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Abstract

Secondary contact is the reestablishment of gene flow between sister popula-
tions that have diverged. For instance, at the end of the Quaternary glaciations
in Europe, secondary contact occurred during the northward expansion of the
populations which had found refugia in the southern peninsulas. With the ad-
vent of multi-locus markers, secondary contact can be investigated using various
molecular signatures including gradients of allele frequency, admixture clines,
and local increase of genetic differentiation. We use coalescent simulations to
investigate if molecular data provide enough information to distinguish between
secondary contact following range expansion and an alternative evolutionary
scenario consisting of a barrier to gene flow in an isolation-by-distance model.
We find that an excess of Linkage Disequilibrium and of genetic diversity at the
suture zone is a unique signature of secondary contact. We also find that the
directionality index ψ, which was proposed to study range expansion, is infor-
mative to distinguish between the two hypotheses. However, although evidence
for secondary contact is usually conveyed by statistics related to admixture co-
efficients, we find that they can be confounded by isolation-by-distance. We
recommend to account for the spatial repartition of individuals when investi-
gating secondary contact in order to better reflect the complex spatio-temporal
evolution of populations and species.
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1 Introduction

Hybrid zones are narrow regions in which genetically distinct populations meet,
mate, and produce hybrids (Barton and Hewitt, 1985). Hybrid zones induced
by secondary contact have often been observed in connection with the Qua-
ternary glaciations (Hewitt, 2000). For instance, molecular markers suggest
that the southern peninsulas of Europe were major ice age refugia of the Euro-
pean biota and that secondary contact occurred during the northward expansion
which followed the last glacial maximum (Taberlet et al., 1998; Hewitt, 1999).
With the advent of multi-locus molecular markers such as microsatellite or SNP
data, hybrid zones can be investigated using various molecular signatures in-
cluding gradients of allele frequency, admixture clines, and local increase of
genetic differentiation (Nielsen et al., 2003; Adams et al., 2006; Strand et al.,
2012; Bermond et al., 2012). Molecular or morphological clinal patterns pro-
vide evidence for secondary contact in various plant and animal species such
as Arabidopsis thaliana (Huber et al., 2014), Silene vulgaris (Keller and Taylor,
2010), the grasshopper Oedaleus decorus (Kindler et al., 2012), the European
hare Lepus europaeus (Antoniou et al., 2013) or the parrotbill bird Paradoxornis
webbianus (Qu et al., 2012) to name just a few examples.

However, typical molecular signatures of secondary contact zones can also
occur under other evolutionary scenarios. For instance, admixture clines can be
observed under pure isolation-by-distance models where nearby populations are
connected through gene flow (Engelhardt and Stephens, 2010). Additionally,
an increase of genetic differentiation can occur in isolation-by-distance models
when there are barriers to dispersal (Barton and Bengtsson, 1986; Riley et al.,
2006). With the advent of landscape genetics, the search for barriers to gene
flow has attracted considerable attention (Manel et al., 2003; Storfer et al.,
2010). Although secondary-contact zones can occur at barriers to gene flow,
the two models convey different evolutionary paradigms. Models of barriers to
gene flow are usually based on isolation-by-distance settings where neighbor-
ing populations are connected through dispersal (Nagylaki, 1988; Safner et al.,
2011; Blair et al., 2012). Around the barrier to gene flow, dispersal is lowered
because of geographical or anthropogenic obstacles (Riley et al., 2006; Zalewski
et al., 2009). By contrast, models of secondary contact include an initial phase
of evolutionary divergence between two populations or between two sets of pop-
ulations. The phase of evolutionary divergence is followed by a phase of gene
flow between the two divergent units at the secondary contact zone (Murray
and Hare, 2006; Durand et al., 2009). The fact that patterns of genetic dif-
ferentiation can be attributed to different demographic factors is a recurrent
problem when using molecular markers. Genetic structure may represent past
or contemporary processes and it is notoriously difficult to disentangle between
the two possible explanations (Epps and Keyghobadi, 2015).

Here, we use coalescent simulations to investigate to what extent molecular
data provide information to distinguish secondary contact following range ex-
pansion from barriers to gene flow. We consider neutral simulations only and
the barrier to gene flow is modeled by a reduced migration rate. Models of sec-
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ondary contact of neutral markers are non-equilibrium models that converge to
a migration-drift equilibrium (Endler, 1977; Bierne et al., 2013), whereas locally
adaptive loci would rather converge to a selection-migration balance (Barton,
1979). For both evolutionary scenarios, we simulate a one-dimensional stepping
stone model as shown in figures 1 and 2.

For comparing the molecular signal left by the two distinct scenarios, we
consider statistical measures that have been developed to provide evidence for
different demographic processes. The first set of summary statistics, which is
used to detect hybrid zones, contains measures of individual admixture coef-
ficients between the parental source populations (Nielsen et al., 2003; Durand
et al., 2009), and a measure of LD as an increase of LD is expected in admixed
populations (McVean, 2002).

The second set of summary statistics contains measures to detect range
expansion because secondary contact is frequently induced by geographical ex-
pansions of the ancestral populations (Hewitt, 2000). We consider the direction-
ality index ψ as it is sensitive to the occurrence of recent range expansion and it
should distinguish between equilibrium and non-equilibrium models (Peter and
Slatkin, 2013). The properties of the directionality index have not been studied
yet when there are introgressive events. Furthermore, we include genetic diver-
sity which has been shown to decrease along the expansion direction (Austerlitz
et al., 1997).

The last set of summary statistics pertains to isolation-by-distance and bar-
riers to gene flow. First, we include the decay of correlation between allele fre-
quencies as a function of distance as it provides evidence of isolation-by-distance
(Hardy and Vekemans, 1999). To detect barriers to gene flow, many numerical
methods such as ‘wombling’ identify zones of sharp changes in allele frequencies
(Barbujani and Sokal, 1990; Manel et al., 2003). Here, we use local FST defined
as FST per unit of spatial distance for this purpose. Local FST can be provided
with georeferenced data by the software LocalDiff and we expect them to be
larger around the barrier to gene flow (Duforet-Frebourg and Blum, 2014). The
development of the software LocalDiff questioned the possibility of distinguish-
ing between the two evolutionary scenarios under consideration. When studying
patterns of differentiation in various alpine plants with LocalDiff, we found a
region of larger local genetic differentiation in the Italian Aosta valley that
was shared across alpine plant species. Both secondary contact zone following
postglacial expansions or a barrier to gene flow in a equilibrium stepping-stone
process were putative explanations (Duforet-Frebourg and Blum, 2014).

2 Methods

2.1 Simulation Models

We consider secondary contact in a one-dimensional nearest-neighbor stepping-
stone model consisting of 100 demes (figure 1). Range expansion is modeled as a
series of founder events with moderate bottlenecks. Time is given in coalescent
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units before present time, i. e. in units of 4N generations where N is the diploid
population size per deme at present time. Accordingly, all parameters are scaled
with 4N .

Phase 1 (ancestral population) The ancestral population is a random-mating
population of size 2N . At time tS , it splits in two populations of size N .

Phase 2 (separate refugia) From time tS to time tE , the two populations
are in separate refugia (demes 1 and 100, respectively), the population
sizes are constant, and there is no gene flow.

Phase 3 (expansion) Starting at time tE , both populations expand towards
each other in the stepping-stone geometry. At time points tE , tE−d, tE−2d
etc., 10% of the individuals of the deme at the expansion front colonize a
new deme. Instantaneously, the size of both demes increases to N again
and migration occurs at rate m between neighboring demes.

Phase 4 (secondary contact) From tC = tE − 48d until the present time, a
stepping-stone model with 100 demes of size N is maintained with a migra-
tion rate m among the neighboring demes and a migration rate mB ≤ m
between demes 50 and 51 where secondary contact occurs. If secondary
contact occurs at a barrier, mB < m, otherwise mB = m.

As an alternative demographic model we investigate a nearest-neighbor stepping-
stone model with a constant range of 100 demes and with reduced gene flow in
the center (figure 2). Again, the barrier to gene flow is modeled by a lower
migration rate mB ≤ m between demes 50 and 51.

DNA data of 20 haploid (or 10 diploid) individuals per deme is simulated
with the coalescent simulator ms (Hudson, 2002). For each of them, we simu-
late 100 unlinked sequences consisting of 100,000 base pairs each. A sequence
contains 100 SNPs and the scaled recombination rate within the sequence is 4.

In the secondary contact model we simulate data with parameters tS = 19,
d = 1/8 and different durations since secondary contact occurred (from tC =
0, 1, . . . , 5 until present time). In both models the scaled migration rate between
neighboring demes is m = 20. In the stepping-stone model we consider different
barrier permeabilities (mB/m = 0.002, 0.01, 0.02, 0.1, 0.2, 1; a value of 1 denotes
no barrier). To provide means and standard errors of the summary statistics,
each simulation is repeated 100 times.

The ms command lines and the simulated data are available in the Figshare
repository Bertl et al. (2018), https://doi.org/10.6084/m9.figshare.4986545.
v2.

2.2 Summary statistics

In the following, we describe the summary statistics we calculated to disentangle
the two evolutionary scenarios.
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Hybrid zone summary statistics

Admixture coefficient Based on the first principal component we compute
an admixture coefficient for the pool of the five demes left of the barrier (Paschou
et al., 2007). The pools of the 5 leftmost and 5 rightmost demes are used as
proxies for the two source populations. The admixture coefficient is defined as
the average relative location of individuals in the putative admixed population
with respect to the two source populations on the axis of the first principal
component (Bryc et al., 2010). Let ȳi be the score of the first principal com-
ponent, averaged over the individuals in population i = l, r, a (left, right source
population, admixed population). Then, we define the admixture coefficient

|ȳa − ȳl|
|ȳr − ȳl|

.

It takes values between 0 and 1 and is proportional to the fraction of genetic
material inherited from the right source population through admixture.

The principal component analysis is conducted with the R function prcomp

(R Core Team, 2012).

Linkage disequilibrium (LD) We average the squared correlation coeffi-
cient between 1000 randomly drawn pairs of SNPs within the same sequence
over all unlinked sequences. We compute LD for each deme.

Range expansion summary statistics

Directionality index ψ The directionality index ψ has been developed to
detect range expansion and infer its origin (Peter and Slatkin, 2013). It is based
on the fact that populations further away from the origin of an expansion have
experienced more genetic drift. The index ψi,j is a pairwise measure between
demes i and j that compares the average allele frequencies in the two demes:
stronger drift yields higher differences in allele frequencies.

Denote the allele frequencies in deme i by the vector f (i) =
(
f
(i)
1 , . . . , f

(i)
L

)
,

where L is the total number of SNPs. Then, the directionality index for demes
i and j, from each of which a sample of size M has been drawn, is defined as

ψij =
1

LM

L∑
l=1

(
f
(i)
l − f

(j)
l

)
.

Given that a range expansion has occurred, ψi,j should be negative if deme i
is closer to the origin of the expansion than j, and positive otherwise. If ψi,j ≈ 0,
both demes should be equally close to the origin of the expansion, or no range
expansion has occurred. We compute values of ψ26,j with j = 27, . . . , 50.

Genetic variability We measure genetic variability in each deme by averag-
ing the number of pairwise nucleotide differences between all pairs of sequences,
denoted by ∆.
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Summary statistics for isolation-by-distance and barriers to gene flow

Allele frequency correlogram The Pearson correlation between the allele
frequencies of demes i and j is denoted by ri,j and defined as

ri,j =

∑L
l=1(f

(i)
l − f̄ (i))(f

(j)
l − f̄ (j))√∑L

l=1(f
(i)
l − f̄ (i))2

∑L
l=1(f

(j)
l − f̄ (j))2

.

We compute the correlogram r26,j for j = 27, . . . , 75.

Local FST Local values of FST correspond to pairwise FST between neighbor-
ing demes (Duforet-Frebourg and Blum, 2014). Here, we use Weir and Cock-
erham’s estimator for multiple loci and random union of gametes (Weir and
Cockerham, 1984, p. 1363).

2.3 Theoretical context

The simulated scenarios are partly amenable to theory. In particular, continuous
spatial diffusion models have proven to be powerful approximations to discrete
stepping stone models (Wright, 1943; Nagylaki, 1978). These converge quickly
to their continuous diffusive counterparts, especially in one spatial dimension
(Nagylaki, 1988; Barton, 2008; Forien, 2017). Recently, such continuous diffu-
sion models have been applied to scenarios of barriers to gene flow (Ringbauer
et al., 2018), as well as secondary contact (Sedghifar et al., 2015). Here, we
summarize relevant findings and provide predictions for our simulations where
available.

Diffusion Predictions

In the modern coalescence framework, the spatial distribution of ancestral lin-
eages back in time is often modeled by a diffusion process (Wilkins and Wakeley,
2002). A central parameter is the variance of spatial displacement in one time
unit, σ2. In a stepping stone model this variance is σ2 = 2m (Nagylaki, 1988),
thus in our simulations σ2 = 40.

Diffusion theory gives rise to several predictions which we can test our sim-
ulations against. For free diffusion, the probability that an ancestral lineage is
spatially displaced by distance ∆x at time t back is given by a Gaussian with
mean 0 and variance σ2t. In case of secondary contact, the expected fraction of
ancestry that traces back to the left side of the contact zone is the probability
of finding the ancestral lineage to the left of the barrier at time of secondary
contact tc. Integrating over all possible positions to the left of a barrier yields a
cumulative Gaussian Φ(l/(σ

√
tC)), where l is the geographic distance from the

contact zone (Sedghifar et al., 2015). This model predicts that the extent of
significantly admixed ancestry covers approximately ±2σ

√
tC around the point

of initial contact, and that on average clines dissipate as a cumulative normal
distribution (Fig. S4).
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Another prominent but less straightforward prediction based on a diffusive
limit is that pairwise FST increases approximately linearly with pairwise dis-
tance, with slope 1/(4Nσ2) in a homogenous linear habitat (Rousset, 1997).

Linkage Disequilibrium

A pulse of admixture produces linkage disequilibrium (LD), i.e. non-random
associations of markers. This admixture LD decays approximately as exp (−ρtC)
in a panmictic population, where ρ is the recombination rate between the two
involved loci (Chakraborty and Weiss, 1988). In contrast, in spatially structured
populations concordant admixture clines keep producing LD. Barton (1982)
derived that in recombination-migration model, a common measure for LD,
D = E(PQ)− E(P )E(Q), equilibrates to

D = p′q′
σ2

ρ
,

where p′ and q′ are the spatial slopes of alleles P and Q. This formula is
valid if the slopes of the clines stay approximately constant over the timescale
set by recombination (≈ 1/ρ). This signal of admixture LD is typically much
stronger than background LD produced by random associations due to drift
(Hill, 1981; Neel et al., 2013). Sedghifar et al. (2015) used a diffusion model
to predict patterns of admixture LD in a one-dimensional habitat with recent
secondary contact, similar to the scenario simulated here. They derived formulas
for patterns of covariance of ancestry, and deduced from them that admixture
LD in a one-dimensional secondary contact model breaks down slower than
exp(−ρtC), with a peak at the center of the contact zone.

Genetic variability

Diversity decreases along an expanding wave of colonization (Austerlitz et al.,
1997; Edmonds et al., 2004), at a rate which depends on the speed of advance and
the shape of the wave front (Hallatschek and Nelson, 2008). In admixed zones
after secondary contact diversity can be largely increased, since coalescence of
lineages originating from different sides is pushed back to before the initial split.
According to the diffusion model, the spatial extent of this area of significant
admixture will be ≈ ±2σ

√
tC around the contact zone. The increase of diversity

will depend on the time of isolation of the two populations, and the population
structure before expansion.

In contrast, a barrier is not expected to influence within-population diver-
sity substantially. The invariance principle (Nagylaki, 1998) states that the
(correctly weighted) mean within-deme coalescence time, and thus the mean
within-deme diversity, is independent of the migration matrix. While a barrier
can markedly influence the recent coalescence time distribution (Barton, 2008),
it will not strongly influence mean coalescence times. Therefore, one expects a
stable ∆ across the range of demes in the barrier model.
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Pairwise Differentiation

In case of a secondary contact pairwise differentiation, here measured by FST ,
will be initially increased across the barrier. However, FST for neighboring
demes equilibrates quickly, with rate ≈ m+ 1/2N (Slatkin and Barton, 1989),
and the initial effect of secondary contact will not persist long on small geo-
graphic scales.

On the other hand, a barrier can distort equilibrium patterns of identity by
descent (Nagylaki, 1988), and therefore patterns of pairwise FST . A barrier will
only have a significant effect if the barrier is strong enough to markedly influence
the spread of ancestry (mB/(mσ

2)� 1) (Barton, 2008; Ringbauer et al., 2018).

3 Results

To test our simulations, we first compare our results to theoretical predictions
from the diffusion model. Reassuringly, we find a close agreement. Average
clines are accurately predicted by neutral diffusion expectations (supplemen-
tary figure S4). In the equilibrium case without a barrier, pairwise FST in-
creases approximately linearly with slope 1/(4Nσ2) (supplementary figure S5),
as predicted by (Rousset, 1997).

With the validity of the simulations confirmed, we compare the secondary
contact model with no barrier at the contact zone (mB = m) to the stepping
stone model with a barrier. We plot the summary statistics either as a func-
tion of time since secondary contact or of the intensity of gene flow across the
barrier (figure 3; see supplementary section S5 for the underlying values). For
summary statistics computed per deme (genetic diversity ∆, LD) or per pair
of neighboring demes (FST ), we consider the pattern along the whole range of
demes. Many important features are captured by the ratio between the values
at the barrier or the suture zone, respectively, and the values to the left and
right of it (see supplementary figures S1–S3 for examples of the pattern along
the whole range of demes).

First, we consider the average admixture coefficient for the 5 populations
that are located on the left-hand side of the barrier (demes 45–50). For the
isolation-by-distance model with a barrier, these 5 populations are found to be
admixed to an extent depending on the barrier permeability: when increasing
the barrier permeability, admixture coefficients of individuals on the left-hand
side of the barrier approach 50%. As expected, the populations are also found
to be admixed in the secondary contact model without barrier (between 35%
and 50%) except for the scenario where data is collected just before secondary
contact occurs (tC = 0).

The ratio between LD at the center (demes 49–52) and on both sides of
the range (demes 24–27 and demes 74–77; demes closer to the edge of the
range are skipped to avoid the edge effect; see supplementary figures S1–S3)
shows that LD is homogeneous along the whole range of demes for different
barrier permeabilities in the stepping stone model with a slight increase at the
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barrier for low values of mB/m. However, in the secondary contact model, LD
is considerably increased in the secondary contact zone, at the scale of mixed
ancestry predicted by diffusion theory, ±2σ

√
tC (supplementary figures S1–S2).

The excess of LD ranges from a more than 2 fold to an approximately 1.3 fold
increase and decreases as time since secondary contact increases.

Apart from random fluctuations, the directionality index ψ is constant for
the stepping-stone model with constant migration rate (mB/m = 1) as well as
for old secondary contact (tC = 5). More recent secondary contact results in
a U-shaped pattern. The pairwise statistics ψ26,i, i = 27, . . . , 50 first decreases
as expected when moving away from the origin of the expansion, but increases
again towards the location of secondary contact. For the barrier model with a
moderate or strong barrier (mB/m ≥ 0.1), ψ26,i remains constant for most of
the range, but decreases slightly close to the barrier.

In the stepping stone simulations the number of pairwise differences (∆)
stays approximately constant over the range of demes (apart from an edge effect)
and is hardly affected by the barrier (see also supplementary figure S3), as
expected by the invariance principle. Conversely, in the secondary contact model
∆ increases in the suture zone, again at the spatial scale predicted by diffusion
theory (supplementary figures S1–S2). Only when secondary contact has not
occurred yet (tC = 0), the statistic ∆ captures the effect of range expansion,
and decreases when moving away from the origin.

When considering the decay of allele frequency correlation as a function of
distance, we find a sharp decrease around the suture zone or around the bar-
rier, respectively. In the barrier model, the correlation decreases linearly with
distance and drops sharply at the barrier. In the secondary contact model we
observe a more sigmoid shape. For older secondary contact, the sigmoid de-
cay converges towards the linear decay of the equilibrium stepping-stone model
predicted by Rousset (1997).

Pairwise FST between neighboring demes is increased at the barrier to gene
flow; the less permeable the barrier, the larger the ratio of FST at the barrier
compared to the rest of the range. In the secondary contact model, local FST is
increased at the center when measured just before secondary contact (tC = 0),
but it remains constant along the range of demes when secondary contact is
already established (tC ≥ 1).

To assess the robustness of these results, we performed simulations of less
extreme scenarios. Also with more moderate founder events, a lower expansion
speed and higher migration rate between demes, we find that the pattern of
LD, genetic diversity and the directionality index remain distinctive summary
statistics (supplementary section S3). However, we also observe that the foot-
print of secondary contact is more difficult to detect for very slow expansions or
high migration rates between neighboring demes (supplementary figures S7 and
S8). But even with these parameter settings, the directionality index ψ remains
a discriminant statistic.

If secondary contact occurs at a barrier to gene flow, the difficulty of detect-
ing the secondary contact from molecular data increases. We consider additional
simulations where secondary contact occurs in a region where gene flow is re-
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duced by a factor of 10 (mB/m = 0.1). In many respects, we see an intermediate
pattern between the two previously considered scenarios, yet, genetic diversity
and the directionality index ψ still provide evidence for secondary contact and
Linkage Disequilibrium is even more increased at the contact zone (figure 4).

Smaller subsets of the data are used to study the impact of the number of
loci on the variance of the summary statistics. Analyses of smaller genomes
with 10 and 20 unlinked sequences instead of 100 are presented in supplemen-
tary figures S9 and S10, respectively. The confidence intervals of all summary
statistics are considerably larger, while the spatial pattern of the directionality
index and the correlogram is preserved and visible, even through larger random
fluctuations. The summary statistic least affected by the data reduction is local
FST . LD and genetic diversity ∆ provide a distinctive pattern for very recent
secondary contact (tC = 1) when the data consists of at least 20 loci, but not
for 10 loci.

We also consider other sampling schemes where the amount of sampled data
is reduced. When sampling 4 genomes per deme instead of 20, our results re-
main unchanged (supplementary figure S11). When sampling only from every
5th deme instead of every deme, they provide similar results for all but one sum-
mary statistic (supplementary figure S12). When reducing spatial sampling, it
becomes more difficult to detect the spatial pattern of the directionality index
ψ (supplementary figure S12).

4 Discussion

We find that admixture coefficients alone do not provide sufficient evidence for
secondary contact in the presence of isolation-by-distance. Some other summary
statistics of genetic data such as local values of FST or decay of correlation
with distance were not more informative to identify the occurrence of secondary
contact either.

By contrast, both an excess of LD and of genetic diversity at the suture
zone are found to be unique signatures of secondary contact and also to be
informative about the timing of secondary contact. In our simulations we ob-
serve an increase of these statistics in areas with mixed ancestry as predicted by
the diffusion model (±2σ

√
tC). Several of these findings are well supported by

previous theoretical considerations, as outlined above. In particular, admixture
LD after secondary contact has been thoroughly studied before (Sedghifar et al.,
2015). We do not detect such a marked increase of LD near the barrier to gene
flow in our stepping stone model simulations, even for very strong barriers. It
seems that the increase of differentiation across the barrier (which increases ad-
mixture LD) is roughly balanced by reduced migration across the barrier (which
reduces admixture LD). This effect is not well documented in the literature, and
warrants further theoretical investigation.

Although a peak of diversity can occur in glacial refugia (Hewitt, 2000), it
has been observed before that the genetically most diverse populations were
not located in southern Europe but at intermediate latitudes resulting from
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the admixture of divergent lineages that had expanded from separate refugia
(Petit et al., 2003). Many hybrid zones have been formed by such postglacial
secondary contact. In some cases, the divergence between hybridizing popu-
lations has evolved over very long timescales, and may have arisen already in
primary contact. We still expect increased LD and admixture near the suture
zones as unique signals of recent secondary contact then, since these signals are
generated by allele frequency differences immediately before secondary contact.
They do not depend on the evolutionary force that created this divergence.

We expect that excess of LD and of genetic diversity due to admixture would
be similarly observed in a two-dimensional model. Qualitative patterns of these
signals will be affected by the movement along the second dimension, but the
underlying theoretical considerations due to admixture LD and increased diver-
sity due to deeper coalescence time remain the same. The edge effects observed
here, i.e. reduced diversity and excess of LD because of shorter coalescence times
(Wilkins and Wakeley, 2002), will be most pronounced at the four corners of
the species range then (Wilkins, 2004).

We also find that the directionality index ψ conveys a signature of sec-
ondary contact following expansion. Under range expansion, the ψ statistic is
a monotonous function of the distance from the origin of the expansion (Pe-
ter and Slatkin, 2013) (see also figure 3 for tC = 0). When secondary contact
follows range expansion, it has a distinctive U-shaped pattern (figure 3). The
distinctive U-shaped pattern is found only for recent enough secondary contact
(tC = 1) but is robust to a wide range of bottleneck intensity and expansion
speed (supplementary figures S6 and S7). This statistic adds to the toolbox of
population geneticists and provides a promising attempt to distinguish between
equilibrium and non-equilibrium spatial processes.

The simulation setting was designed to mimic the evolutionary history of
species that have undergone a population split during the Quaternary glacia-
tions with subsequent expansion and secondary contact. Assuming a generation
time of 1 year and 1,000 diploid organisms per deme, it includes the time frame
of expansion and secondary contact after the last glacial maximum in Europe.
Species that had spent the last glacial period in southern refugia started to
expand northwards around 16,000 years ago, and subsequently, many plants
established a stable distribution around 6,000 years ago (Hewitt, 1999). We
assume the ancestral population split up and started diverging 38,000 years ago
(tS = 19) and the onset of the expansion varies from 16,000 to 6,000 years ago
and lasted 6,000 years. Finally, secondary contact is established on the range
of 10,000 years ago (tC = 5) to present time (tC = 0; in this setting, both pop-
ulations have expanded, but no gene-flow has occurred yet). Our simulations
show that the molecular signal of secondary contact vanishes after approxi-
mately 10,000 years. To apply our results to a specific organism, parameters
like effective population size, time of divergence and expansion rate need to be
calibrated.

In additional simulations, we found that the same summary statistics are
distinctive for a wide range of parameter values, and also in datasets with fewer
samples. However, reducing the number of loci increases the variance of the
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summary statistics considerably as it has been observed in coalescent models of
single populations or isolation-migration models (Felsenstein, 2006; Wang and
Hey, 2010).

Our findings are relevant when investigating modes of speciation using com-
putational approaches (Becquet and Przeworski, 2009). Secondary contact fol-
lowing divergence without gene flow (allopatry) is often compared to models of
speciation where species start diverging while exchanging migrants (sympatry
or parapatry) (Becquet and Przeworski, 2009; Duvaux et al., 2011; Roux et al.,
2013). The different frameworks to study speciation are based on isolation-
and-migration models, which do not account for the spatial and potentially
continuous repartition of individuals (Pinho and Hey, 2010). As shown in our
simulation study, accounting for spatial processes provides additional informa-
tion that can partly be caught with the ψ directionality index, which has power
to reveal evolutionary events such as secondary contact and range expansions.

The fact that isolation-by-distance affects the ascertainment of population
structure has already been documented (Novembre and Stephens, 2008; Frantz
et al., 2009). Accounting for space is a general recommendation that also stands
when studying admixture between divergent populations of the same species
(Patterson et al., 2012). Although isolation-by-distance is usually perceived as
a confounding factor (Meirmans, 2012), the spatial sampling of individuals is in
fact a chance to develop more powerful statistical approaches in evolutionary
biology. Accounting for continuous populations should also be possible when
performing simulations to choose the most probable scenario of speciation (Du-
vaux et al., 2011). Numerical simulators of genetic variation that account for the
spatial repartitions of individuals are now available (Ray et al., 2010; Kelleher
et al., 2013). We hope that these developements will encourage researchers to
study speciation models that reflect the complex spatio-temporal dynamics of
realistic species’ evolutionary histories (Alvarado-Serrano and Hickerson, 2015).
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Figure 1: Secondary contact model in a 1-dimensional nearest-neighbor
stepping-stone environment with 100 demes. Parameters: N : deme size; m:
scaled migration rate; mB : scaled migration rate at the barrier (mB ≤ m);
tS : time of the population split; tE : time when the expansion starts, d: time
between two expansion steps; tC : time of secondary contact.
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Figure 2: 1-dimensional model of a barrier to gene flow in a nearest-neighbor
stepping-stone environment with 100 demes. Parameters: N : deme size; m:
scaled migration rate; mB : scaled migration rate at the barrier (mB ≤ m).
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Figure 3: Red (lines and axes): secondary contact model with deme size
N = 1000, scaled migration rate m = 20 (constant migration rate at secondary
contact zone, mB = m), time of the population split tS = 19, time since sec-
ondary contact tC = 0, 1, . . . , 5, time between two expansion steps d = 1/8.
Blue: stepping-stone model with barrier with migration rate m = 20 and bar-
rier permeabilities mB/m = 0.002, 0.01, 0.02, 0.1, 0.2, 1; a value of 1 denotes no
barrier. The barrier permeability mB/m is plotted on a logarithmic scale. The
dots denote the mean and the error bars ±2 standard errors, estimated from 100
replicates of the simulations. For ∆ and LD, the subscript center denotes the
mean over demes 49–52 and edges over demes 24–27 and 74–77. The admixture
coefficient is computed for the 5 demes to the left of the contact zone, demes
46–50. For the FST , center denotes demes 50 and 51 and range the mean over
the neighboring demes in 26–74 except demes 50 and 51. (For these statistics,
the edges of the range are dismissed because of the edge-effect in the stepping-
stone model.) For the allele frequency correlogram and the ψ statistic, only the
mean is plotted.

22

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/043398doi: bioRxiv preprint 

https://doi.org/10.1101/043398
http://creativecommons.org/licenses/by-nc/4.0/


0 1 2 3 4 5

time since sec. contact (tC)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
dm

ix
tu

re
 c

oe
ff.

0.002 0.010 0.050 0.200 1.000
barrier permeability (mB m)

A

0 1 2 3 4 5

time since sec. contact (tC)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

LD
ce

nt
er

LD
ed

ge
s

0.002 0.010 0.050 0.200 1.000
barrier permeability (mB m)

B

30 35 40 45 50

−
0.

05
0.

00
0.

05

Directionality index

deme j

ψ
26

, j

tC =
1
3
5

tC =
1
3
5

mB m =
0.01
0.1
1

C

0 1 2 3 4 5

time since sec. contact (tC)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

∆ c
en

te
r

∆ e
dg

es

0.002 0.010 0.050 0.200 1.000
barrier permeability (mB m)

D

30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlogram

deme j

r 2
6,

 j

tC =
1
3
5

tC =
1
3
5

mB m =
0.01
0.1
1

E

0 1 2 3 4 5

time since sec. contact (tC)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(1
−

F
S

T
ce

nt
er

)
(1

−
F

S
T

ra
ng

e)

0.002 0.010 0.050 0.200 1.000
barrier permeability (mB m)

F

Figure 4: black: secondary contact model with a moderate barrier to gene flow
at the secondary contact zone (mB = 2, m = 20). The remaining parameters
are the same as for the secondary contact model in figure 3. For comparison,
the secondary contact model without barrier (faint red) and the stepping stone
model (faint blue) are plotted again as in figure 3.
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Figure S1: Simulation results for 1 replicate of the secondary contact model
with tC = 1. For ∆ and LD, the subscript center denotes the mean over demes
49–52 (green zone) and edges over demes 24–27 and 74–77 (blue zone). For
FST , center denotes demes 50 and 51 (green zone) and range the mean over
the neighboring demes in 26–74 except demes 50 and 51 (blue zone). Pink:
admixture zone; width 2σ

√
tC = 8.94 in either direction from the center of the

zone.
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Figure S2: Simulation results for 1 replicate of the secondary contact model
with tC = 4. See fig. S1 for a description. Admixture zone width 2σ

√
tC = 17.9

in either direction from the center of the zone.
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Figure S3: Simulation results for 1 replicate of the stepping stone model with
mB = 2. For ∆ and LD, the subscript center denotes the mean over demes
49–52 (green zone) and edges over demes 24–27 and 74–77 (blue zone). For the
FST , center denotes demes 50 and 51 (green zone) and range the mean over the
neighboring demes in 26–74 except demes 50 and 51 (blue zone).
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S2 Comparison with expectations from the dif-
fusion theory
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Figure S4: Comparison between observed and predicted allele frequency clines
in the secondary contact model. Clinal SNPs with minor allele frequency be-
low 0.05 in demes 1-10 and above 0.95 in demes 91-100 were selected. Gray
lines: simulation results for 5 individual unlinked SNPs. Black line: mean over
100 unlinked SNPs. Orange dotted line: Predicted allele frequency cline from
Sedghifar et al. (2015); cumulative normal distribution with mean 50.5 and
variance σ2tC .
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Figure S5: Comparison of the simulation results of the stepping stone model
with no barrier (mB/m = 1) with theory predictions. Rousset (1997) showed
that for a one dimensional habitat pairwise FST /(1 − FST ) increases linearly
with geographic distance r for pairs of subpopulations with slope 1/(4Nσ2),
as long as

√
2mr/σ � 1. Here, we compare this theoretical prediction to our

simulation results. Dots: Mean over 100 replicates. Error bars: ±2 standard
deviations over 100 replicates. Straight lines depict theory predictions, with
slope 1/20 (σ2 = 2m = 20, 4N = 1).
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S3 Simulations at additional parameter combi-
nations

To assess the sensitivity of the results with regard to the other parameters of
the models, we resimulated under the secondary contact model with tC = 1 and
varied the bottleneck intensity (figure S6) and the expansion speed (d; figure S7).
For comparison, the stepping stone model is shown with the same parameters
as in the main text.

In addition, we vary the migration rate m simultaneously in both models, in
the secondary contact model with tC = 1 and in the stepping stone model with
mB/m = 0.002 (figure S8).
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Figure S6: Red (lines and axis): secondary contact model with tC = 1 and
varying bottleneck intensity. Blue (lines and axis): stepping stone model with
barrier. The dots denote the mean and the error bars ±2 standard errors,
estimated from 100 replicates of the simulations. The admixture coefficient is
computed for the 5 demes to the left of the contact zone, demes 46–50. For
∆ and LD, the subscript center denotes the mean over demes 49–52 and edges
over demes 24–27 and 74–77. For the FST , center denotes demes 50 and 51
and range the mean over the neighboring demes in 26–74 except demes 50 and
51. (For these statistics, the edges of the range are dismissed because of the
edge-effect in the stepping-stone model.) For the allele frequency correlogram
and the ψ statistic, only the mean is plotted. Note that the correlogram is so
similar for each of the three parameters that they are plotted on top of each
other.
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Figure S7: Red (lines and axis): secondary contact model with tC = 1 and
varying expansion speed (d). Blue (lines and axis): stepping stone model with
barrier. Definitions of the summary statistics as in fig. S6.
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Figure S8: Red (lines and axis): secondary contact model with tC = 1 and
varying migration rate (m). Blue (lines and axis): stepping stone model with
varying migration rate(m). The barrier permeabilitymB/m = 0.002 is constant.
Definitions of the summary statistics as in fig. S6.
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S4 Different sampling schemes

We repeat the analysis with smaller datasets. Instead of 100 independent loci,
we subsample the data and compute the summary statistics on 10 or 20 loci,
respectively (fig. S9 and S10. We also simulate new data with only 4 genomes per
deme (fig. S11 instead of 20). In addition, we compute the summary statistics
for a dataset, where 20 genomes have been sampled from every 5th deme only
(deme 5, 10, . . . , 50, 51, 56, . . . , 96), so the data consists of DNA sequences from
20 demes (fig. S12).
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Figure S9: Smaller dataset: 10 independent loci. Red (lines and axes): sec-
ondary contact model; blue: stepping-stone model; both models as in fig. 3.
Definitions of the summary statistics as in fig. S6. Note the rescaled y-axis in
the bottom left panel (LD).
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Figure S10: Smaller dataset: 20 independent loci. Red (lines and axes): sec-
ondary contact model; blue: stepping-stone model; both models as in fig. 3.
Definitions of the summary statistics as in fig. S6. Note the rescaled y-axis in
the bottom left panel (LD).
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Figure S11: Smaller dataset: 4 genomes per deme. Red (lines and axes): sec-
ondary contact model; blue: stepping-stone model; both models as in fig. 3
(main text). Definitions of the summary statistics as in fig. S6.
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Figure S12: Smaller dataset: 20 demes. Red (lines and axes): secondary contact
model; blue: stepping-stone model; both models as in fig. 3. Definitions of the
summary statistics as in fig. S6.
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S5 Tables of the results

This section contains the underlying values for the admixture coefficient, LDcenter/LDedges,
∆center/∆edges and (1− FSTcenter)/(1− FSTrange) of figures 3 and 4.

The tables S1–S4 have the following format: Left: Secondary contact model
with different times since secondary contact (tC); middle: secondary contact
model with a moderate barrier to gene flow (mB/m = 0.1) at the secondary
contact zone; right: stepping-stone model with barrier to gene flow of different
intensities (mB/m; m = 20). The mean and standard error (se) of the admixture
coefficient over 100 replicates of the simulations.

Secondary contact with barrier Stepping stone
tC mean se mean se mB/m mean se
0 0.011 0.008 0.011 0.008 0.002 0.044 0.016
1 0.358 0.018 0.187 0.018 0.010 0.165 0.032
2 0.403 0.020 0.259 0.021 0.020 0.247 0.038
3 0.418 0.026 0.298 0.023 0.100 0.405 0.048
4 0.428 0.031 0.320 0.026 0.200 0.434 0.043
5 0.442 0.027 0.339 0.029 1.000 0.463 0.044

Table S1: Admixture coefficient.

Secondary contact with barrier Stepping stone
tC mean se mean se mB/m mean se
0 1.886 0.187 1.886 0.187 0.002 1.337 0.062
1 2.326 0.135 2.435 0.118 0.010 1.275 0.045
2 1.863 0.110 2.094 0.133 0.020 1.235 0.041
3 1.601 0.087 1.856 0.091 0.100 1.084 0.036
4 1.421 0.073 1.636 0.076 0.200 1.050 0.041
5 1.288 0.062 1.510 0.078 1.000 1.012 0.032

Table S2: LD ratio.
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Secondary contact with barrier Stepping stone
tC mean se mean se mB/m mean se
0 0.540 0.027 0.540 0.027 0.002 1.067 0.144
1 2.101 0.087 1.685 0.074 0.010 1.109 0.092
2 1.827 0.079 1.609 0.073 0.020 1.122 0.089
3 1.612 0.063 1.490 0.051 0.100 1.131 0.071
4 1.450 0.051 1.362 0.056 0.200 1.151 0.081
5 1.331 0.052 1.271 0.053 1.000 1.147 0.072

Table S3: ∆ ratio.

Secondary contact with barrier Stepping stone
tC mean se mean se mB/m mean se
0 0.114 0.006 0.114 0.006 0.002 0.091 0.014
1 0.996 0.008 0.655 0.024 0.010 0.310 0.027
2 0.999 0.009 0.746 0.022 0.020 0.462 0.032
3 0.999 0.007 0.780 0.024 0.100 0.828 0.025
4 1.000 0.008 0.800 0.020 0.200 0.913 0.020
5 1.000 0.006 0.814 0.017 1.000 1.001 0.010

Table S4: FST ratio.
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