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Abstract  1 

Background  2 

Disagreements over genetic signatures associated with disease have been particularly prominent in the 3 

field of psychiatric genetics, creating a sharp divide between disease burdens attributed to common and 4 

rare variation, with study designs independently targeting each. Meta-analysis within each of these 5 

study designs is routine, whether using raw data or summary statistics, but no method for combining 6 

the functional conclusions across study designs exist.  7 

Method  8 

In this work, we develop a general solution which integrates the disparate genetic contributions 9 

constrained by their observed effect sizes to determine functional convergence in the underlying 10 

architecture of complex diseases, which we illustrate on autism spectrum disorder (ASD) data. Our 11 

approach looks not only for similarities in the functional conclusions drawn from each study type 12 

individually but also those which are consistent with the known effect sizes across these studies. We 13 

name this the “functional effect size trend” and it can be understood as a generalization of a classic 14 

meta-analytic method, the funnel plot test.   15 

Results  16 

We detected remarkably significant trends in aggregate (p~ 1.92e-31) with 20 individually significant 17 

properties (FDR<0.01), many in areas researchers have targeted based on different reasoning, such as 18 

the fragile X mental retardation protein (FMRP) interactor enrichment (FDR~0.006). We are also able to 19 

detect novel technical effects and we see that network enrichment from protein-protein interaction 20 

data is heavily confounded with study design, arising readily in control data.  21 

Conclusions  22 

As a novel means for meta-analysis across study designs, this method reveals a convergent functional 23 

signal in ASD from all sources of genetic variation. Meta-analytic approaches explicitly accounting for 24 
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different study designs can be adapted to other diseases to discover novel functional associations and 1 

increase statistical power. 2 

 3 
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Background 1 

Autism spectrum disorder (ASD [MIM 209850]) is a neurodevelopmental disease commonly 2 

characterized by behavioral traits such as poor social and communication skills[1]. In more severe cases, 3 

ASD is comorbid with mild to severe intellectual disability, facial and cranial dysmorphology and 4 

gastrointestinal disorders. Perhaps because of grouping these multiple and sometimes distinct 5 

phenotypes into one disorder, and the complexity of behavior as a trait, understanding the genetic 6 

architecture of this cognitive disease is non-trivial [2]. The genetic component of ASD is estimated to be 7 

50-60%[3], however there are still a substantial number of cases where the underlying genetic factors of 8 

the disease are unknown. Researchers have used chromosomal analysis arrays[4-7], genotyping 9 

arrays[8-11], whole-exome sequencing (WES)[12-17], and whole genome sequencing (WGS)[18, 19], to 10 

identify risk loci and alleles. What has been demonstrated through these analyses is that all humans 11 

carry a substantial mutational load, some of which is most likely deleterious[20]. There are varying levels 12 

of genetic risk, affected in part by epigenetic and environmental factors, that all contribute to the 13 

variation in penetrance of disease gene candidates [21]. Typically, overlapping functional properties of 14 

candidate disease genes are exploited to sort out the positive and negative results. Candidate genes are 15 

prioritized based on enrichment analyses in pathways related to the phenotype (e.g., neuronal activity 16 

regulation) or some other disease feature shared by the genes (e.g., expression in the brain). If these 17 

methods return no significant results, more complex methods are performed to extract common 18 

features from the disease gene set [22], such as co-regulatory module detection from co-expression 19 

networks[23] or binding from protein-protein interaction (PPI) networks[24]. Without further rigorous 20 

molecular validation, it is difficult to establish whether these signals are disease specific, or artifacts of 21 

the study design or ascertainment method of the patients and populations.  22 

Ideally, the combination of these study designs would explain both the contribution of rare and common 23 

variation to autism, i.e., the genetic architecture of the disease. In particular, one would like to combine 24 
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the results across these to understand the functional mechanisms of the disease and the genetic risks 1 

involved. Yet doing so is challenging, mainly because the different study designs are carefully calibrated 2 

to enrich for meaningful signals and thus reflect different effects which cannot be naively compared – 3 

common variants are limited to regions of the genome with known variation (a SNP is known) but only 4 

reach significance with large numbers, while rare or ultra-rare variants are conditioned on not being in 5 

this list of common variants. Trio and quad studies are used mainly in WES and WGS study designs, while 6 

large case and control cohorts are required for signals in genome-wide association studies (GWAS). For 7 

each study design, we are asking distinct questions that relate to the population prevalence, disease 8 

mechanism, burden and risk. These different study designs create a structured dependency among the 9 

resulting candidate gene sets: not only in the relative contribution of the genes and variants they 10 

implicate, but also in their false discovery rates, technical errors, and ascertainment biases. Rather than 11 

treating discrepancies in study designs as a basis for argument within the field (e.g., see [25, 26]), they 12 

should be appreciated as a necessary consequence of study design, which must be exploited to uncover 13 

a greater portion of the genetic architecture. Like blind men describing an elephant, the different results 14 

still reflect a unified whole, if only they could be combined. We seek to unify the individual functional 15 

signals meta-analytically, in a way which will identify individual biases and take advantage of the same 16 

biological features to which study designs are tailored.  17 

What we can exploit and also agree upon are disease burdens or effect sizes for different candidate 18 

disease genes, as measured by their variant class or mutation type, and disease risk. For instance, 19 

disease candidates from GWAS have low relative risks (and therefore low effect sizes) as they are 20 

inherited common variation in the population. On the other hand, de novo mutations are a form of 21 

genetic variation which evolutionary forces have not had time to act upon[27], and are of high risk (and 22 

high effect sizes) i.e., a mutation generally implies disease. Studies also suffer from type I errors (false 23 

positives), and this too should be reflected in an aggregate disease signal of the candidate genes, as 24 
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quantified by their common functional properties. A set of genes with de novo mutations will show a 1 

strong aggregate disease signal, while we might expect a weak signal from the gene candidates from 2 

GWAS [28]. Measuring their ‘functional’ effect size, as determined by a gene set enrichment test or 3 

network analysis, we can thus exploit our knowledge of gene candidates’ effect sizes and false positive 4 

rates. For a real disease property, we expect the correlation between gene set effect size and functional 5 

effect size to be strong, and for a weak or artifactual property, we expect no significant correlation. We 6 

call the presence of this tendency the ‘functional effect size trend’, and it can be rigorously assessed by 7 

repurposing fundamental meta-analytic techniques.   8 

A simple and common method to detect bias in meta-analytic studies, the funnel graph [29], is based in 9 

a similar comparison of effect sizes to a measure of precision. We illustrate this in Fig 1. The underlying 10 

idea is to visualize the relationships between effect size estimates and sample size in the individual 11 

studies of a meta-analysis. This is done by plotting the odds ratio against the standard error or other 12 

related measure of variance (e.g., precision, standard error ratios). An inverted symmetric funnel would 13 

indicate that the data has no study selection biases. Small studies with small or no effect, as they are 14 

typically underpowered, should sit close to zero on both axes. Larger studies that are effective (high 15 

effect sizes) have low variance. However, a plot with asymmetry indicates likely systematic or 16 

publication biases and this is measured by either a rank correlation test [30] or a regression analysis 17 

[31]. The elegance of the test is in its simplicity: a correlation will indicate that there is asymmetry and 18 

bias, while symmetry implies heterogeneous data and publication results. There are two points of 19 

generalization from the traditional funnel test to meta-analysis across study designs [16]. First, we are 20 

not looking to a fixed effect size (no correlation) but to a known trend in effect sizes (positive 21 

correlation). Second, we consider many functional tests and then determine the subset which are 22 

significantly concordant with the effect sizes (after multiple hypothesis test correction). Our analysis is a 23 

generalized complement to the funnel test: rather than looking for correlations with bad properties 24 
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when we know there should none, we look for correlations with good properties when we know there 1 

should be one. This lack of heterogeneity in the funnel test is similar to their being hidden classes within 2 

the data – i.e., study designs – which we can detect [32].In both cases, though, expectations about effect 3 

size trends are being exploited, it is just that the expectations are different due to the differing types of 4 

variation alternate study designs target as causal for autism.    5 

In order to integrate the varying data and extract the convergent disease functional signal, we have run 6 

a meta-analytic study on ASD candidates across numerous genetic studies and tested a wide range of 7 

gene properties. We first construct several disease gene candidate collections, with genes of varying 8 

levels of risk, as determined by their odds ratios and relative risks. On every gene collection, we run a 9 

number of analyses, calculating the functional effect size using standard enrichment methods, and more 10 

complex network analysis enrichments. By exploiting trends in targeted genetic variation and their 11 

known effect sizes, we demonstrate it is possible to discriminate biologically convergent signals from 12 

technical artifacts at a very fine resolution. The disease properties with strong trend signals are largely 13 

consistent with the known literature on ASD (e.g., FMRP interactor enrichment) but we also see a few 14 

otherwise interesting properties are unlikely to be disease specific, particularly protein-protein 15 

interaction networks and some co-expression networks, which extract artifactual signals from the study 16 

design. Our focus here is on autism due to our interest in the disorder, and also its phenotypic and 17 

genetic heterogeneity, but the method is generally applicable to determine functional replication across 18 

studies in a formal way that is absent in the field.   19 

Methods  20 

Study overview 21 

An overview of our study design and method is shown in Fig 2. Briefly, we start by characterizing the 22 

ASD gene sets collected for this analysis (Fig 2, part 1). Each study’s results (rare and common variants) 23 
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were collapsed individually into a set of genes, with an estimated average effect size for that candidate 1 

set (Fig 2, part 2). To combine the implicated variants and obtain a functional signal from the disparate 2 

studies, we calculate whether there is a functional effect which correlates with the estimated effect size 3 

of that variant class. More specifically, the set of genes with high effect sizes have strong relative 4 

functional effect sizes as measured by a functional enrichment of some disease property across them, 5 

and those with low effect sizes, have weaker functional signals (e.g., statistical overlaps with known 6 

functions). We apply this test to numerous functional properties on candidate gene sets from a variety 7 

of study designs (Fig 2, part 3). We then use the resulting functional properties that are consistent with 8 

this trend to construct a unifying gene score for autism specific genes (Fig 2, part 4). Throughout our 9 

work we refer to the “effect size” as the disease burden or risk of a gene candidate (or the average of 10 

such values within a gene set), and the “functional effect size” as the significance of a functional test for 11 

a disease gene set after controlling for the set size.  12 

Data collection 13 

Disease gene candidate sets 14 

We first collected candidate disease gene sets from available autism studies. We selected the largest 15 

study of whole-exome sequencing (WES) of families from the Simons Simplex Collection (SSC)[33]. We 16 

defined different sets of genes from over 2000 gene candidates, splitting into recurrent (>2 probands 17 

having the mutation) and non-recurrent mutations, according to mutation type (loss-of-function, 18 

missense and silent mutations). We selected copy number variant (CNV) data also from the individuals 19 

in the SSC [34], and parsed it into similar sets. We then used the CNVs as parsed by Gilman et al.[35], 20 

which prioritized genes with their NETBAG algorithm. For GWAS gene sets, we searched for the term 21 

“Autism” in the GWAS catalog from NCBI (date February 2015, Additional file 1: Table S1). A total of 9 22 

GWAS were available, and we used their SNP-gene mapping strategies to define our candidate sets: first 23 
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selected genes with associated SNPs, and then expanding that set to include the nearest gene for 1 

intergenic regions, and finally a gene set with all adjacent genes. We also filtered on significance of the 2 

SNPs (i.e., using the p=5e-8 threshold), and then without significance filters (selecting all reported SNPs). 3 

Each GWAS was of relatively small size (up to ~7000 individuals), and varied in strategy (family trio or 4 

case-control), and had few candidate genes, all of which were of similar effect sizes. As there were 5 

overlaps between the cohorts in the individual studies, the total number of individuals was estimated to 6 

be roughly 10,000, but over ~40K if summed naively. For the final ASD candidate list, we included 7 

OMIM[36] disease candidates (search on “Autism”, date February 2015), all genes associated with 8 

“autism” reported in Phenocarta [37] (date January 2014), genes from the SFARI database[38] (date 9 

February 2015) and genes associated with “autism” from the HuGE navigator resource[39] (date 10 

Feburary 2015). We also filtered the SFARI database on “high-confidence” evidence as described in 11 

Shohat et al,[40] and included a curated ASD list from Betancur et al,[41]. All data sets are made 12 

available in the supplement and online. For additional analyses, we collected whole-exome sequencing 13 

data sets across other similar diseases (Additional file 1: Table S5).  14 

Co-expression networks  15 

The majority of recent studies used co-expression networks from BrainSpan to illustrate network 16 

convergence among disease genes of ASD (e.g., see [42-44]). In a similar fashion, we generated brain 17 

specific networks from the BrainSpan RNA-seq data (578 samples) and from an aggregate of 28 brain 18 

tissue and cell specific microarray experiments (3,362 samples). For more general networks, we used 19 

our aggregate RNA-seq and microarray co-expression networks as previously described in Ballouz et al, 20 

[45]. In brief, these are the aggregates of 50 networks (1,970 samples) and 43 networks (5,134) samples 21 

respectively, across various tissues, cell types and conditions.  22 
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Functional gene sets  1 

We considered common functional gene sets and neurological specific sets, as used in numerous 2 

studies, as gene sets to test for ASD candidate enrichment. These included the post synaptic density 3 

(HPSD) gene set[46], synapse sets [47], the synaptosome[48], chromatin remodelling set[49], fragile X 4 

mental retardation protein (FMRP) set[50], and gene essentiality[51]. For more standard sets, we also 5 

took the Gene Ontology [52] (GO) terms (April 2015) and KEGG pathways [53]. For each GO term, we 6 

only used evidence codes that were not inferred electronically, propagated annotations through the 7 

ontology (parent node terms inherited the genes of their leaf node terms). To minimize redundancy 8 

from GO, we restricted our enrichment analyses to GO terms groups with sizes between 20 to 1000 9 

genes. While these GO terms and KEGG groups are used in the enrichment analyses (with the full 10 

multiple hypothesis test correction penalty), only the subset that intersected with any of the disease and 11 

control gene sets have effect size trends calculated leaving us with 69 GO groups and 23 KEGG 12 

pathways. This is primarily a visualization issue; the FDR values calculated used throughout remain the 13 

same.  14 

Disease gene score sets 15 

We used disease gene scoring methods that rank genes according to likely having damaging effects if 16 

they are mutated. This included the Residual Variation Intolerance Score (RVIS)[54], haploinsufficiency 17 

(HI) scores[55], and mutational rates[42].  18 

Expression data  19 

To obtain expression and differential expression information, we used three common and large sample 20 

size brain-specific transcriptomic sets. These included the Human Brain Transcriptome (GSE25159)[56], 21 

BrainSpan[57] and the Human Prefrontal Cortex transcriptome (GSE30272)[58]. We divided the samples 22 

into fetal (post-conception week – PCW) and post-birth stages, and performed a straightforward 23 

differential expression (DE) fold change analysis (averaging across these stages)[59].  24 
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Protein-protein interaction data  1 

We used all the physical protein-protein interactions from BIOGRID (version 3.2.121)[60] and created a 2 

binary protein-protein interaction network, where each protein was a node and each protein-protein 3 

interaction is an edge. Because of the sparseness of the network, we extended the network by 4 

modelling indirect connections[61], taking the inverse minimum path length between two proteins as 5 

the weighted edge, with a maximum distance of 6 jumps roughly as described in Gillis et al,[62].  6 

Candidate gene set effect sizes and their ranks 7 

From the total list of candidate gene sets we collated, we chose 14 representative sets for our effect size 8 

analyses (Table 1). For each candidate disease gene set, we ranked the set according to the overall or 9 

average “effect size” of the genes within it. To calculate this effect size for the GWAS results, we took 10 

the average odds ratios from the individual studies of each the SNP, which ranged between 1.1-1.2. For 11 

the de novo mutation candidates, we took the ratio of observed counts of mutations to silent mutations 12 

within the study for that class of mutations, and then the ratio of those odds between siblings to 13 

probands (as calculated in Sanders et al,[13]). For the control sets (siblings and the silent mutations), we 14 

took the effect size to be null. We then ranked the sets based on these overall effect sizes. After these 15 

calculations, we end up with three general classes: null effects (as controls), weak effects (missense and 16 

common variants) and strong effects (rarer loss-of-function and copy number variants).  17 

Calculating functional effect sizes  18 

Our functional tests, described below, return p-values which are dependent on the size of the gene set 19 

being considered. The statistical tests differ depending on the mode of analysis (e.g., enrichment or 20 

network), but by ‘functional effect size’ we simply mean significance (p-value) after correcting for the set 21 

size, typically by downsampling. For the downsampling, we took a subset of genes, recalculated the p-22 

value and then took geometric means of the adjusted p-values. Throughout, where we write ‘functional 23 

effect size’ it is possible to read ‘p-value after correcting for set size’.  24 
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Network connectivity 1 

We measure the clustering of sets of genes within networks through the use of a network modularity 2 

calculation. We compare the degree of connections a gene has to all the genes in the network (global 3 

node degree), and to those of interest within the sub-network they form (local node degree). The null 4 

expectation is that genes will be connected equally well to genes within the sub-network as to those 5 

outside. Genes with large positive residuals have more weighted internal connections than external 6 

connections, implying a well inter-connected module. We test the significance of this distribution of 7 

residuals to a null set (random similarly sized set of genes, Mann-Whitney-Wilcoxon test, wilcox.test in 8 

R) to determine our test statistic.  9 

Gene set enrichment testing 10 

As a way to determine the level of enrichment of the candidate gene sets within other functional sets, 11 

we used a hypergeometric test with multiple test correction (phyper in R). The downsampled p-value 12 

was used as the functional effect size measure.  13 

Disease gene property testing  14 

For the disease gene scoring properties, we tested the significance of the scores of the candidate genes 15 

using the Mann-Whitney-Wilcoxon test (wilcox.test in R). The functional effect size was the p-value of 16 

this test.  17 

Functional size effect trends  18 

For each gene property tested, we then measured the “trend” by calculating the slope and intercept of 19 

the functional effect sizes of our gene sets, whereby the gene sets are ordered according to their effect 20 

size ranks. A positive slope is one where the function tested is correlated with our ordering, and an 21 

intercept close to zero indicating no effect or one with enrichment in the controls. We computed this 22 

using both ranked and unranked data, as well as correlations. We generally report results in terms of 23 
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slopes to capture the degree of variation, but the significant subsets identified are generally robust to 1 

choice of measurement metric, as the three metrics are well correlated themselves (r=0.7 with the raw 2 

slopes and r=0.93 with the ranked slopes).  3 

Aggregate gene score  4 

We then selected the top ten disease properties that had high and predictive positive slopes (Additional 5 

file 2:  Table S2). We then took all known protein coding genes from GENCODE [63] (version 19, 6 

approximately 19,000 genes) that had at least one annotation across all our properties. For each disease 7 

gene property, we gave each gene a ranking within that property. For gene scores (i.e., mutational rates 8 

or the RVIS), this was simply the rank of their score. For the gene sets, we ranked the genes and gave a 9 

tied score to the NAs (i.e., GO terms, synaptic sets). For the networks, we used the node degree of the 10 

genes as their rank, but as their “real” score is dependent on a gene set, this was only a proxy measure. 11 

Results 12 

Little overlap of autism candidates across gene sets of different effect sizes  13 

Genes with loss-of-function de novo mutations are not unusually likely to be found in the GWA studies, 14 

with 4 candidate genes overlapping those two sets (Fig 3, hypergeometric test p=0.62). Interestingly, the 15 

more recurrent genes in the loss-of-function de novo set, the more unlikely they are to be found in other 16 

gene sets (Additional file 1: Fig S1). For gene sets with the lower average effect sizes (e.g., the genes 17 

with missense mutations), their overlap with other gene sets is greater, in particular with the control 18 

sets (Fig 3, hypergeometric tests p~4.4e-3 to 2.4e-6). The de novo variants are conditioned on being rare 19 

(low frequency) and novel by not appearing in the parents. The SNPs used in GWAS are generally 20 

conditioned on being common by having minor allele frequencies greater than 0.05 [64]. Even if this 21 

filtering is done on the variant level, and not on the gene level, it still creates selection trends within our 22 

observations of variants and thus genes. This is possibly a version of Berkson’s effect[65] – where 23 
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selecting for an outcome generates negative correlations between potential causes for it. An additional 1 

cause is largely technical; since we’ve conditioned on frequency, genes with higher mutability are 2 

depleted in our rare lists, and enriched in our common lists. Thus the lack of overlap is at least 3 

potentially not largely reflective of underlying genetics or biology, but likely due to the selection bias in 4 

obtaining them. There is also poor overlap within the rarer variation itself, for instance of genes within 5 

CNVs and those with loss-of-function SNVs (3 genes, p=0.37); there is generally a discrepancy between 6 

study designs focused on (different) sources of rare variation, and not just rare versus common. It 7 

should be noted that whether biological or technical, the lack of overlap does nothing to discredit either 8 

common or rare variation as a contributor to the disease – but highlights the need for a framework to 9 

combine and analyze the results of these studies that is aware of these biases and can distinguish 10 

biology from technical effects.  11 

Modularity of de novo autism candidates exhibits a functional effect size trend 12 

While enrichment analysis is comparatively straightforward, we demonstrate an example in Fig 4A using 13 

the genes with de novo loss-of-function mutations from Iossifov et al,[33] (341 genes) and their overlap 14 

with essential genes (see Methods). In Fig 4A, we represent this enrichment test as a Venn diagram of 15 

the overlap of the candidate disease gene set with the essential gene set, and calculate the significance 16 

of the overlap with a hypergeometric test (n=82, p~7.11e-11). We continue this analysis on the other 17 

candidate disease gene sets from recent ASD studies, varying across study designs and technologies 18 

(WES, GWAS and arrays). Splitting each gene set by mutational class, recurrence and gender, we 19 

perform the same hypergeometric tests. To make comparable assessments between studies and gene 20 

sets, we calculate the functional effect size by downsampling – selecting a subset of genes within that 21 

set and averaging the results over a 1000 permutations (schematic in Fig 4B). Taking a representative set 22 

of studies (Table 1), we use the degree of disease effect to rank these sets, noting that recurrence leads 23 

to a higher effect size even for variation and study designs of the same class by reducing the number of 24 
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false positives. Placing the controls sets on the far left, and the highest disease rank set (recurrent de 1 

novo loss-of-function genes) on the far right, and plotting their functional effect values, we observe an 2 

upward trend (Fig 4C, black line, slope=0.9, Spearman’s ρ=0.9, Fisher’s transformation p<1e-16). The 3 

slope of this trend line represents the “effect size trend”, with higher slopes indicating higher functional 4 

effects.  5 

A less common (likely due to complexity) yet important functional test is network connectivity. Genes 6 

that are co-regulated or form parts of a functional unit, protein complex or pathway, are preferentially 7 

co-expressed, and this information is captured in co-expression networks. We next demonstrate how 8 

network-style effect sizes can be similarly calculated through a modularity analysis. In Fig 4D, we plot 9 

the global node degrees (x-axis) against their connectivity to the remainder of genes in the set (y-axis). 10 

In the null (grey line), the genes would be connected to other autism genes in proportion to the 11 

incidence of those genes within the genome. Deviations from this null across all genes generate excess 12 

modularity within this set (studentized residuals shown in inset Fig 4D) and determine the statistical 13 

results reported for the set overall (Wilcoxon test). A large number of genes are highly interconnected in 14 

this set, as shown by the number of points above the line (Wilcoxon test on the studentized residuals, 15 

p~1.13e-42). It is important to note that this network analysis is calculated against the empirical null for 16 

each gene individually (x-axis) and so is unaffected by any gene-specific bias (such as length). Only 17 

higher-order topological properties across gene-gene relationships for a given gene can produce a 18 

signal. Even assortativity, the tendency for genes of high node degree to preferentially interact, is quite 19 

low within this data (r=0.064, see Additional file 1: Table S3).  20 

As in the previous steps, we repeat the network connectivity tests across all gene sets (Fig 4E), also 21 

downsampling to calculate the functional effect size. Once again, gene sets with higher proportion of 22 
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burden genes correlate with functional effect size tests (Fig 4E, black line, slope=0.59, Spearman’s 1 

ρ=0.59, Fisher’s transformation p<0.03). 2 

Autism gene sets exhibit a highly significant effect size trend across all study designs 3 

Extending our analysis to other disease gene property tests (Additional file 2:  Table S2), we calculated 4 

their effect size slopes (Fig 5A). We observe that most slopes are positive but close to zero (i.e., weak or 5 

low), with a few highly sloped lines (tail in distribution Student’s T-test, p<1e-9). The highest sloped 6 

property was network connectivity in the BrainSpan co-expression network; however, all disease gene 7 

sets had a significant functional effect size with Brainspan, indicating that in addition to the real signal, 8 

there is a background signal affecting even control data. In particular, the signal from the silent 9 

recurrent mutations in the probands (functional effect size p=7.5e-7) shows that control data subject to 10 

only one study design may select genes in a highly non-random pattern. Most top scoring disease 11 

properties are consistent with the literature on autism candidates such as average RVIS and 12 

haploinsufficiency scores, along with CDS length and enrichment for FMRP interactors. RVIS scores are 13 

highly enriched in the loss-of-function recurrent set and the CNVs, but not significant in any of the other 14 

sets (Fig 5B); as with any meta-analysis significance in any one set is not necessary for aggregate 15 

significance. Genes with high haploinsufficiency scores – those that cannot maintain normal function 16 

with a single copy - are overrepresented in the loss-of-function recurrent genes, and there is also a 17 

significant effect in the GWAS results. Many interaction networks and traditional functional categories 18 

appear to be poor candidates to determine convergence in disease genes, as they cluster control gene 19 

sets and sets of low effects as well as those of disease genes. For instance, the extended PPI network 20 

has a high effect in the sibling controls sets (e.g., silent functional effect size p~1e-10, Fig 5C).GO terms 21 

and KEGG pathways typically do not survive correcting for multiple testing, although there is a general 22 

deviation from the null (as described in the following section) and the extremal GO functions are 23 

concordant with the known literature (e.g., GO:0051276 chromosome organization, hypergeometric test 24 
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p~3.96e-4 for the de novo recurrent set). So although effect size trends are concentrated in more clearly 1 

disease related -properties such as RVIS, traditional functional categories from, e.g., GO remain of 2 

modest use.  3 

Functional properties cluster strongly in relation to autism 4 

We calculated the null distributions for the variation across effect sizes in two ways: by randomly 5 

sampling genes to derive new meaningless gene sets or by permuting the estimated effect size for each 6 

real set and rerunning our analysis. The two nulls almost perfectly overlap (Fig 6A), indicating that 7 

significance must arise specifically from concordance across studies that is directional. Indeed, the 8 

slopes are much more likely to be positive than either randomly sampled sets, or sets where effect sizes 9 

were randomly estimated (Fig 6A, Wilcoxon test, p~1.92e-31 and p~1.56e-32). The long tail in raw 10 

slopes (Fig 5A) is visible as a much broader shift toward significance in the ranked values (Fig 6B), 11 

indicating the significant extremal values arise largely through effects distributed across multiple disease 12 

sets. See “robustness and relative contributions” section for more detail on statistical assessment. 13 

Each property can be defined by its vector of effect sizes across gene sets (e.g., Fig 5) and so we can 14 

cluster the properties by their Euclidean distance in this space. The properties split into approximately 6 15 

major clusters (Fig 6B). Clusters 1 and 2 have random signals across the sets and consist of mostly the 16 

GO, KEGG and neural gene enrichment tested properties. These are functionally enriched in some 17 

disease gene sets (e.g., the CNV and missense gene sets) but are not significantly enriched for any of the 18 

genes in the de novo recurrent gene set and are thus not showing a substantially positive functional 19 

effect size trend. Cluster 3 similarly contains GO groups which have some enrichment signals from the 20 

de novo and CNV set. These GO groups are protein demethylation and related activities (e.g., 21 

GO:0008214, GO:0006482). Cluster 4 contains an array of properties with no consistent trend across the 22 

data sets. The more interesting clusters are 5 and 6 which have the highest slopes (as depicted by the 23 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2016. ; https://doi.org/10.1101/043422doi: bioRxiv preprint 

https://doi.org/10.1101/043422
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

dark purple scale), and where there is a stronger significant signal from the de novo set (white/yellow in 1 

heatmap). Cluster 5, specifically, has the most consistent trends and contains the expression analyses 2 

(overexpression and fold change) and the gene essentiality scores. Cluster 6 has the co-expression 3 

networks clustered, and the mutational probabilities.  4 

Robustness and relative contributions 5 

In order to determine whether the functional effect size trend rose preferentially from a subset of 6 

studies, we conducted a series of robustness analyses (Additional file 1: Fig S2). Ideally, the significant 7 

functional effect size trend we see is due only to effect size estimates across studies which are 8 

themselves robust. Nor do we want the trends to be strongly affected by ordering of the gene sets with 9 

similar effect sizes. Even though the average effect sizes for the GWAS sets were the same, the number 10 

of false positives within these sets varies, and this was incorporated into the ranking scheme. It is also 11 

arguable that the silent mutations in the probands may have some regulatory effect, or are false 12 

negatives. Our previous analyses ranked our gene sets with these assumptions in mind and incorporated 13 

an ordering for control sets and the GWAS sets. With this ranking of the gene sets, 20 of the functional 14 

effect size trends are significant at an FDR of 0.01 (Additional file 1: Fig S2B,C). If we instead ignore the 15 

ordering provided by false negative rates and regulatory impact and repeat our analysis (treating the 16 

same effect size sets as having tied ranks), there is a modest loss of significance in the distribution of 17 

slopes (7 functional tests at an FDR<0.01, Additional file 1: Fig S2A,C), while the overall deviation from 18 

the null remains very significant (Wilcoxon test p~4.76e-33). Generally, using ranking as we have is 19 

slightly conservative in impact, as expected, and using the raw effect sizes raises the number of 20 

significant slopes (FDR<0.01) to 23. As a more stringent test, we removed whole classes of variants from 21 

the analyses (e.g., all the controls or all the common/weaker gene sets) and calculated the trends once 22 

again (Additional file 1: Fig S2D-F). This is a negative control experiment in the sense that if the 23 

functional effect size trend arises meta-analytically, it should be largely robust to changing things we are 24 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2016. ; https://doi.org/10.1101/043422doi: bioRxiv preprint 

https://doi.org/10.1101/043422
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

not certain about (e.g., as above, whether effect sizes are 1.1 or 1.09) and not robust to changing things 1 

we are certain about (common variants play some role in autism). Removing either controls, genes sets 2 

with the highest effects or the common variants from the trend analyses removes almost all the number 3 

of significant slopes (FDR 0.01, Additional file 1: Fig S2C), although some deviation from the null 4 

remained. When rare variants are excluded, the distribution of slopes is most similar to the null 5 

(Wilcoxon p~5.95e-6), while the total significance of the test is closest to the full version when common 6 

variation is excluded (Wilcoxon p~1.54e-26 compared to p~1.91e-31). Since our common data is likely 7 

the weakest due to the tremendous focus of autism data collection toward rare variation in the SSC, this 8 

makes sense, but common variation still contributes substantial joint signal. These tests confirm that the 9 

approximate order of gene sets by effect sizes correctly drives the results and that we are robust to 10 

minor variation in the exact effect sizes listed, but do rely on the joint use of the extremely divergent 11 

study results (rare and common) within the meta-analysis to attain significant results.  12 

Promiscuous or absent enrichment have both historically been problematic within disease gene data; 13 

both diminish the specificity of functional results. When too many functions are returned from an 14 

analysis, we need to cherry pick and with too few, we have no “leads” and are left in the dark. We 15 

suggest that the strong aggregate effect we see and small number of significant functions is likely near 16 

the most useful and biologically plausible type of specificity for downstream analysis, as suggested by 17 

the fact that ad hoc filtering (i.e., top ten lists) usually are at about this level when not constrained by 18 

significance. Our set of functional tests and results are shown in Additional file 2:  Table S2 and the full 19 

data set is available online. 20 
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Re-prioritizing ASD candidates emphasizes comorbidity among neurodevelopmental 1 

disorders  2 

Our final analyses were to see if the most significant disease properties score ASD candidates in a 3 

notably distinct way. We should expect an important reordering particularly in the case of non-recurrent 4 

de novo derived candidate genes, where the aggregate effect size is a combination of very high effect 5 

true positives and unknown effect (likely low) false positives. Using the previous analyses, we construct 6 

a meta-gene score by first selecting a set of top properties from clusters 5 and 6 (Fig 6A) that held the 7 

upward trend (both high slope and high correlation) and removing redundant properties (Additional file 8 

2:  Table S2). In order to keep analyses straightforward and avoid overfitting, we did not weight among 9 

these functions and considered only binary functional characterizations (excluding few properties). We 10 

then ranked the genes by their aggregate rank across the number of properties they possessed for the 11 

set of functions which we had identified as having very high functional effect size trends.  12 

To assess this score, we took 1,002 ASD candidate genes (Additional file 2:  Table S4) from publically 13 

available databases (OMIM[36], Phenocarta[37], HuGE[39], SFARI[38] and the Betancur et al,[41] list) 14 

and ranked them according to this meta-gene score. We see a low but significant correlation with the 15 

aggregate score (Pearson’s r= 0.19, Fisher’s transformation p= 2.787e-09) and the incidence of these 16 

genes in the databases. Most of the top ranked candidates are comorbid with other neurological 17 

disorders, indicating that their disease candidacy is strongly associated with a cognitive disorder. The 18 

top candidate gene here is the ubiquitin protein ligase HUWE1 [MIM 300697], which regulates neural 19 

differentiation and proliferation, and is known disease gene for mental retardation syndromic X-linked 20 

Turner type (MRXST [MIM 300706])[66] along with being implicated in schizophrenia[67] and 21 

autism[68]. NSD1 (Nuclear Receptor Binding SET Domain Protein 1 [MIM 606681]) is implicated in Sotos 22 

syndrome [MIM 117550] and Weaver syndrome [MIM 277590], both comorbid with ASD[69], and the 23 

histone acetyltransferase p300, EP300 [MIM 602700],[70] is involved in Rubinstein–Taybi syndrome 24 
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(RSTS [MIM 613684]). Other top candidates included the neurexins (NRXN2 [MIM 600566]and NRXN3 1 

[MIM 600567][71]) that are neuronal cell adhesion molecules and receptors which have important roles 2 

in synapse development and function. Candidates at the bottom of the list have a different disease 3 

profile. Some are uncharacterized proteins with no known functions (i.e., C14orf64 and C20orf144), or 4 

have non-neuronal phenotypes. For instance, cytoskeletal protein ODF3L2 is involved in sperm tail 5 

motility and RHOXF1 [MIM 300446] is a transcription factor involved in reproductive processes 6 

(Additional file 2:  Table S4).  7 

Reassessing the de novo loss-of-function recurrent genes with this score, we aimed to distinguish the 8 

high effect contributing genes which are thus the best candidates for eventual recurrence as study sizes 9 

grow. The top ranked gene here is anykrin 2 (ANK2 [MIM 106410]),a multifunctional scaffolding protein, 10 

which plays a major role in brain development, including paranodal junction assembly in the CNS[72]. 11 

Genes KATNAL2 [MIM 614697] (katanin p60 subunit A-like 2) and TCF7L2 [MIM 602228] (transcription 12 

factor 7-like 2) have high negatively associated property scores, and share very few properties with the 13 

other genes. KATNAL2 has no known function, while its mouse ortholog is involved in sperm formation 14 

and male fertility[73]. TCF7L2, on the other hand, is a type II diabetes risk gene[74], and is implicated in 15 

numerous cancers[75]– implying it may be “good” disease risk gene overall, but not specific to ASD.  16 

Discussion  17 

Advances in sequencing technologies have vastly expanded our potential candidate list for autism linked 18 

genes. Different study designs target different genetic mechanisms, and so we believe will find quite 19 

distinct signals at the gene-level. This has engendered substantial disagreement among researchers as to 20 

the relative contribution and value of different study designs and their associated classes of gene 21 

variation (for instance DISC1 [MIM 605210] in schizophrenia [25, 26]). Even within some study designs, 22 

the level of contribution of the type of variation is uncertain i.e., de novo or inherited truncating variants 23 
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[76], or whether the variation is structural (i.e., CNVs, indels) or protein truncating point mutations, or 1 

both [77]. However, in most cases, common functional signals are assessed using virtually identical 2 

methods (i.e., enrichment of gene groups or network connections). Combining the candidate gene 3 

signals and looking for convergence at the functional level would be a desirable assessment, yet simply 4 

doing so by placing all candidate genes in the same ‘bin’ as the simplest analysis might suggest, would 5 

be clearly problematic. First, controls vary and artifactual trends may differ, so that case-control 6 

comparisons will not hold across study designs. Second, the more distributed the genic effect the study 7 

design targets, the higher the sample count necessary to obtain significance, and the more genes 8 

(weakly) implicated there will be, meaning rare variation more tightly linked to autism (but with less 9 

explanatory power in aggregate) will be dominated by diffuse trends which only link any single gene in a 10 

weak sense (the gene is more likely involved in numerous other processes). To overcome these, we have 11 

proposed conducting meta-analysis at the ‘output’ stage for any given study, after functional 12 

convergence is determined, and then additionally incorporating effect sizes across study designs as an 13 

additional constraint. 14 

In specific, we have shown that the estimated effect size of a disease gene candidate set, as determined 15 

primarily by their mutational class, is a good guide to determining which disease properties are 16 

biological and which may be driven by artifact. We show that most ASD disease genes display a 17 

neurodevelopmental signature, with top candidates genes involved in neuronal migration and synapse 18 

formation. Epigenetic and chromatin remodelers rank lower, and may not be a specific feature of the 19 

disease, or play lesser roles. One particular point of interest is whether or not this scoring system is 20 

specific to ASD, or has largely picked out a signature of neurodevelopmental disease. While data 21 

availability is generally higher in autism, we checked for enrichment and functional effect size trends of 22 

other available GWAS and WES studies (see supplement for more details). The functional effect size 23 
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trends remain consistent; although the ASD studies functional effect size trends are generally greater 1 

than other cognitive disorders (see Additional file 1: Fig S3).  2 

Our meta-analysis solely exploits variation across studies and therefore is partially independent of 3 

conventional analyses. Thus, when we consider PPI network clustering an artifactual property, it is not 4 

because we don’t see significant clustering of gene sets in PPI data; in fact, we do. Rather, there is no 5 

functional effect trend consistent with effect size, a fact made clearest by the control sets also 6 

clustering. Another interesting example arises in one of the few properties we identified as functionally 7 

relevant that might seem artifactual: gene size. In fact, this has been hotly debated recently [40, 78], and 8 

may reflect real biology on top of technical effects [79] . In our analysis, CDS exhibits a likely bias (e.g., 9 

CNVs showing enrichment) but its significant variation in effect size is wholly independent of this (in fact, 10 

CNVs are the strongest negative outlier in the trend) and the majority of the significance arises from sets 11 

less plausibly length biased (particularly recurrent de novo mutations; while WES is obviously length-12 

biased, recurrence is stringent enough to likely render this irrelevant). As a final point of interest, we 13 

note that for most of the co-expression network analyses, the control data shows significant 14 

enrichment, and therefore interpreting co-expression must be done with more aware analyses, as in this 15 

work. More broadly, our analysis can be seen as providing validation between study designs for their 16 

functional results, and doing so in ways that would be hard for them to accomplish independently. 17 

Individual studies have tended to rely on ever more stringent criteria (e.g., replication of family-wise 18 

error rates) to minimize bias, but this is obviously limited where the bias reflects the study design which 19 

is, itself, replicated. Meta-analysis is the classic approach to integrate potentially weak evidence to a 20 

stronger conclusion, but this is only possible once effect size expectations are factored into analysis. 21 

While improvements in both GWAS and rare variant data will undoubtedly improve their individual 22 

signals, cross-study analysis is a particularly stringent means of assessing functional outputs for 23 

consistency.   24 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2016. ; https://doi.org/10.1101/043422doi: bioRxiv preprint 

https://doi.org/10.1101/043422
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

While the method we propose fills a new niche within analysis of genetic data, researchers informally 1 

look for cross-study convergence all the time.  In this sense, our work is most similar to testing for 2 

recurrence of enrichment of functional properties that are associated with a disease. Like our analysis, 3 

this, too, would involve generalization to the gene-level (from variants) to look for overlaps.  Such 4 

recurrence calculations would need to, at the least, incorporate some knowledge of the quite different 5 

properties of GWAS data and rare variant studies.  We suggest researchers currently do this in an ad hoc 6 

way; for example, family-wise error rate control is common in GWAS data while false discovery rate 7 

control is common in rare variant analysis.  This makes perfect sense, from our perspective, since it 8 

implicitly weights the degree to which it is worthwhile reporting a gene by the study design’s likely 9 

effect sizes (and then corrected p-values within the study).  This will tend to make recurrence of 10 

enrichment across study designs more similar to the formal test we propose. Before our work, attaining 11 

such field-wide means of consensus has been entirely ad hoc.  Nonetheless, it is encouraging many of 12 

the properties we arrive at are considered of pre-existing interest for autism; making such assessments 13 

concrete offers considerable opportunity to winnow through hard-to-parse genetic signals.   14 

As with any meta-analysis, the hope is that by incorporating multiple data, the aggregate signal may be 15 

stronger.  While our work suggests an approach to do this and shows strong statistical trends, we 16 

anticipate that divisions in the field of genetics may play some role in the interpretation of this work.  17 

GWAS researchers may question the power of our GWAS analysis and assume that if it just had a large 18 

enough ‘N’, it alone would be the dominant player in understanding psychiatric disease.  Similarly, they 19 

may suspect rare variants of reflecting ‘anomalous’ versions of the disorder and thus think they are less 20 

likely to be specifically linked to autism.  Rare variant researchers may question the precision of the data 21 

underlying our rare variant analysis and assume that if we just had large enough ‘N’ to remove false 22 

positives, it would be the dominant player in understanding psychiatric disease.  Similarly, they may 23 

suspect that GWAS data is affected by confounds such as population stratification. We respond to both 24 
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groups: we tested whether there were functional signal commons to both analyses which follows the 1 

known effect sizes.  Such signals existed and made sense.  Thus, both data support one another rather 2 

than being in conflict.  Of course, it is possible that our approach misses real signals which are common 3 

or rare variant specific, although our robustness analysis suggests this is not a major factor.  We note 4 

that our assessment of robustness of the analysis is, in some sense, more stringent even than replication 5 

cohorts or approaches such as cross-validation [80-82] since we have both positive and negative 6 

controls when holding out data. Because our test is so simple, our observation of statistically significant 7 

deviations from the null is immediately interpretable; this is critical given the extreme scale of the 8 

analysis which, in essence, permutes every functional test through every previously collected data set.  9 

This methodological simplicity implies that the approach will generalize well.  10 

Indeed, incorporating effect size as a meta-analytic constraint offers a diverse range of novel 11 

applications. As more data from different studies is collected for autism and other complex diseases, we 12 

can see this approach as a basis for determining properties and functional signals from the disease 13 

candidates in an integrative way. That integration may be across study designs and classes of variation, 14 

as we have done, or may involve phenotype or other properties. So, for example, one could determine 15 

functional effect size trends that grow or shrink depending on how patients were classified, or even 16 

broken down in a sex-specific manner for interpreting protective effects. More broadly, as data and the 17 

means for obtaining it grows, techniques to statistically assess its structured dependencies will grow 18 

more useful and important. Our robustness analysis speaks to this in that while we are robust to modest 19 

losses of data, it is clear that more data will only improve the signals of the individual classes. More 20 

finely-tuned effect size estimates and better separations of the gene sets and variant classifications will 21 

also help refine the distinction between biological and artifactual signals, ideally allowing us conduct yet 22 

more focused study designs in a productive feedback loop.  23 
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Conclusions  1 

In summary, we have developed a novel means for combining studies of quite different types at the 2 

functional level. As evidence for autism and other disorders continues to develop and continues to be 3 

heterogeneous with respect to ascertainment biases and study designs, we suspect approaches based 4 

on the one we describe will be of increasing importance. Most importantly, because we largely exploit 5 

variation across studies to determine functional signals, the overlap between our results and those 6 

identified in individual studies (e.g., co-expression, RVIS) is partially independent; the functional effect 7 

size trends we observe provide evidence as to how far the field has collectively come in the 8 

interpretation of autism genetics and offers a means which, we hope, will aid the field in continuing this 9 

progress. 10 
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Figures  1 

 2 

Fig 1 Hidden classes in meta-analysis assessments using funnel plots.  3 
(A) Funnel plot tests are used in determining homogeneity in the studies of a meta-analysis. Typically, effect of the 4 
study (x-axis) is plotted against a form of error or variance (e.g., inverse standard error, y-axis). The studies should 5 
fit within this “funnel” for a homogenous set of studies (top panel). However, in cases where this is an obvious 6 
heterogeneity (skew in bottom panel, dashed ellipse), there are likely hidden biases. (B) Hidden classes within the 7 
data e.g., study types, could be the cause for such skew. In this case (top panel), the heterogeneous study forces 8 
skew.  In the bottom panel, this is not the case, and there could be some other hidden class. (C) Given the lack of 9 
heterogeneity, we can exploit this “failure” (i.e., class association) through an effect size test for functional 10 
associations (top panel), or lack thereof (middle panel). For homogenous data sets, we can observe any 11 
correlations to potential confounds, which in this case is shown for sample size (bottom panel). 12 

 13 
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 1 

Fig 2 Schematic of functional effect size trend calculation.  2 
(1) Starting with disease gene set collections, (2) each is then rank each by the average effect size of the genes 3 
within that set. (3) We then run functional tests on these genes sets and calculate a functional effect size for each. 4 
Then, using the ranking of the disease gene sets, we measure the functional effect size trend – the slope of the 5 
trend line of the functional effect sizes versus the rank. With these positive slopes (strong functional signatures), 6 
we determine which functions are likely disease-specific. (4) This allows us to generate a score for each gene, 7 
which we can use to identify and validate candidate genes. 8 
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 1 

Fig 3 Overlap of genes across the different gene sets.  2 
There is little overlap in the disease gene sets as shown in the heatmap and as enumerated in the Venn diagram 3 
beside it. There are some significant overlaps. Control gene sets overlap significantly with missense genes (333 4 
genes hypergeometric test p=2.54e-6), common SNPs gene sets (11 genes, p=4.5e-3), and the loss-of-function 5 
(LoF) SNV gene sets (71 genes, p=3.2e-3) but not the CNV gene sets (14 genes, p=0.03). Missense and common 6 
SNPs overlap significantly (4 genes, p=2.4e-4). However, loss-of-function SNVs do not overlap significantly with 7 
either common (4 genes, p=0.62), missense (68 genes, p=0.75), or CNVs (3 genes, p=0.37). 8 

 9 

 10 

Fig 4 Functional properties of disease gene sets are tested using gene set enrichment (top panels) and co-11 
expression network connectivity (bottom panels).  12 
(A) Gene set enrichment is calculated with a hypergeometric test. A large number (34%) of the genes in the de 13 
novo loss-of-function set overlap with essential genes (hypergeometric test p~7.11e-11). (B) This is repeated across 14 
all disease gene sets, (a subset shown here). Sample size is controlled through downsampling. Gene sets with the 15 
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higher effect sizes also have the higher functional effect sizes. (C) We can now demonstrate how to calculate the 1 
functional effect size trend for the “essential genes” test. The disease gene sets are ordered by an estimate of the 2 
average effect size of genes within the set (from low to high on the x-axis) and the functional effect size is of that 3 
disease gene set is plotted (y-axis). A trend between the effect size of the candidate genes and their essentiality 4 
can be clearly observed (FDR<0.01). The network connectivity functional test (D) consists of calculating the ratio of 5 
disease genes’ total connectivity (node degrees calculated from the whole network; sum of their connections) to 6 
their internal connectivity (node degrees of their subnetwork; sum of their connections to one another). The line 7 
(in grey) reflects the expected values if there is no preferential connectivity within the set. We see that a large 8 
number (72%) of the genes lie above the identity line. The Wilcoxon P-value of the mean residuals is shown in the 9 
inset (p~1.13e-42) (E) Once again, controlling for sample size through downsampling, the functional effect size of 10 
each gene set is calculated (subset shown). (F) A weak trend (FDR>0.01) between the effect size of the candidate 11 
genes and their degree of co-expression is visible. Empirical nulls are calculated by permuting disease gene sets 12 
and FDRs through a Benjamini-Hochberg correction against the resultant 158 functional effect size trends. 13 

 14 

Fig 5 Functional convergence of the disease gene sets.  15 
(A) Distribution of the effect size slopes of functional properties commonly tested for by disease candidate 16 
methods. The (B) RVIS enrichment test has a very high slope across the same gene sets (black lines)(C) extended 17 
PPIN has mostly artifactual signal as demonstrated by the flat slope, highly elevated from the null but in no effect-18 
correlated way and suggestive of consistent biases. The grey lines are the ranked functional effect size trend slopes 19 
(to show the trends are robust to non-parametric assessment, see Fig 6A).  20 
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 1 

Fig 6 Clustering disease property tests by their functional effect size trends.  2 
(A) The slopes of the ranked effect size trends are significantly different from null distributions for both effect size 3 
permutations and random gene set sampling (Wilcoxon test p~1.92e-31 and p~1.56e-32 respectively).We’ve 4 
drawn the two red lines to indicate the false discovery rates (FDRs) of 0.01, where 20 and 21 functions are 5 
significant. (B) A heatmap of all the ranked scores of the test gene sets (columns) for 158 properties tested (rows). 6 
The properties clustered into 6 groups when we cut the dendrogram at a height of ~1.6. Their effect size slopes 7 
(unranked) show that most highly sloped effect size lines cluster (in clusters 5 and 6). White/yellow is a high rank, 8 
red is low. A high slope is shaded purple, low/negative slopes are grey. The property type is color coded as 9 
described in the figure key. 10 

 11 

 12 

  13 
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 1 

Tables and captions 2 

Table 1 Disease gene sets used in the study  3 

Gene set 
Set size 

(genes) 

Odds Ratios/ 

effect sizes 

“Rank” 

 

WES results.  

Varying effect sizes depending on mutation and recurrence.  

Odds ratio is calculated as in Sanders et al,[13] (ratio of observed counts of mutations to silent 

mutations, and then ratio of those odds between siblings to probands).  

De novo loss-of-function, recurrent 27 4.1 1 

De novo CNVs 72 3.95 2 

De novo missense, recurrent 153 1.6 3 

De novo loss-of-function 341 1.5 4 

De novo missense 1339 1.06 9 

GWAS. Multiple hit models, low effect size per gene. Odds ratios range between 1.1 and 1.2. 

GWAS, SNP within genes 50 1.2 5 

GWAS, nearest gene to SNP 71 1.2 6 

GWAS, adjacent genes to SNP 89 1.2 7 

GWAS, almost significant loci 71 1.1 8 

Control sets, no effect 

De novo silent, recurrent  25 NA 10 

De novo silent 590 NA 11 

Control groups, no disease 

De novo loss-of-function (sibling controls)  174 NA 12 

De novo missense (sibling controls) 1066 NA 13 

De novo silent (sibling controls) 468 NA 14 

Databases and ASD collections 

SFARI 376   

SFARI-high confidence set  104   

Phenocarta 679   

OMIM 79   

HUGE – meta  451   

Betancur et al.  103   

 4 

 5 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2016. ; https://doi.org/10.1101/043422doi: bioRxiv preprint 

https://doi.org/10.1101/043422
http://creativecommons.org/licenses/by-nc-nd/4.0/

