is not a literal overlap in risk 7 

genes, or even functional effect, but that functions weakly identified in GWA studies are likely to be 8 

more strongly identified in rare variation studies. As evidence for autism and other disorders continues 9 

to develop and continues to be heterogeneous with respect to ascertainment biases and study designs, 10 

we suspect approaches related to the one we describe will be of increasing importance.  11 
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 1 

Figures  2 

 3 

Fig 1 Schematic of functional convergence trend calculation.  4 
(A) Starting with disease gene set collections, we rank each by the average effect size of the genes within that set. 5 
(B) We then run ‘functional tests’ on these genes sets and calculate a functional convergence for each. (C) Then, 6 
using the ranking of the disease gene sets, we measure the functional convergence signature – the correlation of 7 
the trend line of the functional convergences versus the rank. 8 

 9 
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 1 

Fig 2 Characterization of autism candidate gene sets.  2 
(A) We first classified the 11 gene sets used in the study into three larger groups: no effects, weak effects and 3 
strong effects. We see little overlap in the individual gene sets themselves (mid panel). The total number of genes 4 
in each set also varies (right-most panel), and is negatively correlated with the average effect size (rs=-0.69). (B) 5 
Control gene sets overlap significantly with missense genes (333 genes hypergeometric test p=2.54e-6), common 6 
SNPs gene sets (11 genes, p=4.5e-3), and the loss-of-function (LoF) SNV gene sets (71 genes, p=3.2e-3) but not the 7 
CNV gene sets (14 genes, p=0.03). Missense and common SNPs overlap significantly (4 genes, p=2.4e-4). However, 8 
loss-of-function SNVs do not overlap significantly with either common (4 genes, p=0.62), missense (68 genes, 9 
p=0.75), or CNVs (3 genes, p=0.37). (C) Common biases that affect studies are gene length and number of 10 
functional annotations. The average standardized rank (+/- SE) of genes with respect to these properties shows 11 
that the “rare” disease sets contain longer genes but are not much more multifunctional than random.  12 
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 1 

 2 

Fig 3 Functional properties of disease gene sets are tested using gene set enrichment (top panels) and co-3 
expression network connectivity (bottom panels).  4 
(A) Gene set enrichment is calculated with a hypergeometric test. A large number (34%) of the genes in the de 5 
novo loss-of-function set overlap with essential genes (hypergeometric test p~9.8e-10). (B) This is repeated across 6 
all disease gene sets, (a subset shown here). Sample size is controlled through downsampling. Gene sets with the 7 
higher effect sizes also have the higher functional convergences. (C) We can now demonstrate how to calculate the 8 
functional convergence trend for the “essential genes” test. The disease gene sets are ordered by an estimate of 9 
the average effect size of genes within the set (from low to high on the x-axis) and the functional convergence is of 10 
that disease gene set is plotted (y-axis). A trend between the effect size of the candidate genes and their 11 
essentiality can be clearly observed. The network connectivity functional test (D) consists of calculating the ratio of 12 
disease genes’ total connectivity (node degrees calculated from the whole network; sum of their connections) to 13 
their internal connectivity (node degrees of their subnetwork; sum of their connections to one another). The line 14 
(in grey) reflects the expected values if there is no preferential connectivity within the set. We see that a large 15 
number (72%) of the genes lie above the identity line. The Wilcoxon p-value of the mean residuals is shown in the 16 
inset (p~7.83e-41) (E) Once again, controlling for sample size through downsampling, the functional convergence 17 
of each gene set is calculated (subset shown). (F) A weak trend between the effect size of the candidate genes and 18 
their degree of co-expression is visible. Empirical nulls are calculated by permuting disease gene sets and FDRs 19 
through a Benjamini-Hochberg correction against the resultant functional convergence trends. 20 
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 1 

Fig 4 Clustering disease property tests by their functional convergence trends.  2 
(A) The correlations of the ranked effect size trends are significantly different from null distributions for the 61 3 
functional properties (effect size permutation null, Student’s paired T-test p < 2.2e-16).We’ve drawn the red line to 4 
indicate the false discovery rates (FDRs) of 0.01, where 14 functions are significant, and 0.05 where 44 are 5 
significant.  (B) If we filter for the functions with some weak signal in the underling functional tests (p<0.5), 383 6 
correlations are considered with 10 functions as significant (dark blue, Student’s paired T-test p < 2.2e-16). Note 7 
that we are not filtering with respect to our own functional effect size test, which assesses variation in the 8 
underlying functional tests, merely that the underlying tests do return some values.  (C) And when we have no 9 
constraints (all tests, 4164 shown), 3 pass an FDR of 0.01. (D) We enumerate these in a barplot. (E) A heatmap of 10 
all the ranked scores of the test gene sets (columns) for the subset of significant effect 61 properties (rows). The 11 
properties clustered into 6 groups when we cut the dendrogram at a height of ~12. Their functional convergence 12 
correlations (ranked) show that most high correlations cluster (in clusters 1 and 3). White/yellow is a high rank, red 13 
is low. The property type is color coded as described in the figure key. A high correlation is shaded purple, 14 
low/negative correlations are grey. Clusters are labeled and colored, with functions FDR<0.01 outlined in black.  15 
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 1 

 2 

Fig 5 Example correlations and slopes of functional convergence.  3 
(A) RVIS enrichment test has a very high correlation across the gene sets (B) while the extended PPIN has mostly 4 
artifactual signal as demonstrated by the flatness of the line, highly elevated from the null but in no effect-5 
correlated way and suggestive of consistent biases.   6 
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Tables and captions 1 

Table 1 Disease gene sets used in the study  2 

Gene set 
Set size 
(genes) 

Odds Ratios/ 
effect sizes 

Rank 
 

WES results.  
Varying effect sizes depending on mutation and recurrence.  

Odds ratio is calculated as in Sanders et al,[10] (ratio of observed counts of mutations to silent 
mutations, and then ratio of those odds between siblings to probands).  

De novo loss-of-function, recurrent 27 4.1 11 
De novo CNVs 72 3.95 10 
De novo missense, recurrent 153 1.6 9 
De novo loss-of-function 341 1.5 8 
De novo missense 1339 1.06 5 

GWAS. Multiple hit models, low effect size per gene. Odds ratios between 1 and 1.1 
GWAS, reported genes 49 1.08 7 
GWAS, adjacent genes to SNP 116 1.08 6 

Control sets, no effect 
De novo silent 590 NA 2.5 

Control groups, no disease 
De novo loss-of-function (sibling controls)  174 NA 2.5 
De novo missense (sibling controls) 1066 NA 2.5 
De novo silent (sibling controls) 468 NA 2.5 
 3 
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 1 

Table 2 Functional properties with significant functional convergence trends 2 

Functional property  
Spearman’s 
correlation FDR 

Gene essentiality (Georgi et al.) 0.95 0.001 
GO:0048699 (generation of neurons) 0.92 0.003 
FMRP interactors (Darnell et al.)   0.91 0.003 
Brainspan co-expression network 0.90 0.003 
SynapseSet (Lips et al.) 0.90 0.003 
Haploinsufficiency scores 0.89 0.003 
RVIS 0.86 0.007 
GSE25219: Overall expression 0.84 0.008 
GO:0007409 (axonogenesis) 0.84 0.006 
GO:0030182 (neuron differentiation) 0.84 0.006 
GO:0048667 (cell morphogenesis involved in 
neuron differentiation) 0.84 0.006 
GO:0061564 (axon development) 0.84 0.006 
Chromatin remodeling gene set (Ronan et al.) 0.83 0.006 
GSE25219: Fetal expression 0.83 0.006 

 3 

 4 
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