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Abstract Gcn5 is a conserved acetyltransferase that regulates transcription by acetylating the N-

terminal tails of histones. Motivated by recent studies identifying a chemically diverse array of lysine 

acyl modifications in vivo, we examined the acyl chain specificity of the acetyltransferase, human 

Gcn5 (Gcn5L2). Whereas Gcn5L2 robustly catalyzes lysine acetylation, the acyltransferase activity of 

Gcn5L2 gets progressively weaker with increasing acyl chain length. To understand how Gcn5 

discriminates between different acyl-CoA molecules, we determined structures of the catalytic 

domain of human Gcn5L2 bound to propionyl-CoA and butyryl-CoA. Although the active site of 

Gcn5L2 can accommodate propionyl-CoA and butyryl-CoA without major structural rearrangements, 

butyryl-CoA adopts a conformation incompatible with catalysis that obstructs the path of the 

incoming lysine residue and acts as a competitive inhibitor for Gcn5L2 versus acetyl-CoA. These 

structures demonstrate how Gcn5L2 discriminates between acyl chain donors and explain why 

Gcn5L2 has weak activity for acyl moieties that are larger than an acetyl group. 
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1. Introduction 

Lysine acetylation is an abundant post-translational modification (Weinert et al., 2011; Choudhary et 

al., 2009) that changes the overall size and charge of the modified residue. Several classes of enzymes 

are known to catalyze site-specific lysine acetylation (Roth et al., 2001; Yang, 2004; Marmorstein & 

Trievel, 2009), many of which localize to the nucleus and modify lysine residues on histones (Lee & 

Workman, 2007). These enzymes are collectively referred to as either Histone AcetylTransferases 

(HATs) or Lysine (K) AcetylTransferases (KATs), the latter to reflect their ability to acetylate non-

histone substrates (Glozak et al., 2005). KATs are divided into several main families based on both 

structural homology and the presence of sequence conservation within their catalytic domains 

(Marmorstein & Trievel, 2009). Although different KAT families employ distinct kinetic mechanisms 

to catalyze acetyl transfer, they all share a common dependence on the nucleotide cofactor, acetyl-

CoA, as an acetyl donor (Berndsen & Denu, 2008). 

 

Gcn5 is a member of the GNAT (Gcn5-related-N-AcetylTransferase) family of histone 

acetyltransferases that acetylates the N-terminal tails of histones H3 and H2B at the promoters of 

inducible genes (Grant et al., 1997) and is broadly implicated in transcriptional regulation (Huisinga 

& Pugh, 2004). The kinetic mechanism of Gcn5 has been studied extensively (Tanner et al., 1999; 

Tanner, Langer, Kim, et al., 2000) and the Gcn5 catalytic domain from several organisms has been 

crystallized in the presence of various combinations of substrates (Roth et al., 2001; Poux et al., 

2002). The active site of Gcn5 contains two grooves where acetyl-CoA and peptide bind, which 

intersect near the β-mercaptoethylamine moiety of coenzyme A and the target lysine (Rojas et al., 

1999; Poux et al., 2002). The ternary complex between Gcn5, acetyl-CoA, and peptide forms through 

a fully ordered mechanism (Tanner, Langer, Kim, et al., 2000), as binding to acetyl-CoA brings about 

a structural rearrangement that widens the peptide-binding groove within the Gcn5 active site 

(Clements et al., 1999; Trievel et al., 1999; Rojas et al., 1999; Lin et al., 1999). Because Gcn5 

primarily recognizes features of the CoA pantetheine arm and not the acetyl group (Poux et al., 2002; 

Clements et al., 1999; Rojas et al., 1999; Lin et al., 1999), Gcn5 binds with similar affinity to acetyl-

CoA and free CoA (Tanner, Langer, Kim, et al., 2000). Whether the active site of Gcn5 can 

accommodate other kinds of CoA molecules with bulkier acyl chains, however, is not known.  

 

Recent studies have found that lysine residues are modified by a chemically diverse array of acyl 

chains in vivo (Lee, 2013), raising the possibility that some KATs might be able to utilize acyl-CoA 

cofactors other than acetyl-CoA to catalyze lysine acylation. Members of three different KAT families 

catalyze lysine acylation in vitro: p300/CBP catalyzes propionylation, butyrylation, and crotonylation 

of histones and p53 (Chen et al., 2007; Sabari et al., 2015), yeast Esa1, a member of the MYST 
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family of acetyltransferases, catalyzes propionylation of histone H4 peptides (Berndsen et al., 2007), 

and human P/CAF, which is closely related by sequence homology to Gcn5, catalyzes propionylation 

of histone H3 peptides (Leemhuis et al., 2008). Some KATs are clearly promiscuous with regards to 

acyl chain identity, but the mechanisms employed by acyltransferases to discriminate between 

different acyl-CoA molecules are still largely unknown.  

 

In this study, we characterize the acyl chain specificity of human Gcn5, which catalyzes acetylation of 

histone peptides much more quickly than either propionylation or butyrylation. To understand how 

Gcn5 discriminates between different acyl chain donors, we determined structures of the catalytic 

domain of human Gcn5L2 in complex with propionyl-CoA and butyryl-CoA to 2.0 and 2.1 Å 

resolution, respectively. These structures reveal that the active site of Gcn5 can accommodate longer 

acyl chains without major structural rearrangements, but that the butyryl chain would sterically clash 

with an incoming lysine residue. Consistent with this active site architecture, we show that butyryl-

CoA acts as a competitive inhibitor versus acetyl-CoA for human Gcn5L2. These findings raise the 

possibility that some acyl-CoA molecules might function as natural inhibitors of Gcn5 in vivo, and 

have important implications for the regulation of KATs in response to metabolic changes.  

2. Methods 

2.1. Protein expression and purification 

A plasmid encoding the his-tagged catalytic domain of human Gcn5L2 (hsGcn5L2) under T7-

induction was obtained from Addgene (Plasmid No.: 25482). The protein was expressed and purified 

as previously described (Schuetz et al., 2007). Purified protein was dialyzed into 20 mM HEPES, pH 

7.5, 150 mM NaCl, and 1 mM DTT, concentrated to 9 mg/mL, flash-frozen in liquid nitrogen, and 

stored at -80°C.  

 

2.2. Enzymatic Assays 

Kinetic measurements comparing rates of acetylation, propionylation and butyrylation were 

performed using the 5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB) assay (Berndsen et al., 2007) with 

the following modifications. Reactions contained 10 µM hsGcn5L2 catalytic domain, 250 µM histone 

H3 peptide aa1-21 (purchased from United Peptide at >90% purity), 100 mM HEPES, pH 7.6, 50 mM 

NaCl, and 500 µM acetyl-CoA (Sigma No.: A2181), propionyl-CoA (Sigma No.: P5397) or butyryl-

CoA (Sigma No.: B1508). Each reaction was incubated for five minutes at 37°C before adding acyl-

CoA, and then maintained at 37°C for the remainder of the experiment. Initially, six data points were 

collected to find a time frame where acyl-CoA consumption was linear with time. The reaction was 

quenched at the indicated time points by the addition of two volumes of quenching buffer (3.2 M 
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guanidine-HCl and 100 mM sodium phosphate pH 6.8). After all the samples had been collected, one 

volume of 4 mM DTNB (Sigma No.: D218200) dissolved in 100 mM sodium phosphate, pH 6.8 was 

added. Samples were moved to a 384-well polystyrene clear-bottom plate (Grenier Bio-One) and 

absorbance at 412 nM was measured in a POLARstar Omega plate reader (BMG Labtech). 

Absorbances were converted to concentrations using a standard curve generated by reacting 

increasing concentrations of CoA (Sigma No.: C3019) with DTNB using an extinction coefficient for 

3-thio-6-nitrobenzoate (TNB) of ε412nm = 13,700 M-1 cm-1. Subsequent reactions were performed in 

triplicate and quenched after 0.5 minutes (acetyl-CoA), 5 minutes (propionyl-CoA), or 20 minutes 

(butyryl-CoA). All acylation rates were corrected by subtracting the rate of acyl-CoA consumption by 

Gcn5L2 in the absence of peptide.  

 

Steady-state kinetic titrations varying the acetyl-CoA or butyryl-CoA concentration were performed 

with a continuous spectrophotometric assay as previously described (Berndsen & Denu, 2005). 

Briefly, the acetyl-CoA or butyryl-CoA concentration was varied between 0.25 µM and 100 µM in the 

presence of 50 nM hsGcn5L2 and 300 µM histone H3 peptide. Reactions were performed in a total 

volume of 50 µL at 37°C in 384-well plates (Greiner Bio-One) and initiated with acyl-CoA. The 

absorbance at 340 nm was monitored continuously using a POLARstar Omega plate reader (BMG 

Labtech) for 5-20 minutes, and converted into the molar concentration of NADH using Beer’s Law, 

assuming ε340nm = 6220 M-1 cm-1. As controls, rate measurements were performed at each 

concentration of acyl-CoA in the absence of peptide. Each measurement was performed in triplicate, 

and reaction velocities in the presence of peptide were blanked by the rate of reaction in the absence 

of peptide. Blanked rates were normalized to enzyme concentration, plotted as a function of substrate 

concentration, and fit to the Michaelis-Menten equation using non-linear least squares regression in 

GraphPad Prism 5. Butyryl-CoA inhibition measurements were also performed with the enzyme-

coupled assay. Reaction velocities were measured in the presence of 0.5 µM to 10 µM acetyl-CoA and 

50 nM hsGcn5L2 with increasing concentrations of butyryl-CoA (0, 50, 100, or 300 µM). Under these 

conditions, consumption of butyryl-CoA by hsGcn5L2 is undetectable by the same assay. Blanked 

rates were normalized to enzyme concentration and the resulting curves were globally fit to a 

competitive inhibition model in Graphpad Prism 5. 

 

2.3. HAT Domain Crystallization 

Propionyl-CoA and butyryl-CoA were diluted in 20 mM HEPES, pH 7.5 and stored at -20°C at a 

concentration of 20 mM calculated using ε260nm = 16,400 M-1 cm-1. Purified human Gcn5L2 aa497-662 

was mixed with each acyl-CoA to a final concentration of 1.6 mM acyl-CoA and 7.9 mg/mL protein. 

NaCl was added to a final concentration of 125 mM from a 5 M stock, and the resulting mixture was 

incubated on ice for 30 minutes. Both complexes were crystallized using hanging drop vapor diffusion 

by mixing 1 µL of protein: acyl-CoA complex with 1 µL of well solution. Human Gcn5L2 bound to 
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propionyl-CoA was crystallized in 20% (v/v) ethanol and 100 mM Tris, pH 9.0. Human Gcn5L2 

bound to butyryl-CoA was crystallized in 10% (v/v) 2-propanol, 3% glycerol, 100 mM HEPES, pH 

7.8, and 11% (w/v) PEG 4,000. Crystals were cryoprotected by soaking in well solution supplemented 

with 9% sucrose, 4% glucose, 8% ethylene glycol, and 8% glycerol. Prior to data collection, crystals 

were flash frozen in a liquid nitrogen stream.  

 

2.4. Data Collection and Processing 

Diffraction data were collected using a Rigaku FR-E SuperBright x-ray generator at a wavelength of 

1.54 Å and recorded with a Saturn 944+ CCD detector. Data were processed with HKL2000 

(Otwinowski & Minor, 1997). The structures were solved using molecular replacement with 

MOLREP from the CCP4 suite using the coordinates of human Gcn5L2 (PDB ID 1Z4R) as a search 

model (Vagin & Teplyakov, 2010; Vagin & Teplyakov, 1997). Refinement was carried out using 

REFMAC5 from the CCP4 suite (Winn et al., 2011; Murshudov et al., 1997) and the graphics 

program COOT for model-building (Emsley & Cowtan, 2004). Simulated annealing omit maps were 

generated by removing either propionyl- or butyryl-CoA from the refined structures, fitting acetyl-

CoA into the ligand density, and performing three rounds of refinement with Phenix including two 

cycles of simulated annealing (Adams et al., 2010). Data collection and refinement statistics are 

shown in Table 1. RMSD calculations were performed using PDBefold from the EMBL-EBI website. 

Structure figures were generated with Pymol Molecular Graphics System, Version 1.7.4 Schrödinger, 

LLC. 

 

2.5. PDB accession codes 

Structures and amplitudes have been deposited in the Protein Data Bank with accession codes 5H84 

(propionyl-CoA) and 5H86 (butyryl-CoA). 

 

3. Results 

3.1. Gcn5 is a weak acyltransferase 

Previous studies of the P/CAF acetyltransferase, whose catalytic domain shares 95% sequence 

identity with Gcn5, showed that P/CAF catalyzes histone propionylation with similar kinetics to 

acetylation (Leemhuis et al., 2008). Compared to acetyl-CoA, the P/CAF Km for propionyl-CoA is 

only fourfold weaker, corresponding to a six-fold decrease in catalytic efficiency (Leemhuis et al., 

2008). To determine whether human Gcn5 can similarly use other acyl-CoAs as a cofactor, we 

measured Gcn5 activity in the presence of either propionyl-CoA or butyryl-CoA and histone H3 
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peptide. We found that human Gcn5L2 efficiently acetylates and propionylates peptides, while its 

butyrylating activity is nearly undetectable (Figure 1). Under these experimental conditions, Gcn5L2 

propionylates histone peptides approximately nine-fold more slowly and butyrylates peptides nearly 

400-fold more slowly compared to its acetyltransferase activity (Figure 1). Based on these relative 

rate measurements, Gcn5L2 is unlikely to contribute significantly to lysine butyrylation in vivo but 

may be capable of catalyzing lysine propionylation under physiological conditions.  

 

3.2. Structures of hsGcn5L2 bound to propionyl-CoA and butyryl-CoA 

To elucidate the structural basis for the ability of Gcn5L2 to discriminate among different acyl-CoA 

cofactors, we determined the structure of human Gcn5L2 bound to propionyl-CoA and butyryl-CoA 

to 2.0 Å and 2.1 Å resolution, respectively. Refinement statistics for each structure are summarized in 

Table 1. Simulated annealing omit maps show clear density corresponding to the extra methyl group 

for propionyl-CoA (Figure 2A) or extra ethyl chain for butyryl-CoA (Figure 2B). Compared to the 

structure of  human Gcn5L2 bound to acetyl-CoA (Schuetz et al., 2007), the structures reported here 

are very similar; the root-mean-square difference (RMSD) in Cα positions is 0.13 Å for the structure 

of human Gcn5L2 in complex with propionyl-CoA and 0.24 Å for its structure in complex with 

butyryl-CoA. 

 

The active site of Gcn5 contains three features that facilitate transfer of the acyl chain to lysine: an 

active site glutamate that functions as a general base (Tanner et al., 1999), a structurally conserved 

water molecule that forms a proton wire between the general base and incoming lysine (Rojas et al., 

1999), and residues that stabilize the position of the acyl-CoA (Figure 3A & 3B) (Rojas et al., 1999; 

Schuetz et al., 2007). This active site geometry is preserved in the two acyl-CoA bound structures 

reported here, including the orientation of the acyl-CoA thioester, which is coordinated by the 

backbone amide of cysteine 579, and the position of the water molecule, which is hydrogen bonded to 

glutamate 575 (Figure 3C & 3D). The conservation of active site geometry rules out the possibility 

that butyryl-CoA binding slows down Gcn5 catalytic activity by misaligning active site residues. The 

pantethine arm and adenine moieties of coenzyme A superimpose well between all three acyl-CoA 

molecules; what differs is the respective position of the acetyl, propionyl, and butyryl chains (Figure 

3E). Although the positions of the C2 carbons in all three acyl-CoA molecules are the same (Figure 

3F, 3G, & 3H), the torsion angle formed between the sulfur-C1 and C2-C3 bonds in propionyl-CoA is 

24.5° (Figure 3I), compared to -61° for butyryl-CoA (Figure 3J). Whereas the C3 carbon in propionyl-

CoA fits within the active site cleft of human Gcn5 (Figure 3C), butyryl-CoA binds in an orientation 

that places the terminal methyl group (C4) facing the solvent, since the catalytic water molecule 

blocks it from occupying the Gcn5 active site cleft (Figure 3D). Although longer acyl chains could 
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also bind in this orientation, we note that molecules like crotonyl-CoA, which contain unsaturated 

carbon-carbon bonds that do not freely rotate, cannot adopt conformations compatible with this 

geometry. 

 

3.3. Model of the ternary complex with peptide and CoA 

Since Gcn5 uses a direct-transfer mechanism to catalyze lysine acetylation (Tanner, Langer, Kim, et 

al., 2000), Gcn5 must bind to the acyl-CoA cofactor and the peptide substrate at the same time. To 

determine whether the conformations adopted by propionyl-CoA and butyryl-CoA in complex with 

Gcn5L2 are compatible with peptide binding, models of human Gcn5L2 bound to each acyl-CoA 

molecule and a histone peptide (Figure 4A) were generated based on the structure of Tetrahymena 

Gcn5 bound to a bisubstrate analog consisting of CoA covalently linked to a histone peptide (PDB ID 

1M1D) (Poux et al., 2002). In our model of human Gcn5L2 bound to acetyl-CoA and peptide, the 

incoming lysine residue makes an angle of 105° with the acetyl thioester (Figure 4B), which is a 

reasonable angle of attack for a carbonyl group by a nucleophile (Burgi et al., 1974). Propionyl-CoA 

also adopts a conformation compatible with this angle of attack, as the position of the terminal methyl 

is in the same plane as the thioester, which leaves the lysine attack trajectory open (Figure 4C). By 

contrast, the terminal methyl of butyryl-CoA projects into the channel occupied by the lysine (Figure 

4D). The Gcn5L2 active site cannot accommodate butyryl-CoA without ejecting the catalytic water 

molecule, so the butyryl chain sterically clashes with the incoming lysine. This explains why Gcn5L2 

is a poor butyryltransferase, as the acyl chain, catalytic water molecule (Figure 3C), and incoming 

lysine (Figure 4D) cannot all fit into its active site.  

 

3.4. Butyryl-CoA is a competitive inhibitor of acetylation by human Gcn5 

Our results suggest that a naturally occurring acyl-CoA molecule, such as butyryl-CoA, could inhibit 

Gcn5 activity by binding to the enzyme in a way that prevents lysine from entering its active site. 

Since butyryl-CoA is a poor substrate for Gcn5 (Figure 1) but is still able to bind in the active site 

(Figure 3D), we wondered whether it might act as a competitive inhibitor versus acetyl-CoA. To test 

this idea, we measured acetylation rates as a function of acetyl-CoA concentration in the presence of 

increasing concentrations of butyryl-CoA. As shown in Figure 5A, Gcn5 is robustly acetylates histone 

peptides under the same conditions where butyrylation is nearly undetectable. Fitting our initial 

velocity measurements to the Michaelis-Menten equation, we determine a Km for acetyl-CoA of 0.91 

± 0.09 µM (Figure 5A) which is comparable to previously reported Km values for yeast Gcn5, human 

Gcn5, and human P/CAF (Poux et al., 2002; Tanner, Langer, Kim, et al., 2000; Tanner, Langer & 

Denu, 2000; Langer et al., 2002). We next measured acetylation kinetics in the presence of increasing 
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concentrations of butyryl-CoA and fit the resulting curves to either competitive, noncompetitive, or 

uncompetitive inhibition models. Competitive inhibition clearly fits the data the best, as the sum of 

the squares of the residuals normalized to the degrees of freedom is 0.053 for the competitive model, 

compared to 0.24 and 0.26 for noncompetitive and uncompetitive inhibition, respectively. We 

measure an inhibition constant (Ki) of 5.6 ± 0.7 µM from our global fit to a competitive inhibition 

model (Figure 5B). Taken together with our structural findings (Figure 4A & 4D), these data indicate 

that butyryl-CoA competitively inhibits acetylation by Gcn5 by binding to the free form of the 

enzyme and preventing acyl chain transfer. 

 

4. Discussion 

We have determined crystal structures that describe how Gcn5 accommodates propionyl-CoA in its 

active site and provide a structural mechanism that explains our biochemical data showing that human 

Gcn5 discriminates between different acyl-CoA molecules. Since unsaturated acyl chains greater than 

three carbons in length (propyl groups) cannot fit into the Gcn5 active site, butyryl-CoA binds in a 

conformation that is incompatible with catalysis. The butyryl-CoA C3 and C4 carbons occupy the 

channel for the incoming lysine (Figure D), which prevents the peptide substrate from accessing the 

active site cleft of Gcn5. We further show that butyryl-CoA is a competitive inhibitor versus acetyl-

CoA for human Gcn5 (Figure 5C), raising the question whether fluctuating levels of acyl-CoA 

molecules in cells may regulate the activity of Gcn5.  

 

Coenzyme A is a common nucleotide cofactor that carries many different kinds of acyl groups in vivo 

(King & Reiss, 1985) and many metabolic processes produce or consume acyl-CoAs (Albaugh et al., 

2011). As a result, intracellular concentrations of different acyl-CoA species change in response to 

metabolic fluctuations (Hosokawa et al., 1986; Palladino et al., 2012; King & Reiss, 1985). For 

example, measurements of the intracellular concentration of acetyl-CoA vary based on nutrient 

availability, and range from 3 to 30 µM in yeast (Cai et al., 2011; Weinert, 2014) and 2 to 13 µM in 

human cells (Lee et al., 2014). With a Km for acetyl-CoA of 0.91 ± 0.09 µM (Figure 5A), acetyl-CoA 

availability may regulate the activity of human Gcn5 (Albaugh et al., 2011). Consistent with this, 

Gcn5-catalyzed histone acetylation is induced under growth conditions with high intracellular levels 

of acetyl-CoA (Cai et al., 2011). It is not yet known whether the intracellular concentrations of other 

acyl-CoA species are high enough to impact acetylation by KATs like Gcn5. Although studies 

quantifying absolute concentrations of propionyl-CoA and butyryl-CoA in cells have not been done, 

measurements of the relative abundance of different acyl-CoAs in fasting rat (King & Reiss, 1985) 

and mouse (Palladino et al., 2012) livers found roughly 4:2:1 molar ratios of acetyl, propionyl, and 

butyryl-CoA. With an inhibition constant of 5.6 ± 0.7 µM for butyryl-CoA, it is possible that 
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intracellular acyl-CoA ratios could regulate the activity of Gcn5. As a result, the activity of Gcn5 

would be sensitive to metabolic flux, as the relative amounts of different acyl-CoA species change in 

response to metabolic activity (Hosokawa et al., 1986; Palladino et al., 2012; King & Reiss, 1985).  

 

Other CoA-based molecules have been implicated as acetyltransferase inhibitors in vivo and in vitro. 

Free CoA is a potent competitive inhibitor of yeast Gcn5 (Tanner, Langer, Kim, et al., 2000) and 

human P/CAF (Tanner, Langer & Denu, 2000) in vitro, with inhibition constants (Ki) of 6.7 µM and 

0.44 µM, respectively. Combined with the observation that free CoA is present at roughly equimolar 

concentrations to acetyl-CoA in cells (Gao et al., 2007; Lee et al., 2014), it is plausible that the ratio 

of acetyl-CoA to CoA may modulate KAT activity (Albaugh et al., 2011). Interestingly, a recent 

study profiling the acyl chain specificity of Gcn5 observed potent inhibition by long fatty acyl-CoA 

molecules like palmitoyl-CoA (Montgomery et al.), further supporting the idea that acyl-CoA 

molecules may function as natural KAT inhibitors. Although relatively few synthetic inhibitors for 

KATs have been developed, some of the most potent compounds exploit CoA-based scaffolds with 

structural complementarity to the active site (Furdas et al., 2012). Bisubstrate analogues comprised of 

CoA-peptide conjugates mimic the ternary complex and inhibit Gcn5 at micromolar concentrations 

(Poux et al., 2002). In light of these observations, the structures presented here suggest that 

unsaturated acyl-CoAs may well act as natural acetyltransferase inhibitors in vivo and provide a clue 

as to how other CoA-based scaffolds may be exploited to design future generations of 

acetyltransferase inhibitors. 
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Figure 1 Acyltransferase activity of hsGcn5L2. Rate of catalysis by hsGcn5L2 (10 µM) were 

measured using different acyl-CoA cofactors (500 µM) and N-terminal histone H3 peptide (250 µM) 

containing the sequence: ARTKQTARKSTGGKAPRKQLA. 
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Figure 2 Simulated annealing omit maps demonstrate clear density for the acyl cofactors. Omit 

maps were calculated with either the (A) propionyl or (B) butyryl moieties removed. 2Fo-Fc maps are 

contoured at 1σ (gray) and simulated annealing omit maps are contoured at 2.5-3σ (magenta). 
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Figure 3 The position of the acyl chain varies in the Gcn5 active site. (A) Overall structure of the 

catalytic domain of hsGcn5L2, shown in cartoon representation, bound to propionyl-CoA (cyan). The 

catalytic site is outlined with a black rectangle, where the catalytic water molecule is shown as a blue 

sphere and the acyl-CoA is depicted in stick representation. Close-up views of the active site of 

hsGcn5L2 bound to: (B) acetyl-CoA (green), (C) propionyl-CoA (cyan), or (D) butyryl-CoA (orange). 

(E) Structural alignment of the three acyl-CoA molecules in the Gcn5 active site. Close-up views of 

the different acyl groups: (F) acetyl-CoA, (G) propionyl-CoA, and (H) butyryl-CoA. Torsion angle 

adopted by the (I) propionyl and (J) butyryl moieties. 
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Figure 4 Model of the ternary complex between hsGcn5L2, different acyl-CoA molecules, and 

peptide. (A) Overall model with hsGn5L2 colored purple, the peptide colored yellow, and acetyl-CoA 

colored green. The catalytic water molecule is depicted as a blue sphere. Close-up views of the 

arrangement between the incoming lysine (yellow) and (B) acetyl-CoA shown in green, (C) 

propionyl-CoA shown in cyan, or (D) butyryl-CoA shown in orange.  
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Figure 5 Butyryl-CoA competitively inhibits acetylation by human Gcn5. (A) Steady-state kinetic 

analysis comparing acetylation and butyrylation by human Gcn5 using a fixed concentration of 300 

µM H3 peptide. By fitting this curve to the Michaelis-Menten equation, we find Km = 1.05 ± 0.02 µM 

and kcat = 0.91 ± 0.09 sec-1. (B) Acetylation kinetics monitored in the presence of increasing 

concentrations of butyryl-CoA (0-0.3 mM). Data were globally fit to a competitive inhibition model. 
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Table 1 Data collection, refinement, and model statistics  

Values for the outer shell are given in parentheses.   

Structure Human Gcn5 bound to 
propionyl-CoA 

Human Gcn5 bound to 
butyryl-CoA 

PDB Entry 5H84 5H86 
Diffraction source Rigaku FR-E Superbright Rigaku FR-E Superbright 
Wavelength (Å) 1.54 1.54 
Temperature (K) 293 293 
Detector Rigaku Saturn 944+ Rigaku Saturn 944+ 
Space group P61 P61 

a, b, c (Å)  38.09, 38.09, 187.06 38.25, 38.25, 186.97 

α, β, γ (°)  90.0, 90.0, 120.0 90.0, 90.0, 120.0 

Resolution range (Å) 29.17-2.00 (2.07-2.00) 24.81-2.08 (2.15 - 2.08) 

Total No. of reflections 51218 (3583) 58587 (2201) 
No. of unique reflections 10102 (915) 9086 (819) 
Completeness (%) 97.98 (92.71) 98.06 (87.88) 

Redundancy 5.1 (3.9) 6.4 (2.7) 
� I/σ(I)�  13.91 (5.68) 16.86 (5.39) 
R meas  0.09651 0.08321 
Overall B factor from Wilson plot (Å2)  18.80 19.72 
Resolution range (Å) 29.17-2.00 (2.07-2.00) 24.81-2.08 (2.15 - 2.08) 
Completeness (%) 97.98 (92.71) 98.06 (87.88) 
Final Rcryst  17.6 16.4 

Final Rfree  20.2 20.7 

CC1/2 0.996 (0.898) 0.997 (0.942) 

CC* 0.999 (0.973) 0.999 (0.985) 

No. of non-H atoms 1507 1485 

 Protein 1334 1340 

 Ligand  68 57 

 Water 105 88 

R.m.s. deviations    

 Bonds (Å) 1.22 1.25 

 Angles (°) 0.013 0.007 

Average B factors (Å2)    

 Protein 19.30 19.70 

 Ligand 24.30 20.70 

Water 29.60 28.60 
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