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Abstract 
The number of sequenced genomes is growing exponentially, profoundly shifting the 

bottleneck from data generation to genome interpretation. Traits are often used to 

characterize and distinguish bacteria, and are likely a driving factor in microbial 

community composition, yet little is known about the traits of most microbes. We 5 

describe Traitar, the microbial trait analyzer, which is a fully automated software 

package for deriving phenotypes from the genome sequence. Traitar provides 

phenotype classifiers to predict 67 traits related to the use of various substrates as 

carbon and energy sources, oxygen requirement, morphology, antibiotic 

susceptibility, proteolysis and enzymatic activities. Furthermore, it suggests protein 10 

families associated with the presence of particular phenotypes. Our method uses L1-

regularized L2-loss support vector machines for phenotype assignments based on 

phyletic patterns of protein families and their evolutionary histories across a diverse 

set of microbial species. We demonstrate reliable phenotype assignment for Traitar 

to bacterial genomes from 572 species of 8 phyla, also based on incomplete single-15 

cell genomes and simulated draft genomes. We also showcase its application in 

metagenomics by verifying and complementing a manual metabolic reconstruction of 

two novel Clostridiales species based on draft genomes recovered from commercial 

biogas reactors. Traitar is available at https://github.com/hzi-bifo/traitar. 

  20 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2016. ; https://doi.org/10.1101/043315doi: bioRxiv preprint 

https://github.com/hzi-bifo/traitar
https://doi.org/10.1101/043315
http://creativecommons.org/licenses/by/4.0/


 

3 
 

Introduction 
Microbes are often characterized and distinguished by their traits, for instance, in 

Bergey’s Manual of Systematic Bacteriology (Goodfellow et al., 2012). A trait or 

phenotype can vary in complexity; for example, it can refer to the degradation of a 

specific substrate or the activity of an enzyme inferred in a lab assay, the respiratory 5 

mode of an organism, the reaction to Gram staining or antibiotic resistances. Traits 

are also likely driving factor for microbial community composition (Martiny et al., 

2015). Microbial community members with varying metabolic capabilities can aid in 

waste water treatment, bioremediation of soils and promotion of plant growth (Bai et 

al., 2015; Narihiro and Sekiguchi, 2007; Olapade and Ronk, 2015); in the cow rumen 10 

microbiota, bacterial cellulose degraders influence the ability to process plant 

biomass material (Hess et al., 2011). In the Tammar wallaby foregut microbiome, the 

dominant bacterial species is implicated in the lower methane emissions produced by 

wallaby compared to ruminants (Pope et al., 2011). 

In addition to the exponential growth of available sequenced microbial genome 15 

isolates, metagenome and single cell genome sequencing further contributes to the 

increasing number of available genomes. For the recovery of genomes from 

metagenomes (GFMs), computational methods based on e.g. differential read 

coverage and k-mer usage were developed (Alneberg et al., 2014; Cleary et al., 

2015; Gregor et al., 2016; Imelfort et al., 2014; Kang et al., 2015; Nielsen et al., 20 

2014), which allow to recover genomes without the need to obtain microbial isolates 

in pure cultures (Brown et al., 2015; Hess et al., 2011). In addition, single-cell 

genomics provides another culture-independent analysis technique and also allows, 

although often fragmented, genome recovery for less abundant taxa in microbial 

communities (Lasken and McLean, 2014; Rinke et al., 2013). Together, these 25 
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developments profoundly shift the analytical bottleneck from data generation to 

interpretation.  

The genotype–phenotype relationships for some microbial traits have been well 

studied. For instance, bacterial motility is attributed to the proteins of the flagellar 

apparatus (Macnab, 2003). We have recently shown that delineating such 5 

relationships from microbial genomes and accompanying phenotype information with 

statistical learning methods enables the accurate prediction of the plant biomass 

degradation phenotype and the de novo discovery of both known and novel protein 

families that are relevant for the realization of the plant biomass degradation 

phenotype (Konietzny et al., 2014; Weimann et al., 2013). However, a fully 10 

automated software framework for prediction of a broad range of traits from only the 

genome sequence is currently missing. Additionally, horizontal gene transfer, a 

common phenomenon across bacterial genomes, has not been utilized to improve 

trait prediction so far. Traits with their causative genes may be transferred from one 

bacterium to the other (Ochman et al., 2000; Pal et al., 2005) (e.g. for antibiotic 15 

resistances (Martinez, 2008)) and the vertically transferred part of a bacterial genome 

might be unrelated to the traits under investigation (Barker and Pagel, 2005; Harvey 

and Pagel, 1991; Martiny et al., 2015).  

Here we present Traitar, the microbial trait analyzer: an easy-to-use, fully automated 

software framework for the accurate prediction of currently 67 phenotypes directly 20 

from the genome sequence (Figure 1).  
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Figure 1: Traitar can be used to phenotype microbial community members based on 
genomes recovered from single-cell sequencing or (metagenomic) environmental 
shotgun sequencing data or of microbial isolates. Traitar provides classification 
models based on protein family annotation for a wide variety of different phenotypes 
related to the use of various substrates as source of carbon and energy for growth, 
oxygen requirement, morphology, antibiotic susceptibility and enzymatic activity. 

We used phenotype data from the microbiology section of the Global Infectious 

Disease and Epidemiology Network (GIDEON) – a resource dedicated to the 

diagnosis, treatment and teaching of infectious diseases and microbiology (Berger, 

2005) – for training phenotype classification models on the protein family annotation 

of a large number of sequenced genomes of microbial isolates (predominantly 5 

bacterial pathogens).  We investigated the effect of incorporating ancestral protein 

family gain and losses into the model inference on classification performance, to 

allow consideration of horizontal gene transfer events in inference of phenotype-

related protein families and phenotype classification. We rigorously tested the 

performance of our software in cross-validation experiments, on further test data sets 10 

and for different taxonomic ranks. To test Traitar’s applicability beyond the bacteria 
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represented in GIDEON, we subsequently applied it to several hundred bacteria 

described in Bergey’s systematic bacteriology (Goodfellow et al., 2012). We used 

Traitar to phenotype bacterial single amplified genomes (SAGs) and simulated 

incomplete genomes to investigate its potential for phenotyping microbial samples 

with incomplete genome sequences. We characterized two novel Clostridiales 5 

species of a biogas reactor community with Traitar, based on their genomes 

recovered with metagenomics. This verified and complemented a manual metabolic 

reconstruction. As Traitar furthermore suggests protein families associated with the 

presence of a particular phenotype, we discuss the protein families Traitar identified 

for several phenotypes, namely for ‘Motility’, ‘Nitrate to nitrite’ conversion and ‘L-10 

arabinose’ fermentation.  

Traitar is implemented in Python 2.7. It is freely available under the open-source GPL 

3.0 license at https://github.com/hzi-bifo/traitar and as a Docker container at 

https://hub.docker.com/r/aweimann/traitar.  A Traitar web service can be accessed at 

https://research.bifo.helmholtz-hzi.de/traitar. 15 

Results 
The Traitar software 

We begin with a description of the Traitar software and phenotype classifiers. Traitar 

predicts the presence or absence of a phenotype, i.e. assigns a phenotype label, for 

67 microbial traits to every input sequence sample (Table 1, Supplementary Table 1). 20 

For each of these traits, Traitar furthermore suggests candidate protein families 

associated with its realization, which can be subject of experimental follow-up 

studies.  

  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2016. ; https://doi.org/10.1101/043315doi: bioRxiv preprint 

https://github.com/hzi-bifo/traitar
https://hub.docker.com/r/aweimann/traitar
https://research.bifo.helmholtz-hzi.de/traitar
https://doi.org/10.1101/043315
http://creativecommons.org/licenses/by/4.0/


 

7 
 

For phenotype prediction, Traitar uses one of two different classification models. We 

trained the first classifier – the phypat classifier – on the protein and phenotype 

presence & absence labels from 234 bacterial species (Methods – Phenotype 

models). The second classifier – the phypat+PGL classifier – was trained using the 

same data and additionally information on evolutionary protein family and phenotype 5 

gains and losses. The latter were determined using maximum likelihood inference of 

their ancestral character states on the species phylogeny (Methods – Ancestral 

protein family and phenotype gains and losses).  

The input to Traitar is either a nucleotide sequence FASTA file for every sample, 

which is run through gene prediction software, or a protein sequence FASTA file. 10 

Traitar then annotates the proteins with protein families. Subsequently, it predicts the 

presence or absence of each of the 67 traits for every input sequence. Note that 

Traitar doesn’t require a phylogenetic tree for the input samples.  

 Finally, it associates the predicted phenotypes with the protein families that 

contributed to these predictions (Figure 2). A parallel execution of Traitar is supported 15 

by GNU parallel (Tange, 2011). The Traitar annotation procedure and the training of 

the phenotype models are described in more detail below (Methods – Traitar 

software).  

Table 1: The 67 traits available in Traitar for phenotyping. We grouped each of 
these phenotypes into a microbiological or biochemical category. 

Phenotype(a) Category(b) 
Alkaline phosphatase 

Enzyme 

Beta hemolysis 
Coagulase production 
Lipase 
Nitrate to nitrite 
Nitrite to gas 
Pyrrolidonyl-beta-naphthylamide 
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Bile-susceptible 

Growth 

Colistin-Polymyxin susceptible 
DNase 
Growth at 42°C 
Growth in 6.5% NaCl 
Growth in KCN 
Growth on MacConkey agar 
Growth on ordinary blood agar 
Mucate utilization 
Arginine dihydrolase 

Growth: Amino Acid Indole 
Lysine decarboxylase 
Ornithine decarboxylase 
Acetate utilization 

Growth:Carboxylic Acid Citrate 
Malonate 
Tartrate utilization 
Gas from glucose 

Growth:Glucose 
Glucose fermenter 
Glucose oxidizer 
Methyl red 
Voges Proskauer 
Cellobiose 

Growth:Sugar 

D-Mannitol 
D-Mannose 
D-Sorbitol 
D-Xylose 
Esculin hydrolysis 
Glycerol 
Lactose 
L-Arabinose 
L-Rhamnose 
Maltose 
Melibiose 
myo-Inositol 
ONPG (beta galactosidase)(d) 
Raffinose 
Salicin 
Starch hydrolysis 
Sucrose 
Trehalose 
Urea hydrolysis 
Bacillus or coccobacillus 

Morphology Coccus 
Coccus - clusters or groups predominate 
Coccus - pairs or chains predominate 
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Gram negative 
Gram positive 
Motile 
Spore formation 
Yellow pigment 
Aerobe 

Oxygen Anaerobe 
Capnophilic 
Facultative 
Catalase Oxygen:Enzyme 
Oxidase 
Hydrogen sulfide Product 
Casein hydrolysis Proteolysis 
Gelatin hydrolysis 
(a) GIDEON phenotypes with at least 10 presence and 10 absence 
labels 
(b) Phenotypes assigned to microbiological / biochemical categories 
(c) ONPG: o-Nitrophenyl-β-D-galatopyranosid 

 

 

  
Figure 2: Work flow of Traitar. Input to the software can be genome sequene 
samples in nucleotide or amino acid FASTA format. Traitar predicts phenotypes 
based on pre-computed classification models and provides graphical and tabular 
output. In the case of nucleotide input, the protein families that are important for the 
phenotype predictions will be further mapped to the predicted protein-coding genes. 

 

Evaluation 

We evaluated the two Traitar classifiers using ten-fold nested cross-validation on 234 

bacterial species found in GIDEON (GIDEON I). The determined macro-accuracy 5 

(the accuracy balanced over all phenotypes) for the 67 GIDEON phenotypes was 

82.6% for the phypat classifier and 85.5% for the phypat+PGL classifier; the 

accuracy (fraction of correct assignments averaged over all tested samples) for 
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phypat was 88.1%, in comparison to 89.8% for phypat+PGL (Methods – Evaluation 

metrics; Table 2). Notably, Traitar classified 53 phenotypes with more than 80% 

macro-accuracy and 26 phenotypes with at least 90% macro-accuracy with one of 

the two classifiers (Figure 3, Supplementary Table 2). Phenotypes that could be 

predicted with very high confidence included the outcome of a ‘Methyl red’ test, 5 

‘Spore formation’, oxygen requirement (i.e. ‘Anaerobe’ and ‘Aerobe’), ‘Growth on 

MacConkey agar’ or ‘Catalase’. Some phenotypes proved to be difficult to predict 

(60-70% macro-accuracy), which included ‘DNAse’, ‘myo-Inositol’ or ‘Yellow pigment’ 

and ‘Tartrate utilization’, regardless of which classifier was used. This might be 

caused by the relatively small number (<20) of positive (phenotype present) 10 

examples that were available. 

Table 2:  We evaluated the Traitar phypat and phypat+PGL phenotype classifiers 

and a consensus vote of both classifiers for 234 bacteria described in the Global 

Infectious Disease and Epidemiology Online Network (GIDEON) in a 10-fold nested 

cross-validation using different evaluation measures (Methods – Evaluation). 

Subsequently, we tested another 42 bacteria from GIDEON and 296 bacteria 

described in Bergey’s manual of systematic bacteriology for an independent 

performance assessment of the two classifiers. 

Data set  
(# bacteria) Classifier 

Macro-
accuracy Accuracy 

Recall 
Phenotype+   

Recall 
Phenotype- 

  phypat 82.6 88.1 86.1 91.4 
GIDEON I (234) phypat+PGL 85.5 89.8 87.8 90.9 
  consensus 83.0 88.8 82.2 95.4 
  Phypat 85.3 87.5 84.9 90.2 
GIDEON II (42) phypat+PGL 86.7 87.9 86.3 89.7 
  consensus 85.7 87.2 80.8 93.7 
  phypat NA1 72.9 74.6 71.2 
Bergey's (296) phypat+PGL NA1 72.4 74 70.8 
  consensus NA1 72.9 66.6 79.2 
1 We only report the overall accuracy, as insufficient phenotype labels (less than 5 with a negative and 
positive label, respectively) were available for several phenotypes, to enable a comparable macro-accuracy 
calculation to the other data sets (Supplementary Table 1). 
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Figure 3: Macro-accuracy for each phenotype for the Traitar phypat 
and phypat+PGL phenotype classifiers determined in nested cross-
validation on 234 bacterial species described in the Global Infectious 
Disease and Epidemiology Online Network (Methods – Evaluation 
metrics, Table 1, Supplementary Table 1). 
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For an independent assessment of Traitar’s classification performance we next 

tested Traitar on 42 bacterial species that had phenotype information available in 

GIDEON (GIDEON II), but were not used for learning the phenotype models (The 

Traitar software – Annotation). For calculation of the macro-accuracy, we considered 

only phenotypes represented by at least five phenotype-positive and five phenotype-5 

negative bacteria. On these data, Traitar predicted the phenotypes with a macro-

accuracy of 85.3% with the phypat classifier and 86.7% with the phypat+PGL 

classifier, and accuracies of 87.5% and 87.9%, respectively (Table 2). To investigate 

the performance of Traitar for bacterial genomes from a different data source, we 

next determined from two volumes of Bergey’s Manual of Systematic Bacteriology, 10 

namly ‘The Proteobacteria’ and ‘The Firmicutes’, the phenotypes of further 

sequenced bacteria that were not in our GIDEON I and II data sets (Supplementary 

Table 1, 4). In total, we thus identified phenotypes for another 296 sequenced 

bacterial species (The Traitar software – Annotation). Also for these bacteria, Traitar 

performed well but was less reliable than before, with accuracies for the phypat 15 

classifier of 72.9% and 72.1% for the phypat+PGL classifier (Table 2).  This is likely 

due to the taxonomic differences of bacteria listed in GIDEON and Bergey’s and also 

because most of the bacteria in Bergey’s have only draft genomes available for 

phenotyping.   

When combining the predictions of the phypat and phypat+PGL classifiers into a 20 

consensus vote, Traitar assigns phenotypes more reliably, while predicting less 

phenotype labels compared to the individuals classifiers (Table 2). Depending on the 

use case, Traitar can be used with performance characterized by different trade-offs 

between the recall of the phenotype-positive and the phenotype-negative classes. 

  25 
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Performance per taxon at different ranks of the taxonomy 

 

Figure 4: Classification accuracy for each taxon at different ranks of the NCBI 
taxonomy. For better visualization of names for the internal nodes, the taxon names 
are displayed on branches leading to the respective taxon node in the tree. The 
nested cross-validation accuracy obtained with Traitar for 234 bacterial species 
described in the Global Infectious Disease and Epidemiology Online Network was 
projected onto the NCBI taxonomy down to the family level. Colored circles at the 
tree nodes depict the performance of the phypat+PGL classifier (left-hand circles) 
and the phypat classifier (right-hand circles). The size of the circles reflects the 
number of species per taxon. 
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We investigated the performance of Traitar across the part of the bacterial tree of life 

represented in our data set. For this purpose, we evaluated the nested cross-

validation performance of the phypat and phypat+PGL classifiers at different ranks of 

the NCBI taxonomy. For a given GIDEON taxon, we pooled all bacterial species that 

are descendants of this taxon. Figure 4 shows the accuracy estimates projected on 5 

the NCBI taxonomy from the domain level down to individual families. Notably, the 

accuracy of the phypat+PGL (phypat) classifier for the phyla covered by at least five 

bacterial species showed low variance and was high across all phyla, ranging from 

84% (81%) for Actinobacteria over 90% (89%) for Bacteroidetes, 89% (90%) for 

Proteobacteria, 91% (90%) for Firmicutes to 91% (86%) for Tenericutes.  10 

 

Phenotyping incomplete genomes  
GFMs or SAGs are often incomplete and thus we analyzed the effect of missing 

genome assembly parts onto the performance of Traitar. Rinke et al. used a single-

cell sequencing approach to analyze poorly characterized parts of the bacterial and 15 

archaeal tree of life, the so-called ‘microbial dark matter’ (Rinke et al., 2013). They 

pooled 20 SAGs from the candidate phylum Cloacimonetes, formerly known as 

WWE1, to generate joint – more complete – genome assemblies that had at least a 

genome-wide average nucleotide identity of 97% and belonged to a single 16S-

based operational taxonomic unit, namely Cloacamonas acidaminovorans (Pelletier 20 

et al., 2008).  

According to our predictions based on the joint assembly of the single-cell genomes, 

C. acidaminovorans is Gram-negative and is adapted to an anaerobic lifestyle, which 

agrees with the description by Rinke et al. (Figure 5). Traitar further predicted 

‘Arginine dihydrolase’ activity, which is in line with the characterization of the species 25 

as an amino acid degrader (Rinke et al., 2013). Remarkably, the prediction of a bacil- 
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Figure 5: Single-cell phenotyping with Traitar. We used 20 genome assemblies with 
varying degrees of completeness from single cells of the Cloacimonetes candidate 
phylum and a joint assembly for phenotyping with Traitar. Shown is a heatmap of 
assembly samples vs. phenotypes, which is the standard visualization for phenotype 
predictions in Traitar. The origin of the phenotype’s prediction (Traitar phypat and/or 
Traitar phypat+PGL classifier) determines the color of the heatmap entries. The 
sample labels have their genome completeness estimates as suffixes. The colors of 
the dendrogram indicate similar phenotype distributions across samples, as 
determined by a hierarchical clustering with SciPy1. 

 

 

                                                 
1 http://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html 
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lus or coco-bacillus shape agrees with the results of Limam et al. (Limam et al., 

2014), who used a WWE1-specific probe and characterized the samples with 

fluorescence in situ hybridization. They furthermore report that members of the 

Cloacimonetes candidate phylum are implicated in anaerobic digestion of cellulose, 

primarily in early hydrolysis, which is in line with the very limited carbohydrate 5 

degradation spectrum found by Traitar. 

Subsequently, we compared the predicted phenotypes for the SAGs to the 

predictions for the joint assembly. The phypat classifier recalled more of the 

phenotype predictions of the joint assembly based on the SAGs than the 

phypat+PGL classifier. However, the phypat+PGL classifier made fewer false positive 10 

predictions (Figure 6 a). 

In the next experiment, we inferred phenotypes based on simulated GFMs, by 

subsampling from the coding sequences of each of the 42 bacterial genomes 

(GIDEON II). Starting with the complete set of coding sequences we randomly 

deleted genes from the genomes. For the obtained draft genomes with different 15 

degrees of completeness, we re-ran the Traitar classification and computed the 

accuracy measures, as before. We observed that the average fraction of phenotypes 

identified (macro-recall for the positive class) of the phypat+PGL classifier dropped 

more quickly with more missing coding sequences than that of the phypat classifier 

(Figure 6 b). However, at the same time, the recall of the negative class of the 20 

phypat+PGL classifier improved with a decreasing number of coding sequences, 

meaning that fewer but more reliable predictions were made.  

Overall, the tradeoffs in the recall of the phenotype-positive and the phenotype-

negative classes of the two classifiers resulted in a similar overall macro-accuracy 

across the range of tested genome completeness.  25 
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Figure 6: Phenotyping simulated draft genomes and single cell genomes. In (a) we 
used 20 genome assemblies with varying degrees of completeness from single cells 
of the Cloacimonetes candidate phylum and a joint assembly for phenotyping with the 
Traitar phypat and the Traitar phypat+PGL classifiers. Shown is the performance of 
the phenotype prediction vs. the genome completeness of the single cells with 
respect to the joint assembly. In (b) we simulated draft genomes based on an 
independent test set of 42 microbial (pan)genomes. The coding sequences of these 
genomes were down-sampled (10 replications per sampling point) and the resulting 
simulated draft genomes were used for phenotyping with the Traitar phypat and the 
Traitar phypat+PGL classifiers. We plotted various performance estimates (mean 
center values and and s.d. error bars shown) against the protein content 
completeness. 

Thus, depending on the intended usage, a particular classifier can be chosen: we 

expect that the reliable predictions inferred with the phypat+PGL classifier and the 

more abundant, but less reliable predictions made with the phypat classifier will 

complement one another in different use cases for partial genomes recovered from 

metagenomic data. 5 

By analyzing the protein families with assigned weights and the bias terms of the two 

classifiers, we found the phypat+PGL classifier to base its predictions primarily on the 

presence of protein families that were typical for the phenotypes. In contrast, the 
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phypat classifier also took typically absent protein families from phenotype-positive 

genomes into account in its decision. More technically, the positive weights in models 

of the phypat classifier are balanced out by negative weights, whereas for the 

phypat+PGL classifier, they are balanced out by the bias term. By down-weighting 

the bias term for the phypat+PGL classifier by the protein content completeness, we 5 

could show that the accuracy of the phypat classifier could be increased over that of 

the phypat+PGL, regardless of the protein content completeness (data not shown). 

However, this requires knowledge of the protein content completeness for each 

genomic sample, which could be indirectly estimated using methods such as checkM 

(Parks et al., 2015). 10 

Traitar as a resource for gene target discovery 
In addition to phenotype assignment, Traitar suggests the protein families relevant for 

the assignment of a phenotype (Methods – Majority feature selection, Table 3). We 

exemplarily demonstrate this capability here for three phenotypes that are already 

well-studied, namely ‘Motile’, ‘Nitrate to nitrite’ conversion and ‘L-arabinose’ 15 

metabolism.  These phenotypes represent one each from the phenotype categories 

morphology, enzymatic activity and growth on sugar. 

In general, we observed that the protein families important for classification can be 

seen to be gained and lost jointly with the respective phenotypes within the microbial 

phylogeny. Among the selected Pfam families that are important for classifying the 20 

motility phenotype were proteins of the flagellar apparatus and chemotaxis-related 

proteins (Table 3). Motility allows bacteria to colonize their preferred environmental 

niches. Genetically, it is mainly attributed to the flagellum, which is a molecular motor, 

and is closely related to chemotaxis, a process that lets bacteria sense chemicals in 

their surroundings. Motility also plays a role in bacterial pathogenicity, as it enables 25 
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bacteria to establish and maintain an infection. For example, pathogens can use 

flagella to adhere to their host and they have been reported to be less virulent if they 

lack flagella (Josenhans and Suerbaum, 2002). Of 48 flagellar proteins described in 

(Liu and Ochman, 2007), four proteins (FliS, MotB, FlgD and FliJ) were sufficient for 

accurate classification of the motility phenotype and were selected by our classifier, 5 

as well as FlaE, which was not included in this collection. FliS (PF02561) is a known 

export chaperone that inhibits early polymerization of the flagellar filament FliC in the 

cytosol (Lam et al., 2010). MotB (PF13677), part of the membrane proton-channel 

complex, acts as the stator of the bacterial flagellar motor (Hosking et al., 2006). 

Traitar also identified further protein families related to chemotaxis, such as CZB 10 

(PF13682), a family of chemoreceptor zinc-binding domains found in many bacterial 

signal transduction proteins involved in chemotaxis and motility (Draper et al., 2011), 

and the P2 response regulator-binding domain (PF07194). The latter is connected to 

the chemotaxis kinase CheA and is thought to enhance the phosphorylation signal of 

the signaling complex (Dutta et al., 1999).  15 

Nitrogen reduction in nitrate to nitrite conversion is an important step of the nitrogen 

cycle and has a major impact on agriculture and public health. Two types of nitrate 

reductases are found in bacteria: the membrane-bound Nar and the periplasmic Nap 

nitrate reductase (Moreno-Vivian et al., 1999), which we found both to be relevant for 

the classification of the phenotype: we identified all subunits of the Nar complex as 20 

being relevant for the ‘Nitrate to nitrite’ conversion phenotype (i.e. the gamma and 

delta subunit (PF02665, PF02613)), as well as Fer4_11 (PF13247), which is in the 

iron–sulfur center of the beta subunit of Nar. The delta subunit is involved in the 

assembly of the Nar complex and is essential for its stability, but probably is not 

directly part of it (Pantel et al., 1998). Traitar also identified the Molybdopterin oxido- 25 
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Figure 7: Phenotype gain and loss dynamics match protein family dynamics. We 
show the phenotype–protein family gain and loss dynamics for families identified as 
important by Traitar for the L-arabinose phenotype. Signed colored circles along the 
tree branches depict protein family gains (+) or losses (-). Taxon nodes are colored 
according to their inferred (ancestral) phenotype state. 
 

reductase Fe4S4 domain (PF04879), which is bound to the alpha subunit of the 

nitrate reductase complex (Pantel et al., 1998). Traitor furthermore suggested NapB 

(PF03892) as relevant, which is a subunit of the periplasmic Nap protein and NapD 

(PF03927), which is an uncharacterized protein implicated in forming Nap (Moreno-5 

Vivian et al., 1999). 

Table 3: The most relevant Pfam families for classification of three important 
phenotypes: ‘Nitrate to Nitrite’, ‘Motility’ and ‘L-Arabinose’. We ranked the Pfam 
families with positive weights in the Traitar SVM classifiers by the correlation of the 
Pfam families with the respective phenotype labels across 234 bacteria described in 
the Global Infectious Disease and Epidemiology Online Network. Shown are the 10 
highest ranking Pfam families along with their descriptions and a description of their 
phenotype-related function, where we found one.   

Accession Phenotype Pfam description Remarks 
PF13677 Motile Membrane MotB of proton-channel 

complex MotA/MotB 
Flagellar protein 

PF03963 Motile Flagellar hook capping protein 
N-terminal region 

Flagellar protein 

PF02561 Motile Flagellar protein FliS Flagellar protein 

PF02050 Motile Flagellar FliJ protein Flagellar protein 

PF07559 Motile Flagellar basal body protein FlaE Flagellar protein 

PF13682 Motile Chemoreceptor zinc-binding domain Chemotaxis-related 

PF03350 Motile Uncharacterized protein family, 
UPF0114 
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PF05226 Motile CHASE2 domain Chemotaxis-related 

PF07194 Motile P2 response regulator binding domain Chemotaxis-related 

PF04982 Motile HPP family  

PF03927 Nitrate to nitrite NapD protein Involved in Nar formation 

PF13247 Nitrate to nitrite 4Fe-4S dicluster domain Iron-sulfur cluster center of  the 
beta subunit of Nar 

PF03892 Nitrate to nitrite Nitrate reductase cytochrome c-type 
subunit (NapB) 

Periplasmic Nap subunit 

PF02613 Nitrate to nitrite Nitrate reductase delta subunit Nap subunit 

PF01127 Nitrate to nitrite Succinate dehydrogenase/Fumarate 
reductase transmembrane subunit 

 

PF01292 Nitrate to nitrite Prokaryotic cytochrome b561  

PF03459 Nitrate to nitrite TOBE domain  

PF03824 Nitrate to nitrite High-affinity nickel transport protein  

PF04879 Nitrate to nitrite Molybdopterin oxidoreductase Fe4S4 
domain 

Bound to the alpha subunit of Nar 

PF02665 Nitrate to nitrite Nitrate reductase gamma subunit Nar subunit 

PF11762 L-Arabinose L-arabinose isomerase C-terminal 
domain 

Catalyzes first reaction in L-
arabinose metabolism 

PF04295 L-Arabinose D-galactarate dehydratase / Altronate 
hydrolase, C terminus 

 

PF13802 L-Arabinose Galactose mutarotase-like  

PF11941 L-Arabinose Domain of unknown function 
(DUF3459) 

 

PF14310 L-Arabinose Fibronectin type III-like domain  

PF06964 L-Arabinose Alpha-L-arabinofuranosidase  
C-terminus 

Acts on L-arabinose side chains in 
pectins 

PF01963 L-Arabinose TraB family  

PF01614 L-Arabinose Bacterial transcriptional regulator  

PF06276 L-Arabinose Ferric iron reductase FhuF-like 
transporter 

 

PF04230 L-Arabinose Polysaccharide pyruvyl transferase   

 
 

L-arabinose is major constituent of plant polysaccharides, which is located, for 

instance, in pectin side chains and is an important microbial carbon source (Martinez 

et al., 2008). Traitar identified the L-arabinose isomerase C-terminal domain 

(PF11762), which catalyzes the first step in L-arabinose metabolism – the conversion 

of L-arabinose into L-ribulose (Sa-Nogueira et al., 1997), as being important for 5 

realizing the L-arabinose metabolism. It furthermore suggested the C-terminal 

domain of Alpha-L-arabinofuranosidase (PF06964), which cleaves nonreducing 

terminal alpha-L-arabinofuranosidic linkages in L-arabinose-containing 

polysaccharides (Gilead and Shoham, 1995) and is also part of the well-studied L-

arabinose operon in Escherichia coli (Sa-Nogueira et al., 1997).  10 
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Phenotyping biogas reactor population genomes 

We used Traitar to phenotype two novel Clostridiales species (unClos_1, unFirm_1) 

based on their genomic information reconstructed from metagenome samples. These 

were taken from a commercial biogas reactor operating with municipal waste (Frank 

et al., 2015). The genomes of unClos_1 and unFirm_1 were estimated to be 91% 5 

complete and 60% complete based on contigs ≥5 kb, respectively. Traitar predicted 

unClos_1 to utilize a broader spectrum of carbohydrates than unFirm_1 (Table 4). 

We cross-referenced our predictions with a metabolic reconstruction conducted by 

Frank et al. (under review; supplementary material). We considered all phenotype 

predictions that Traitar inferred with either the phypat or the phypat+PGL classifier. 10 

The manual reconstruction and predictions inferred with Traitar agreed to a great 

extent (Table 4). Traitar recalled 87.5% (6/7) of the phenotypes inferred via the 

metabolic reconstruction and also agreed to 81.8% (9/11) on the absent phenotypes. 

Notable exceptions were that Traitar only found a weak signal for ‘D-xylose’ 

utilization. A weak signal means that only a minority of the classifiers in the voting 15 

committee assigned these samples to the phenotype-positive class (Methods – 

Phenotype models). However, the metabolic reconstruction was also inconclusive 

with respect to xylose fermentation. Furthermore, Traitar only found a weak signal for 

‘Glucose fermentation’ for unFirm_1. Whilst genomic analysis of unFirm_1 revealed 

the Embden–Meyerhof–Parnas (EMP) pathway, which would suggest glucose 20 

fermentation, gene-centric and metaproteomic analysis of this phylotype indicated 

that the EMP pathway was probably employed in an anabolic direction 

(gluconeogenesis); therefore unFirm_1 is also unlikely to ferment D-Mannose. This 

suggests that unFirm_1 is unlikely to ferment sugars and instead metabolizes acetate 

(also predicted by Traitar, Table 4) via a syntrophic interaction with hydrogen-utilizing 25 

methanogens.  
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Traitar predicted further phenotypes for both species that were not targeted by the 

manual reconstruction. One of these predictions was an anaerobic lifestyle, which is 

likely to be accurate, as the genomes were isolated from an anaerobic bioreactor 

environment. It also predicted them to be Gram-positive, which is probably correct, as 

the Gram-positive sortase protein family can be found in both genomes. 5 

Table 4 Phenotype predictions for two novel Clostridiales species with genomes 
reconstructed from a commercial biogas reactor metagenome. Traitar output (yes, 
no, weak) was cross-referenced with phenotypes manually reconstructed based on 
Kyoto Encyclopedia of Genes and Genomes orthology annotation (Frank et al. 
submitted; supplementary material), which are primarily the fermentation phenotypes 
of various sugars. We considered all phenotype predictions that Traitar inferred with 
either the phypat or the phypat+PGL classifier. A weak prediction means that only a 
minority of the classifiers in the Traitar voting committee assigned this sample to the 
phenotype-positive class (Traitar phenotype). Table entries colored in red show a 
difference between the prediction and the reconstruction, whereas green denotes an 
overlap; yellow is inconclusive.   

  unClos_1 unFirm_1 
Glucose yes weak 
Acetate 
utilization no yes 

Mannitol yes no 

Starch 
 hydrolysis no no 

Xylose weak no 
L-Arabinose yes no 
Capnophilic yes no 
Sucrose yes no 
D-Mannose yes no 
Maltose yes no 
Arginine 
 dihydrolase no yes 

 

 

This is a Gram-positive biomarker (Paterson and Mitchell, 2004). Furthermore, all 

Firmicutes known so far are Gram-positive (Goodfellow et al., 2012). Additionally, 

Traitar assigned ‘Motile’ and ‘Spore formation’ to unFirm_1, based on the presence of 

several flagellar proteins (e.g. FliM, MotB, FliS and FliJ) and the sporulation proteins 10 

CoatF and YunB. 
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Discussion 
We have developed Traitar, a software framework for predicting phenotypes from the 

protein family profiles of bacterial genomes. Traitar provides a quick and fully 

automated way of assigning 67 different phenotypes to bacteria based on the protein 

family content of their genomes.  5 

Microbial trait prediction from phyletic patterns has been proposed in previous studies 

for a limited number of phenotypes (Feldbauer et al., 2015; Kastenmuller et al., 2009; 

Konietzny et al., 2014; Lingner et al., 2010; MacDonald and Beiko, 2010; Weimann et 

al., 2013). To our knowledge, the only currently available software for microbial 

genotype-phenotype inference is PICA, which is based on learning associations of 10 

clusters of orthologous genes (Tatusov et al., 2001) with traits (MacDonald and 

Beiko, 2010). Recently, PICA was extended by Feldbauer et al. for predicting eleven 

traits overall, optimized for large datasets and tested on incomplete genomes 

(Feldbauer et al., 2015). Traitar allows prediction of 67 phenotypes, including 60 

entirely novel ones. It furthermore includes different prediction modes, one based on 15 

phyletic patterns, one additionally including a statistical model of protein family 

evolution for its predictions. Traitar also suggest associations between phenotypes 

and protein families. For three traits, we showed that several of these associations 

are to known key families of establishment of a particular trait, and that furthermore 

candidate families were suggested, that might serve as targets for experimental 20 

studies. Some of the phenotypes annotated in GIDEON are specific for the human 

habitat (such as ‘coagulase production’ or ‘growth on ordinary blood agar’) and the 

genetic underpinnings learned by Traitar could be interesting to study for infection 

disease research. 

  25 
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In cross-validation experiments with phenotype data from the GIDEON database, we 

showed that the Traitar phypat classifier has high accuracy in phenotyping bacterial 

samples. Considering ancestral protein family gains and losses in the classification, 

which is implemented in the Traitar phypat+PGL classifier, improves the accuracy 

compared to prediction from phyletic patterns only, both for individual phenotypes 5 

and overall. Barker et al. were first to note the phylogenetic dependence of genomic 

samples and how this can lead to biased conclusions (Barker and Pagel, 2005). 

MacDonald et al. selected protein families based on correlations with a phenotype 

and corrected for the taxonomy (MacDonald and Beiko, 2010). Here we accounted 

for the evolutionary history of the phenotype and the protein families in the classifier 10 

training itself to automatically improve phenotype assignment. We additionally 

demonstrated the reliability of the performance estimates by phenotyping, with a 

similar accuracy, an independent test dataset with bacteria described in GIDEON, 

which we did not use in the cross-validation. Traitar also reliably phenotyped a large 

and heterogenic collection of bacteria that we extracted from Bergey’s Manual of 15 

Systematic Bacteriology – mostly with only draft genomes available. We didn’t 

observe any bias towards specific taxa in GIDEON, but some of the phenotypes 

might be realized with different protein families in taxa that are less well represented 

indicated by the around 15% - 20% less reliable phenotyping results for bacteria 

described in Bergey’s manual of systematic bacteriology. We expect that the 20 

accuracy of the phenotype classification models already available in Traitar will 

further improve the more data will become available and can be incorporated into its 

training. 

We found that Traitar can provide reliable insights into the metabolic capabilities of 

microbial community members even from partial genomes, which are very common 25 
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for genomes recovered from single cells or metagenomes. One obvious limitation 

being for incomplete genomes, the absence of a phenotype prediction may be due to 

the absence of the relevant protein families from the input genomes.  The analysis of 

both the SAGs and simulated genomes led us to the same conclusions: the phypat 

classifier is more suitable for exploratory analysis, as it assigned more phenotypes to 5 

incomplete genomes, at the price of more false positive predictions. In contrast, the 

phypat+PGL classifier assigned fewer phenotypes, but also made fewer false 

assignments. At the moment, genotype–phenotype inference with Traitar only takes 

into account the presence and absence of protein families of the bacteria analyzed. 

This information can be readily computed from the genomic and metagenomic data. 10 

Future research could focus also on integration of other ‘omics’ data to allow even 

more accurate phenotype assignments. Additionally, expert knowledge of the 

biochemical pathways that are used in manual metabolic reconstructions, for 

example, could be integrated as prior knowledge into the model in future studies.  

For the phenotyping of novel microbial species, generating a detailed (manual) 15 

metabolic reconstruction such as the one by Frank et al. (submitted; supplementary 

material) is time-intensive. Furthermore, such reconstructions are usually focused on 

specific pathways and are dependent on the research question. This is not an option 

for studies with 10–50+ genomes, which are becoming more and more common in 

microbiology (Brown et al., 2015; Hess et al., 2011; Rinke et al., 2013). Traitar thus is 20 

likely to be particularly helpful for multi-genome studies. It furthermore may pick up 

on things outside of the original research focus and could serve as a seed or a first-

pass method for a detailed metabolic reconstruction in future studies. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2016. ; https://doi.org/10.1101/043315doi: bioRxiv preprint 

https://doi.org/10.1101/043315
http://creativecommons.org/licenses/by/4.0/


 

27 
 

Methods 
The Traitar software 
In this section we first describe the Traitar annotation procedure. We proceed with 

the genome and phenotype data used for the training of Traitar phenotype models; 

afterwards we explain the training and illustrate how we considered ancestral protein 5 

family gains and losses in the models. Finally, we specify the requirements for 

running the Traitar software. 

Annotation 

In the case of nucleotide DNA sequence input, Traitar uses Prodigal (Hyatt et al., 

2010) for gene prediction prior to Pfam family annotation. The amino acid sequences 10 

are then annotated in Traitar with protein families (Pfams) from the Pfam database 

(version 27.0) (Finn et al., 2014) using the hmmsearch command of HMMER 3.0 

(Finn et al., 2011).  

Each Pfam family has a hand-curated threshold for the bit score, which is set in such 

a way that no false positive is included (Punta et al., 2012). A fixed threshold of 25 is 15 

then applied to the bit score (the log-odds score) and all Pfam domain hits with an E-

value above 10-2 are discarded. The resulting Pfam family counts (phyletic patterns) 

are turned  into presence or absence values, as we found this representation to yield 

a favorable classification performance (Weimann et al., 2013).  

Genome and phenotype data 20 

We obtained our phenotype data from the GIDEON database (Berger, 2005). In 

GIDEON a bacterium is labeled either as phenotype-positive, -negative or strain-

specific. In the latter case we discarded this phenotype label. The GIDEON traits can 

be grouped into the categories the use of various substrates as source of carbon and 

energy for growth, oxygen requirement, morphology, antibiotic susceptibility and 25 
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enzymatic activity (Table 1, Supplementary Table 1). We only considered phenotypes 

that were available in GIDEON for at least 20 bacteria, with a minimum of 10 bacteria 

annotated as positive (phenotype presence) for a given phenotype and 10 as 

negative (phenotype absence) to enable a robust and reliable analysis of the 

respective phenotypes. Furthermore, to be included in the analysis, we required each 5 

bacterial sample to have: 

a)  at least one annotated phenotype, 

b)  at least one sequenced strain, 

c) a representative in the sTOL.  

In total, we extracted 234 species-level bacterial samples with 67 phenotypes with 10 

sufficient total, positive and negative labels from GIDEON (GIDEON I). GIDEON 

associates these bacteria with 9305 individual phenotype labels, 2971 being positive 

and 6334 negative (Supplementary Table 1, 3). GIDEON species that had at least 

one sequenced strain available but were not part of the sTOL tree were set aside for 

a later independent assessment of the classification accuracy. In total, this additional 15 

dataset comprised further 42 unique species with 58 corresponding sequenced 

bacterial strains (GIDEON II, Supplementary Table 1, 4). We obtained 1836 

additional phenotype labels for these bacteria, consisting of 574 positive and 1262 

negative ones. We searched the Firmicutes and Proteobacteria volumes of Bergey’s 

systematic bacteriology specifically for further bacteria not represented so far in the 20 

GIDEON data sets (Goodfellow et al., 2012). In total, we obtained phenotype data 

from Bergey’s for 206 Firmicutes and 90 Proteobacteria with a total of 1152 positive 

labels and 1376 negative labels (Supplementary Table 1, 5). As in GIDEON, in 

Bergey’s the phenotype information is usually given on the species level. 
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We downloaded the coding sequences of all complete bacterial genomes that were 

available via the NCBI FTP server under ftp://ftp.ncbi.nlm.nih.gov/genomes/ as of 11 

May 2014 and genomes from the PATRIC data base as of September 2015 (Wattam 

et al., 2014). These were annotated with Traitar. For bacteria with more than one 

sequenced strain available, we chose the union of the Pfam family annotation of the 5 

single genomes to represent the pangenome Pfam family annotation, as in (Liu et al., 

2006).  

Phenotype models 

We represented each phenotype from the set of GIDEON phenotypes across all 

genomes as a vector yp, and solved a binary classification problem using the matrix 10 

of Pfam phyletic patterns XP across all genomes as input features and yp as the 

binary target variable (Supplementary Figure 1). For classification, we relied on 

support vector machines (SVMs), which are a well-established machine learning 

method (Boser et al., 1992). Specifically, we used a linear L1-regularized L2-loss 

SVM for classification as implemented in the LIBLINEAR library (Fan et al., 2008). 15 

For many datasets, linear SVMs achieve comparable accuracy to SVMs with a non-

linear kernel but allow faster training. The weight vector of the separating hyperplane 

provides a direct link to the Pfam families that are relevant for the classification. L1-

regularization enables feature selection, which is useful when applied to highly 

correlated and high-dimensional datasets, as used in this study (Zou and Hastie, 20 

2005). We used the interface to LIBLINEAR implemented in scikit-learn (Pedregosa 

et al., 2011). For classification of unseen data points – genomes without available 

phenotype labels supplied by the user – Traitar uses a voting committee of five SVMs 

with the best single cross-validation accuracy (Methods – Nested cross-validation). 

Traitar then assigns each unseen data point to the majority class (phenotype 25 

presence or absence class) of the voting committee.   
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Ancestral protein family and phenotype gains and losses 

We constructed an extended classification problem by including ancestral protein 

family gains and losses, as well as the ancestral phenotype gains and losses in our 

analysis, as implemented in GLOOME (Cohen and Pupko, 2011). Barker et al. report 

that common methods for inferring functional links between genes, that do not take 5 

the phylogeny into account, suffer from high rates of false positives (Barker and 

Pagel, 2005). Here, we jointly derived the classification models from the observable 

phyletic patterns and phenotype labels, and from phylogenetically unbiased ancestral 

protein family and phenotype gains and losses, that we inferred via a maximum 

likelihood approach from the observable phyletic patterns on a phylogenetic tree, 10 

showing the relationships among the samples. (Supplementary Figure 1). Ancestral 

character state evolution in GLOOME is modeled via a continuous-time Markov 

process with exponential waiting times. The gain and loss rates are sampled from 

two independent gamma distributions (Cohen and Pupko, 2010).  

GLOOME needs a binary phylogenetic tree with branch lengths as input. The 15 

taxonomy of the National Center for Biointechnology Information (NCBI) and other 

taxonomies are not suitable, because they provide no branch length information. We 

used the sequenced tree of life (sTOL) (Fang et al., 2013), which is bifurcating and 

was inferred with a maximum likelihood approach based on unbiased sampling of 

structural protein domains from whole genomes of all sequenced organisms (Gough 20 

et al., 2001). We employed GLOOME with standard settings to infer posterior 

probabilities for the phenotype and Pfam family gains and losses from the Pfam 

phyletic patterns of all NCBI bacteria represented in the sTOL and the GIDEON 

phenotypes. Each GIDEON phenotype   is available for a varying number of 

bacteria. Therefore, for each phenotype, we pruned the sTOL to those bacteria that 25 
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were both present in the NCBI database and had a label for the respective phenotype 

in GIDEON. The posterior probabilities of ancestral Pfam gains and losses were then 

mapped onto this GIDEON phenotype-specific tree (Gps-sTOL, Supplementary 

Figure 2).  

Let B be the set of all branches in the sTOL and P be the set of all Pfam families. We 5 

then denote the posterior probability     of an event   for a Pfam family    to be a 

gain event on branch   in the sTOL computed with GLOOME as:  

     (               )              , 

and the posterior probability of   to be a loss event for a Pfam family   on branch   

as: 10 

     (               )               . 

We established a mapping        between the branches of the sTOL   and the 

set of branches    of the Gps-sTOL (Supplementary Figure 2). This was achieved by 

traversing the tree from the leaves to the root.  

 15 

There are two different scenarios for a branch    in    to map to the branches in B: 

a) Branch    in the Gps-sTOL derives from a single branch b in the sTOL: 

 (  )  { }. The posterior probability of a Pfam gain inferred in the Gps-sTOL 

on branch    consequently is the same as that on branch   in the sTOL  

              . 20 

b) Branch    in the Gps-sTOL derives from m branches         in the sTOL: 
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 (  )  {       } (Supplementary figure 2). In this case, we iteratively 

calculated the posterior probabilities for at least one Pfam gain    on branch    

from the posterior probabilities for a gain        from the posterior probabilities 

       of a gain on branches          with the help of h: 

        
     (    )         
               

 

Inferring the Gps-sTOL Pfam posterior loss probabilities      from the sTOL posterior 5 

Pfam loss probabilities is analogous to deriving the gain probabilities. The posterior 

probability for a phenotype   to be gained      or lost      can be directly defined for 

the Gps-sTOL in the same way as for the Pfam probabilities. 

For classification, we did not distinguish between phenotype or Pfam gains or losses, 

assuming that the same set of protein families gained with a phenotype will also be 10 

lost with the phenotype. This assumption simplified the classification problem. 

Specifically, we proceeded in the following way: 

1. We computed the joint probability     of a Pfam family gain or loss on branch    

and the joint probability    of a phenotype gain or loss on branch   : 

  15 

      
       (    

  )        (      )    
                 

   
   (    

  )       
 

      
  (       )                   

2. Let    be a vector representing the probabilities      for all Pfam families       on 
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branch bi. We discarded any samples (      ) that had a probability for a phenotype 

gain or loss     above the reporting threshold of GLOOME but below a threshold  . 

We set the threshold t to 0.5.  

This defines the matrix X and the vector y as: 

(   )   (      )                    , 5 

By this means, we avoided presenting the classifier with samples corresponding to 

uncertain phenotype gain or loss events and used only confident labels in the 

subsequent classifier training instead.  

3. We inferred discrete phenotype labels    by applying this threshold   to the joint 

probability    for a phenotype gain or loss to set up a well-defined classification 10 

problem with a binary target variable. Whenever the probability for a phenotype to be 

gained or lost on a specific branch was larger than  , the event was considered to 

have happened: 

   {    if     
  ,         otherwise       . 

4. Finally, we formulated a joint binary classification problem for each target 15 

phenotype    and the corresponding gain and loss events      the phyletic patterns 

  , and the Pfam gain and loss events  , which we solved again with a linear L1-

regularized L2-loss SVM. We applied this procedure for all GIDEON phenotypes 

under investigation. 

Software Requirements 20 

Traitar can be run on a standard laptop with Linux/Unix. The runtime (wallclock time) 

for annotating and phenotyping a typical microbial genome with 3 Mbp is 9 minutes (3 
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min/Mbp) on an Intel(R) Core(TM) i5-2410M dual core processor with 2.30 GHz, 

requiring only a few megabytes of memory. 

Cross-validation 

We employed cross-validation to assess the performance of the classifiers 

individually for each phenotype. For a given phenotype, we divided the bacterial 5 

samples that were annotated with that phenotype into ten folds. Each fold was 

selected once for testing the model, which was trained on the remaining folds. The 

optimal regularization parameter C needed to be determined independently in each 

step of the cross-validation; therefore, we employed a further inner cross-validation 

using the following range of values for the parameter C:                        10 

        ,             . In other words, for each fold kept out for testing in the outer 

cross-validation, we determined the value of the parameter C that gave the best 

accuracy in an additional tenfold cross-validation on the remaining folds. This value 

was then used to train the SVM model in the current outer cross-validation step. 

Whenever we proceeded to a new cross-validation fold, we re-computed the 15 

ancestral character state reconstruction of the phenotype with only the training 

samples included (Ancestral protein family and phenotype gains and losses). This 

procedure is known as nested cross-validation (Ruschhaupt et al., 2004).  

The bacterial samples in the training folds imply a Gps-sTOL in each step of the inner 

and outer cross-validation without the samples in the test fold. We used the same 20 

procedure as before to map the Pfam gains and losses inferred previously on the 

Gps-sTOL onto the tree defined by the current cross-validation training folds. 

Importantly, the test error is only estimated on the observed phenotype labels rather 

than on the inferred phenotype gains and losses. 
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Evaluation metrics 

We used evaluation metrics from multi-label classification theory for performance 

evaluation (Manning et al., 2008). We determined the performance for the individual 

phenotype-positive and the phenotype-negative classes based on the confusion 

matrix of true positive (TP), true negative (TN), false negative (FN) and false positive 5 

(FP) samples from their binary classification equivalents by averaging over all   

phenotypes. We utilized two different accuracy measures for assessing multi-class 

classification performance (i.e. the accuracy pooled over all classification decisions 

and the macro-accuracy). Macro-accuracy represents an average over the accuracy 

of the individual binary classification problems and we computed this from the macro-10 

recall of the phenotype-positive and the phenotype-negative classes as follows:  

                 (∑    
       

 

   
)  ⁄  

                 (∑    
       

 

   
)  ⁄  

     -         (     -               -         )  ⁄ . 

 

However, if there are only few available labels for some phenotypes, the variance of 

the macro-accuracy will be high and this measure cannot be reliably computed 15 

anymore; it cannot be computed at all if no labels are available. The accuracy only 

assesses the overall classification performance without consideration of the 

information about specific phenotypes. Large classes dominate small classes 

(Manning et al., 2008). 
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           ∑    
 
   

∑     
    ∑     

   
 

           ∑    
 
   

∑     
    ∑     

   
 

         (                   )  ⁄  

Majority feature selection 

The weights in linear SVMs can directly be linked to features that are relevant for the 

classification. We identified the most important protein families used as features from 

the voting committee of SVMs consisting of the five most accurate models, which 

were also used for classifying new samples. If the majority, which is at least three 5 

predictors, included a positive value for a given protein family, we added this feature 

to the list of important features. We further ranked these protein families features by 

their correlation with the phenotype using Pearson’s correlation coefficient. 
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Supplementary Figure 1

Schematic overview of the Traitar phenotype model training. (a) The phenotype and Pfam protein family phyletic patterns correspond to gain events on a 
star-shaped phylogenetic tree. Alternatively, we reconstructed the ancestral Pfam family and phenotype gain and loss events on the sequenced Tree of 
Life. (b) We trained a support vector machine classifier either on the phyletic patterns and on the ancestral gain and loss events, or solely on the phyletic 
patterns. (c) In this way, we inferred classification models for all available phenotypes.
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Supplementary Figure 1

Sequenced Tree of Life (sTOL) and GIDEON phenotype-specific Tree of Life (Gps-sTOL) correspondence. The phenotype label for 
Sample B is not available. Consequently, only branches b

4
, b

5
 and b

6  
are also found in the Gps-sTOL. The posterior probabilities for a 

Pfam gain or loss are the same for  b
4
, b

5
 and b

6
 in both trees. Branches  b

1
 and b

3
 (blue) are collapsed into a single branch. The 

posterior probability for a gain on branch b
1,3

, g
b1,3

 is computed from the posterior probability for a Pfam gain for   b
1 
and b

3
  as follows: 

g
b1,3 

= g
b1 

+ (1 – g
b1

) . 
 
g

b3 
  Branch b

2 
(red) in the sTOL does not have an analog in the Gps-sTOL.
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