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A tragedy of the commons occurs when individuals take actions to maximize their payoffs even as
their combined payoff is less than the global maximum had the players coordinated. The originating
example is that of over-grazing of common pasture lands. In game theoretic treatments of this exam-
ple there is rarely consideration of how individual behavior subsequently modifies the commons and
associated payoffs. Here, we generalize evolutionary game theory by proposing a class of replicator
dynamics with feedback-evolving games in which environment-dependent payoffs and strategies
coevolve. We initially apply our formulation to a system in which the payoffs favor unilateral defec-
tion and cooperation, given replete and depleted environments respectively. Using this approach we
identify and characterize a new class of dynamics: an oscillatory tragedy of the commons in which
the system cycles between deplete and replete environmental states and cooperation and defection
behavior states. We generalize the approach to consider outcomes given all possible rational choices
of individual behavior in the depleted state when defection is favored in the replete state. In so
doing we find that incentivizing cooperation when others defect in the depleted state is necessary to
avert the tragedy of the commons. In closing, we propose new directions for the study of control and
influence in games in which individual actions exert a substantive effect on the environmental state.

Game theory is based on the principle that individuals
make rational decisions regarding their choice of actions
given suitable incentives [1, 2]. In practice, the incentives
are represented as strategy-dependent payoffs. Evolu-
tionary game theory extends game theoretic principles to
model dynamic changes in the frequency of strategists [3].
Replicator dynamics is one commonly used framework for
such models. In replicator dynamics, the frequencies of
strategies change as a function of the social makeup of the
community [4–6]. For example in a snowdrift game (also
known as a hawk-dove game), individuals defect when
cooperators are common but cooperate when coopera-
tors are rare [2]. As a result, cooperation is predicted
to be maintained amongst a fraction of the communi-
ty [4, 6]. Whereas, in the prisoner’s dilemma individuals
are incentivized to defect irrespective of the fraction of
cooperators. This leads to domination by defectors [6, 7].

Here, we are interested in a different kind of evolu-
tionary game in which individual action modifies both
the social makeup and environmental context for sub-
sequent actions. Strategy-dependent feedback occurs
across scales from microbes to humans in public good
games and in commons’ dilemmas [8–11]. Amongst
microbes, feedback may arise due to fixation of inor-
ganic nutrients given depleted organic nutrient avail-
ability [12, 13], the production of extracellular nutrient-
scavenging enzymes like siderophores [14–16] or enzymes
like invertase that hydrolyze diffusible products [17], and
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the release of extracellular antibiotic compounds [18].
The incentive for public good production changes as the
production influences the environmental state. Such joint
influence occurs in human systems, e.g., when individu-
als decide to vaccinate or not [19–21]. Decisions not to
vaccinate have been linked most recently to outbreaks
of otherwise preventable childhood infectious diseases in
Northern California [22]. These outbreaks modify the
subsequent incentives for vaccination. Such coupled feed-
back also arises in public goods dilemmas involving water
or other resource use [23]. In a period of replete resources
there is less incentive for restraint [24]. Yet, over-use in
times of replete resource availability can lead to depletion
of the resource and changes in incentives.

In this manuscript we propose a unified approach to
analyze and understand feedback-evolving games (Fig-
ure 1). We term this approach “co-evolutionary game
theory”, denoting the coupled evolution of strategies and
environment. The key conceptual innovation is to extend
replicator dynamics [4] to include dynamical changes in
the environment. In that sense, our approach is com-
plementary to recent efforts to consider the evolvability
of payoffs in a fixed environment [25]. Here, changes in
the environment modulate the payoffs. In so doing, we
are able to address problems in which individual behav-
ior constitutes a non-negligible component of the system.
As a case study, we revisit the originating tragedy of the
commons example [24] and ask: what happens if over-
exploitation of a resource changes incentives for future
action? As we show, the cumulative feedback of deci-
sions can subsequently alter incentives leading to new
dynamical phenomena and new challenges for control.
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FIG. 1: Schematic of replicator dynamics in feedback-evolving
games. (Top) In replicator dynamics, the payoff matrix
A determines frequency-dependent changes in strategies, xi.
(Top and bottom) In replicator dynamics with feedback-
evolving games, the frequencies of strategies influences the
environment n, which, in term modifies the payoffs, A(n).
The coupled system includes dynamics of both the payoff
matrix and the strategies.

Significance Statement

Classical game theory addresses how individuals make
decisions given suitable incentives, e.g., whether to utilize
a commons rapaciously or with restraint. Yet classical
game theory does not typically address the consequences
of individual actions that reshape the environment over
the long-term. In this manuscript we propose a unified
approach to analyze and understand the coupled evolu-
tion of strategies and the environment. We revisit the
originating tragedy of the commons example and evalu-
ate how over-use of a commons resource changes incen-
tives for future action. In doing so, we identify an oscilla-
tory tragedy of the commons in which the system cycles
between deplete and replete environments and coopera-
tion and defection behavior, highlighting new challenges
for control and influence of feedback-evolving games.

Methods and Results

The context – evolutionary game theory as modeled
via replicator dynamics

Here we introduce evolutionary game theory in the
context of the prisoner’s dilemma as a means to moti-
vate our co-evolutionary game theory formalism. Con-
sider a symmetric two player game with strategies C and

D, denoting cooperation and defection respectively. A
standard instance of the payoff matrix is the prisoner’s
dilemma (PD) in which the payoffs can be written as:

A =

[
3 0
5 1

]
. (1)

In this game, the player C receives a payoff of 3 and 0
when playing against player C and D, respectively. Sim-
ilarly, the player D receives a payoff of 5 and 1 when
playing against player C and D, respectively. These pay-
offs are commonly referred to as the reward for coop-
eration, R = 3, sucker’s payoff, S = 0, temptation to
cheat, T = 5, and punishment for cheating, P = 1. Here,
R < T and S < P so that the mutual defection is the
Nash equilibrium.

In evolutionary game theory, such payoffs can be cou-
pled to the changes in population or strategy frequencies,
x1 and x2, e.g., where x1 and x2 denote the frequency
of cooperators and defectors such that x1 + x2 = 1. The
coupling is expressed via replicator dynamics. The stan-
dard replicator dynamics for two-players games can be
written as

ẋ1 = r1(x, A)x1 − 〈r〉(x, A)x1, (2)

ẋ2 = r2(x, A)x2 − 〈r〉(x, A)x2. (3)

where r1, r2 and 〈r〉 denote the fitness of player 1, the
fitness of player 2, and the average fitness respectively.
In this convention then

r1 = 3x1 + 0x2 = 3x1, (4)

r2 = 5x1 + x2 = 5x1 + x2, (5)

and the average fitness is:

〈r〉 = r1x1 + r2x2 = 3x21 + (5x1 + x2)x2. (6)

Because x1 + x2 = 1, we can rewrite the dynamics of
x ≡ x1 as

ẋ = −x(1− x)(1 + x). (7)

The replicator dynamics for the PD in Eq. (7) has 3 fixed
points, but only two in the domain [0, 1], i.e., x∗ = 0 and
x∗ = 1. The stability can be identified from the sign of
the cubic, i.e., x∗ = 0 is stable and x∗ = 1 is unstable.
This means that in the long-term a population with a
minority of D players will, over time, change to one with
a minority of C players, and the elimination of C players
altogether.

In general, replicator dynamics for symmetric two-
player games with a fixed payoff matrix can be written
as:

ẋ = x(1− x)(r1(x)− r2(x)) (8)

where the convention is again that x ≡ x1 and that
x1 + x2 = 1. This formulation implies that the frequen-
cy of strategy 1 in the population will increase if the
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frequency-dependent payoff of strategy 1 exceeds that of
strategy 2, and vice-versa. We can leverage this simple
representation to consider the replicator dynamics given
an alternative game:

A =

[
5 1
3 0

]
, (9)

where R = 5, S = 1, T = 3, and P = 0. As is evident,
R > T and S > P so that the mutual cooperation is the
Nash equilibrium. Here r1 = 4x + 1 and r2 = 3x such
that

ẋ = x(1− x)(1 + x). (10)

Again, the stability can be identified from the sign of
the cubic, i.e., x∗ = 1 is stable and x∗ = 0 is unstable.
The payoffs have changed such that cooperation is now a
Nash equilibrium and a population with a minority of C
players will, over time, change to one with a majority of
C players, and eventually the elimination of D players.

A model of replicator dynamics with
feedback-evolving games

We consider a modified version of the standard repli-
cator dynamics in which:

εẋ = x(1− x) [r1(x,A(n))− r2(x,A(n))] ,

ṅ = n(1− n)f(x),
(11)

where f(x) denotes the feedback of strategists with the
environment and the term n(1 − n) in Eq. (11) ensures
that the environmental state is confined to the domain
[0, 1]. The value of ε is a property of the agents and
denotes the relative speed by which individual actions
modify the environmental state. What distinguishes the
model is that the payoff matrix A(n) is environment-
dependent and that strategy and environmental dynam-
ics are coupled (see Figure 1). The state of the envi-
ronment is characterized by the scalar value, n. The
environmental state changes as a result of the actions of
strategists, such that the sign of f(x) denotes whether n
will increase or decrease, corresponding to environmental
degradation or enhancement when f < 0 or f > 0 respec-
tively. Finally, the rate of environmental dynamics is set,
in part, by the dimensionless quantity ε, such that when
0 < ε � 1 then environmental change is relatively slow
when compared to the change in the frequency of strate-
gists.

Initially, we evaluate this class of feedback-evolving
games via the use of the following environment-
dependent payoff matrix:

A(n) = (1− n)

[
T P
R S

]
+ n

[
R S
T P

]
. (12)

We retain the assumption of the prior section that R > S
and T > P . As such, this initial class of games has an

embedded symmetry such that mutual cooperation is a
Nash equilibrium when n = 0 and mutual defection is
a Nash equilibrium when n = 1. This state-dependent
payoff matrix can be written as

A(n) =

[
T − (T −R)n P − (P − S)n
R+ (T −R)n S + (P − S)n

]
. (13)

The payoff matrix A(n) interpolates between the two sce-
narios described in the previous section. Cooperation or
defection are favored in the limits of n → 0 or n → 1,
respectively. In addition, we assume that the environ-
mental state is modified by actions of the population:

f(x) = θx− (1− x) (14)

in which θ > 0 is the ratio of the enhancement rates to
degradation rates of cooperators and defectors, respec-
tively. The payoff-dependent fitnesses are

r1(x, n) = (T − δTRn)x+ (P − δPSn) (1− x), (15)

r2(x, n) = (R+ δTRn)x+ (S + δPSn) (1− x), (16)

given δPS = P − S and δTR = T − R, such that the
complete model can be written as:

εẋ = x(1− x) [δPS + (δTR − δPS)x] (1− 2n),

ṅ = n(1− n) [−1 + (1 + θ)x] .
(17)

There are five fixed points of this model of replica-
tor dynamics with feedback-evolving games. Of these,
four represent “boundary” fixed points, that is (i) (x∗ =
0, n∗ = 0) - defectors in a degraded environment; (ii)
(x∗ = 0, n∗ = 1) - defectors in a replete environment;
(iii) (x∗ = 1, n∗ = 0) - cooperators in a degraded envi-
ronment; and (iv) (x∗ = 1, n∗ = 1) - cooperators in a
replete environment. There is also an interior fixed point,
(x∗ = 1

1+θ , n
∗ = 1

2 ), representing a mixed population
of cooperators and defectors in an intermediate environ-
ment. In Appendix A we prove that all of the boundary
fixed points are unstable and the interior fixed point is
neutrally stable. Further, we show that the system has a
constant of motion. As a consequence, the global dynam-
ics correspond to closed periodic orbits in the interior of
the domain for any initial condition in which x0 ∈ (0, 1)
and n0 ∈ (0, 1), with the exception of the interior fixed
point. None of these orbits are limit cycles given the
symmetries imposed in the payoff matrix.

The orientation of orbits in the phase plane defined
by (x, n) should be counter-clockwise. The intuition is
as follows. A system initialized in the interior near to
(x = 0, n = 0) will rapidly move towards (x = 1, n = 0),
as cooperation is favored. Then, as cooperators enhance
the environment, the system will be driven closer to
(x = 1, n = 1). Defectors will invade an environmentally
enhanced state and the system will rapidly move to one
near (x = 0, n = 1). Finally, in an environment dominat-
ed by defectors, the environmental state will be degraded
and the system will be driven closer to (x = 0, n = 0).
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FIG. 2: Persistent oscillations of strategies and the environment. (Left) Time series of the fraction of cooperators x (blue) and
the environmental state n (green), correspond to dynamics arising from Eq. (17) with ε = 0.1, θ = 2, and the payoffs R = 3,
S = 0, T = 5, and P = 1. (Right) Phase plane dynamics of x − n system. The arrows denote the direction of dynamics with
time. The distinct curves correspond to initial conditions (0.9, 0.01), (0.8, 0.15), (0.7, 0.3), (0.5, 0.4), (0.4, 0.45). Appendix A
includes a proof of the existence of a constant of motion associated with these dynamics. The asterisk denotes the predicted
neutrally-stable fixed point at (1/3, 1/2).

This intuition holds throughout the domain. Dynamics
of the system given the choice of payoffs, R = 3, S = 0,
T = 5 and P = 1, and different initial conditions are
shown in Figure 2.

Generalized conditions for an oscillating tragedy of
the commons

Here, we generalize our analysis by considering a mod-
el of replicator dynamics with feedback-evolving games
with asymmetric payoffs:

A(n) = (1− n)

[
R0 S0

T0 P0

]
+ n

[
R1 S1

T1 P1

]
, (18)

where 0 ≤ n ≤ 1. As before, we assume that if n = 0
then the payoff matrix has a unique Nash equilibrium
corresponding to cooperative dominance, i.e.,, R0 > T0
and S0 > P0. Similarly, we assume that if n = 1 then the
payoff matrix has a unique Nash equilibrium correspond-
ing to defector dominance, i.e., R1 < T1 and S1 < P1. By
breaking the symmetry of payoffs, we are able to explore
cases in which both the relative sign and the magnitude of
payoffs changes as a function of the environmental state.

As before, this system has five fixed points, of which
four correspond to unstable fixed points on the boundary.
In Appendix B we prove that the system has an unstable
fixed point at (x∗ = 1

1+θ , n
∗ = 1

2 ) when

P1 − S1

T1 −R1
>
S0 − P0

R0 − T0
. (19)

Here the qualitative outcomes depend on both the sign
and magnitude of differences between payoffs, rather than
the signs alone. Numerical simulations exhibit oscilla-
tions when Eq. (19) is satisfied (see Figure 3-top for an
example). The numerical simulations also indicate that
the oscillations grow in magnitude, possibly approach-
ing the boundary. This observation raises a question: do
the asymptotic dynamics converge to a limit cycle in the
interior or to a heteroclinic cycle on the boundary?

In Appendix C we prove that the oscillations converge
to an asymptotically stable, heteroclinic cycle and not
to a limit cycle. We do so by leveraging conditions for
the emergence of heteroclinic cycles in replicator dynam-
ics [26, 27]. The heteroclinic cycle includes the four fixed
points on the boundary in this order, (1, 1), (0, 1), (0, 0),
(1, 0), which then return to (1, 1). The “tragedy” occurs
given that dynamics initialized near (1, 1) are driven away
to the environmental depleted state due to the actions of
rational actors/agents acting in their own self-interest.
Moreover, although it is not required for oscillations, we
presume that R0 < R1, so that cooperation in the deplet-
ed state has less benefit than that of cooperation in the
replete state. In summary, we use the term Oscillat-
ing Tragedy of the Commons to denote the emergence of
oscillations that asymptotically connect the depleted and
replete states. The use of “tragedy” has to do with the
inevitability of environmental degradation (here, n = 0),
or as Hardin put it “this inevitableness of destiny” [24].

The finding of an asymptotically stable heteroclin-
ic cycle implies that dynamics initialized at an interior
point and not located at a fixed point will approach the

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/043299doi: bioRxiv preprint 

https://doi.org/10.1101/043299
http://creativecommons.org/licenses/by/4.0/


5

boundary. Over time, the dynamics will spend an ever
increasing amount of time near a fixed point before “hop-
ping” to the subsequent fixed point in the cycle. Near
these fixed points the nonlinear dynamics are governed by
linearized dynamics and two characteristic eigenvalues,
one associated with an attractive “pull” towards the fixed
point and one associated with a repelling “push” away
from the fixed point. Hence, Eq. (19) can be interpreted
as denoting the relative strength of the product of the
stable (pull) vs. unstable (push) eigenvalues around the
cycle (see Appendix C for details). Oscillations emerge
when the pull towards the fixed points is stronger than
the push away from the fixed points in a cycle. We also
find that dynamics converge to an interior fixed point
when Eq. (19) is not satisfied (see Figure 3-bottom for
an example). In this event, the tragedy of the commons
is averted and the system does not inevitably reach the
depleted state.

Fast-slow oscillatory dynamics in feedback-evolving
games

In order to provide further intuition we leverage the
fact that when 0 < ε � 1 the dynamics correspond to
that of fast-slow systems where x is the “fast” variable
and n is the “slow” variable [28]. Later we will show
that insights gained in the limit case hold irrespective of
the relative rate change of environment and strategies.
Consider a rescaling of time such that τ = t/ε, such that
we rewrite Eq. (17) as:

x′ = x(1− x) [r1(x, n)− r2(x, n)] ,

n′ = εn(1− n) [−1 + (1 + θ)x] ,
(20)

where the ′ denotes a derivative with respect to τ . For
0 < ε� 1, this rescaling identifies n as the slow variable.
Let S0 denote the critical set of the system [28], i.e., the
set of values of (x, n) for which x′ = 0. The set S0 is
made up of multiple critical manifolds. So long as the
system is not close to this critical set, then the dynamics
of x are much faster than that of n, i.e., by a factor of
order 1/ε. The critical manifolds of this system in the
bounded domain 0 ≤ x ≤ 1 and 0 ≤ n ≤ 1 are: (i)
x = 0; (ii) x = 1; and (iii) the set of points (xc, nc) that
satisfy r1(xc, nc) = r2(xc, nc). The last of these critical
manifolds can be interpreted as the interior nullcline of
x. We assume that n parameterizes the dynamics of x
far from the critical manifold.

As an example, consider the following payoff matrix:

A(n) = (1− n)

[
3.5 1

2 0.75

]
+ n

[
4 1

4.5 1.25

]
. (21)

Given the payoff matrix in Eq. (21), the one-dimensional
fast-subsystem can be written as:

x′ = x(1− x)(1.25x+ 0.25− n(1.5x+ 0.5)). (22)

In this case, the interior critical manifold satisfies nc(x) =
5x+1
6x+2 . For n > 3/4, there are two fixed points, x = 0
and x = 1, which are stable and unstable respectively.
For n < 1/2, there are also two fixed points, x = 0
and x = 1, which are unstable and stable respectively.
This system undergoes two saddle-node bifurcations at
the values n = 1/2 and n = 3/4. For values of the
slow variable 1/2 < n < 3/4, the system has three fixed
points, such that x = 0 and x = 1 are stable and xc is
unstable where xc(n) = 2n−1

5−6n .
System dynamics can be understood in terms of a series

of fast and slow changes. Consider initializing the system
at values (x0, n0) with n0 < 1/2, i.e., in the region where
there are only two fixed points of the fast-dynamics. The
system will behave akin to a one-dimensional system and
increase rapidly in x, parameterized by the value n = n0.
As the system approaches the attracting critical mani-
fold, x = 1, then the system dynamics will be governed by
the slow variable dynamics, n′. Cooperators will enhance
the environmental state, given that n′ > 0 for x → 1.
The system will then slowly approach the fixed point
(1, 1). This fixed point is unstable in the fast direction,
such that the system will rapidly approach the attracting
critical manifold of x = 0, i.e., the point (0, 1). Again,
the system will then slowly change in environmental state
towards the point (0, 0), given that n′ < 0 for x → 0.
Now that n < 1/2, the system will be dominated by
the fast subsystem dynamics, rapidly increasing x - com-
pleting the cycle. The resulting dynamics will appear as
relaxation oscillations with slow changes in environment
alternating with rapid changes in the fraction of cooper-
ators. The dynamics overlaid with the critical manifolds
for this system are shown in Figure 3-top. We find that
the system dynamics will asymptotically approach a het-
eroclinic cycle when nc(0) < nc(1). The condition for
this asymptotic behavior corresponds to that of Eq. (19)
(see Appendix C and D).

The key to the emergence of relaxation oscillations is
that the interior critical manifold is a repeller. This is not
universally the case. A counter-example is when Eq. (19)
is not satisfied, e.g.,:

A(n) = (1− n)

[
3.5 1

2 0.05

]
+ n

[
4 1

7 2

]
. (23)

In this example, the overall dynamics converge to an
asymptotically stable interior fixed point. The overall
dynamics are again characterized by a mix of fast and
slow changes, however they spiral in to the interior fixed
point rather than away from it. The dynamics overlaid
with the critical manifolds for this system are shown
in Figure 3-bottom. We also find that the qualitative
outcomes do not depend on the speed of the feedback
(see Figure 4 and Appendix B and C for proof). Here,
the invariance arises because of the separability of the
dynamics so that the stability of the system is unaffected
by the speed. This ε-invariance of qualitative outcomes
is not universally the case for fast-slow systems [28].
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Case 2: Attracting fixed point
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FIG. 3: Fast-slow dynamics of feedback-evolving games, where x and n are the fast and slow variables respectively - including
critical manifolds and realized dynamics. In both panels, the black lines denote the critical manifolds with solid denoting
attractors and dashed denoting repellers. The blue lines and double arrows denote expected fast dynamics in the limit ε→ 0.
The red circles denote the bifurcation points of the fast subsystem parameterized by n. The single arrows denote expected slow
dynamics. The gray curve denotes the realized orbit. In both cases, ε = 0.1 and θ = 2. (Top) Relaxation oscillations converging
to a heteroclinic cycle arising due to a saddle-node bifurcation in the fast-subsystem parameterized by n in which the critical
manifold is a repeller. The payoff matrix A(n) is that defined in Eq. (21). (Bottom) Relaxation oscillations converging to a
fixed point arising due to a saddle-node bifurcation in the fast-subsystem parameterized by n in which the critical manifold is
an attractor. The payoff matrix A(n) is that defined in Eq. (23).

Generalized conditions for mitigating the tragedy of
the commons given feedback-evolving games

The previous section identified conditions under which
the tragedy of the commons is averted. In particular,
the system converges to an intermediate environmental
state when the cumulative strength of unstable eigenval-
ues around the cycle exceeds that of the stable eigen-
values (Eq. (19)). This condition requires that mutual
cooperation is a unique Nash equilibrium in a depleted

state. Here, we ask: are there any other conditions in
which a tragedy of the commons could be averted? To
do so, we continue to fix the payoff structure of A1 to
have a Nash equilibrium corresponding to mutual defec-
tion so as to analyze the effect of feedback on the tragedy
of the commons. However in this section we consider any
ordering of payoffs in A0 and analyze the corresponding
replicator dynamics with feedback-evolving games.

There are four cases to consider corresponding to dif-
ferent combinations among the relative values of T0 and
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FIG. 4: Invariance of system dynamics given change in the relative speed of strategy and environmental dynamics. The
parameter ε is varied from 0.1 to 10 given cases where dynamics are expected to lead to a heteroclinic cycle (left) and to
an interior fixed point (right). Other parameters are the same as in Figure 3. Although the transient dynamics differ, the
qualitative dynamics remain invariant with respect to changes in ε.

R0 as well S0 and P0. First, A0 may correspond to an
anti-coordination game, i.e., R0 < T0, S0 > P0. Sec-
ond, A0 may correspond to a coordination game, i.e.,
R0 > T0, S0 < P0. Third, A0 may have a unique Nash
equilibrium corresponding to mutual cooperation, i.e.,
R0 > T0, S0 > P0. Fourth, A0 may have a unique Nash
equilibrium corresponding to mutual defection, i.e.,R0 <
T0, S0 < P0. Of these, we have already analyzed dynam-
ics arising in the third case when R0 > T0, S0 > P0 (see
Figures 2-4). The possible outcomes of dynamics that
do not begin at a fixed point include convergence to a
stable interior fixed point or persistent oscillations in the
interior. The fourth case corresponds to domination by a
defector strategy when n = 0 and when n = 1. Therefore,
defection will be the dominant strategy for all values of
n. The population will converge to x∗ = 0 and, by exten-
sion, to the depleted environmental state n = 0. There
are no additional dynamics possible given the feedback
structure studied here.

In Appendix D we find the fixed points and local stabil-
ity for all values of payoffs of A0 in the two remaining cas-
es. In the event that A0 constiutes an anti-coordination
game, the system can converge to the boundary or to
the interior (see Figure S1). The stable boundary point
corresponds to (xm, 0), where xm is the mixed Nash equi-

librium of A0. Hence, the system exhibits a tragedy
of the commons despite the fact that there is a mix
of cooperators and defectors. The positive feedback of
the cooperators is insufficient to improve the environ-
ment over the long-term. However, when the coopera-
tor advantage asymmetry is sufficiently large, then the
system converges to an interior fixed point. Counter-
intuitively, this interior fixed point exhibits less coopera-
tion than on the boundary. In the event that A0 consti-
tutes a coordination game, the system converges to the
stable fixed point (0, 0) corresponding to a tragedy of the
commons, irrespective of initial conditions. The coupling
between behavior and environment provides an “escape
route” that leads to total defection in the system. To
understand why, consider dynamics that ensue near the
point (1, 0). In that event the payoff conditions favor
cooperation, which drive the system closer to (1, 1), at
which point the behavior switches to that of defection,
i.e., approaching (0, 1). Defectors degrade the environ-
ment, converging to the locally stable fixed point (0, 0)
(see Figure S2).

We summarize all possible dynamics in terms of a
phase plane in Figure 5. The key point is that the tragedy
of the commons can be averted when there is feedback
between strategy and the environment. Convergence to
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an intermediate environmental state depends on the mag-
nitude of payoffs in depleted environments as well as the
relative strength at which cooperators enhance the envi-
ronment. In this model, incentivizing the payoff to coop-
erate when others defect in a bad environment can help
avert the tragedy of the commons.

Discussion

We proposed a co-evolutionary game theory that incor-
porates the feedback between game and environment
and between environment and game. In so doing,
we extended replicator dynamics to include feedback-
evolving games. This extension is facilitated by assuming
the environmental state can be represented as a linear
combination of two different payoff matrices. Motivated
by the study of the tragedy of the commons in evolu-
tionary biology [29] we demonstrated how new kinds of
dynamics can arise when cooperators dominate in deplete
environments and when defectors dominate in replete
environments. In essence, cooperators improve the envi-
ronment, leading to a change in incentives that shift the
game theoretic strategy towards defection. Repeated
defections degrade the environment which re-incentives
the emergence of cooperators. In this way there is the
potential for a sustained cycle in strategy and environ-
mental state, i.e., an oscillating tragedy of the commons
(see Figures 3-4). Whether or not the cycle dies out or
is persistent depends on the magnitude of payoffs. We
also identified conditions under which a tragedy of the
commons can be averted (see Figure 5).

Our proposed replicator model with feedback-evolving
games considers the consequences of repetition in which
the repeated actions of the game influences the environ-
ment in which the game is played. Thus, the model is
complementary to long-standing interest in a different
kind of repeated games, most famously the iterated pris-
oner’s dilemma [7, 30? ? –33]. In such iterated games,
strategies that include cooperation emerge, even if coop-
eration is otherwise a losing strategy in single-stage or
one-shot versions of the game. Here, individuals do not
play against another repeatedly or, posed alternative-
ly, do not “recall” playing against another repeatedly.
Instead, a feedback-evolving game changes with time as
a direct result of the accumulated actions of the popula-
tions.

The feedback-evolving game analyzed here is closest in
intent to a prior analysis of coupled strategy and envi-
ronmental change in the context of durable public goods
games [34]. That model assumed that fitness differences
between producers and non-producers had no frequency-
dependence and the environmental dynamics had at most
a single fixed point. Unlike the present case, the model
in [34] did not exhibit persistent oscillations. Here, the
long-term dynamics depend on the magnitudes of pay-
offs, i.e., including both costs, benefits, and frequencies
of alternate strategies, as well as the strength of feed-

back. For example, bacteria that produce a costly public
good, i.e., cooperators, may have a selective advantage
in a depleted environment when public goods are scarce.
Cooperating bacteria can restore the availability of the
public good, e.g., fixed nitrogen or excreted enzymes,
thereby favoring defectors that consume but do not pro-
duce the public good. The emergence of defectors can,
with time, degrade the environment.

We have shown (in Figures 2-4) that repeated oscil-
lations of strategies and environmental state can arise
when cooperation is favored in the depleted state. We
have also classified the behavior of the model given all
possible payoff matrices in the depleted state (see Figure
5 and Appendix D). In all other instances we find that
global dynamics converge to a fixed point. This fixed
point can be in the interior, i.e., corresponding to avert-
ing the tragedy of the commons. Averting the tragedy
of the commons is possible, though not guaranteed, so
long as cooperation is favored when others defect in the
depleted state. The conditions for averting the tragedy
of the commons in this model depends on the strength
but not the speed of coupling. Alternative forms of feed-
back between strategy and environment [35? ] as well
as nonlinear combinations of payoff matrices may lead
to novel dynamics. Density-dependent interactions may
also lead to novel effects of social behavior on total pop-
ulation densities, not just their frequencies [36].

Thus far, we have assumed that the environment can
recover from a nearly deplete state. The rate of renew-
al was assumed to be proportional to the cooperator
fraction. In that sense, our work also points to new
opportunities for control - whether for renewable or finite
resources. Is it more effective to influence the strate-
gists, the state, and/or the feedback between strategists
and state? Analysis of feedback-evolving games could
also have implications for theories of human population
growth [37], ecological niche construction [38], and the
evolution of strategies in public good games [25]. The
extension of the current model to microbial and human
social systems may deepen understanding of the short-
and long-term consequences of individual actions in a
changing and changeable environment [39]. We are hope-
ful that recognition and analysis of the feedback between
game and environment can help to more effectively man-
age and restore endangered commons.
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Appendix A: Closed periodic orbits given replicator dynamics with feedback evolving games

In this section we show that replicator dynamics with feedback evolving games will exhibit closed period orbits
given suitable symmetries in the payoffs in the good (n = 1) and bad (n = 0) environmental states. Consider an
environment-dependent payoff matrix of the form:

A(n) = (1− n)

[
T P

R S

]
+ n

[
R S

T P

]
(A1)

where T > R and P > S. In this case, mutual defection is the Nash equilibrium when n = 1 and mutual cooperation
is the Nash equilibrium when n = 0. This payoff matrix can be rewritten as:

A(n) =

[
T − (T −R)n P − (P − S)n

R+ (T −R)n S + (P − S)n

]
(A2)

The dynamical system of equations are:

εẋ = x(1− x) [r1(x, n)− r2(x, n)] ,

ṅ = n(1− n) [−1 + (1 + θ)x] ,
(A3)

where

r1(x, n) = (T − (T −R)n)x+ (P − (P − S)n) (1− x), (A4)

r2(x, n) = (R+ (T −R)n)x+ (S + (P − S)n) (1− x), (A5)

so that

r1(x, n)− r2(x, n) = (1− 2n) [(P − S) + ((T −R)− (P − S))x] . (A6)

For convenience we denote the differences as δPS = P − S and δTR = T −R. In this notation, the system is:

εẋ = x(1− x) [δPS + (δTR − δPS)x] (1− 2n),

ṅ = n(1− n) [−1 + (1 + θ)x] .
(A7)

This system has five fixed points, including all four corners of the domain [0, 1]2 and the interior fixed point 1
1+θ ,

1
2 .

Without loss of generality, we set ε = 1 to analyze the local stability of these fixed points. The Jacobian of the system
at each of the four corners is:

J(0, 0) =

[
P − S 0

0 −1

]
, J(1, 0) =

[
R− T 0

0 θ

]
(A8)

J(0, 1) =

[
S − P 0

0 1

]
, J(1, 1) =

[
T −R 0

0 −θ

]

Because T > R and P > S, then each of these Jacobian has one positive eigenvalue and is locally unstable. In
addition, the Jacobian of the interior fixed point is:

J =

[
0 −2x∗(1− x∗) [δPS + (δTR − δPS)x∗]

(1 + θ)/4 0

]
(A9)

where 0 < x∗ = 1/(1 + θ) < 1 for the interior fixed point. The eigenvalues for the interior fixed point have no real
components and the interior fixed point is neutrally stable.

We now analyze the global dynamics of the system and confirm that the intuition gained from analysis at the
interior fixed point holds for the entire domain. The separability of the factors allows us to write

dx

dn
= δPS

x(1− x) [1 + (δTR/δPS − 1)x] (1− 2n)

εn(1− n) [−1 + (1 + θ)x]
, (A10)
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such that ∫
dx
−1 + (1 + θ)x

x(1− x) [1 + ∆x]
=

∫
dn
δPS
ε

(1− 2n)

n(1− n)
(A11)

where ∆ = δTR

δPS
− 1. The integral of the right-hand side of Eq. (A11) is

δPS
ε

[log(n) + log(1− n)] + Const. (A12)

The integral of the left-hand side of Eq. (A11) is

− log x− θ

1 + ∆
log (1− x) +

1 + ∆ + θ

1 + ∆
log (1 + ∆x) + Const (A13)

In this way, we identify the constant of motion

H(x, n) =
δPS
ε

[log(n) + log(1− n)] . . .

+ log x+
θ

1 + ∆
log (1− x) . . .

− 1 + ∆ + θ

1 + ∆
log (1 + ∆x)

(A14)

H is a constant of motion since

Ḣ =
∂H

∂x
ẋ+

∂H

∂n
ṅ = 0 (A15)

In summary, a system initialized with (x0, n0) in the interior of the square 0 < x, y < 1 and not at a fixed point will
exhibit closed, periodic orbits.

By way of illustration, consider the example introduced in the main text:

A(n) = (1− n)

[
5 1

3 0

]
+ n

[
3 0

5 1

]
(A16)

or, alternatively

A(n) =

[
5− 2n 1− n
3 + 2n n

]
(A17)

For this particular case, δPS = 1 and ∆ = 1, such that

H(x, n) =
1

ε
[log(n) + log(1− n)] . . .

+ log x+
θ

2
log (1− x) . . .

− 2 + θ

2
log (1 + x)

(A18)

The constants of motion for each initial condition (0.9, 0.01), (0.8, 0.15), (0.7, 0.3), (0.5, 0.4), (0.4, 0.45) in Figure 2
are -49.8, -23.6, -18.2, -16.5, and -16.1, to three significant digits respectively.

Appendix B: Stability analysis of replicator dynamics with feedback-evolving games

In this section we derive conditions for an oscillating tragedy of the commons in replicator dynamics with feedback-
evolving games. Here, we consider the generalized payoff matrix

A(n) = (1− n)

[
R0 S0

T0 P0

]
+ n

[
R1 S1

T1 P1

]
(B1)
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where 0 ≤ n ≤ 1, R0 > T0, S0 > P0, R1 < T1, and S1 < P1. Following the convention of Eq. 20, the dynamics are

x′ = x(1− x)g(x, n),

n′ = εn(1− n) [−1 + (1 + θ)x] ,
(B2)

where g(x, n) = r1(x, n) − r2(x, n) denotes the differences in state-dependent payoffs and the ′ denotes a derivative
with respect to τ . The interior fixed point (x∗, n∗) has an associated Jacobian:

J =

[
x(1− x) ∂g∂x x(1− x) ∂g∂n

εn(1− n)(1 + θ) 0

]
(x∗,n∗)

(B3)

Here ∂g/∂n < 0 for all cases of concern here because the replicator dynamics favor decreases in cooperation as an
increasing function of the environmental state n. As such, the determinant is always positive. The stability of the
fixed point depends on the sign of the trace of J . Because 0 < x∗ < 1, then the sign of the trace is equivalent to the
sign of ∂g/∂x. This result can also be anticipated by a fast-slow systems analysis in which the stability of any point
on the nullcline depends strictly on ∂g/∂x. Another consequence is that the trace does not depend on ε. Therefore,
the qualitative dynamics will be the same for all values of ε, i.e., irrespective of the relative speed of the fast and
slow variables (see Figure 4). Such an ε-invariance of qualitative phenomena is not universally the case in fast-slow
dynamics.

Formally, ∂g/∂x can be written as:

∂g

∂x
=

∂r1
∂x
− ∂r2
∂x

(B4)

= A(n)[1, 1]−A(n)[2, 1]−A(n)[1, 2] +A(n)[2, 2] (B5)

given the condition that r1 = r2 at a fixed point. We must solve for n∗ as a function of the payoff coefficients. As
such, when r1 = r2 given x = x∗ = 1/(1 + θ), the following condition must be satisfied:

A(n)[1, 1]x∗ +A(n)[1, 2](1− x∗) = A(n)[2, 1]x∗ +A(n)[2, 2](1− x∗) (B6)

A(n)[1, 1]−A(n)[2, 1] +A(n)[2, 2]−A(n)[1, 2] = (1 + θ) (A(n)[2, 2]−A(n)[1, 2]) (B7)

Recall that

A(n)[1, 1] = (1− n)R0 + nR1, (B8)

A(n)[1, 2] = (1− n)S0 + nS1, (B9)

A(n)[2, 1] = (1− n)T0 + nT1, (B10)

A(n)[2, 2] = (1− n)P0 + nP1. (B11)

so that the condition for n∗ is

n∗ [(R1 − T1) + (P1 − S1) + (S0 − P0) + (T0 −R0)]+(R0−T0)+(P0−S0) = [(P0 − S0) + n∗ ((P1 − S1) + (S0 − P0))] (1+θ)
(B12)

or equivalently,

n∗ [(R1 − T1)− θ(P1 − S1)− θ(S0 − P0) + (T0 −R0)] = (T0 −R0) + θ(P0 − S0) (B13)

n∗ =
(R0 − T0) + θ(S0 − P0)

(T1 −R1) + θ(P1 − S1) + θ(P0 − S0) + (R0 − T0)
(B14)

The point of interest n∗ satisfies r1 = r2. Hence, from (B5) an (B3) above, then

∂g

∂x
= (1− n∗)(P0 − S0) + n∗(P1 − S1) (B15)

In other words the interior fixed point is unstable when ∂g/∂x > 0, equivalently:

n∗ >
S0 − P0

(S0 − P0) + (P1 − S1)
(B16)
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Recall that S0 > P0 and P1 > S1 in the games we consider and further that the r.h.s. of Eq. (B16) is equivalent to
nc(0) in the main text, i.e., the intersection of the nullcline of ẋ with the (x = 0, n) boundary. We can then write the
condition on instability as

(T0 −R0) + θ(P0 − S0)

(R1 − T1) + θ(S1 − P1) + θ(S0 − P0) + (T0 −R0)
>

S0 − P0

(S0 − P0) + (P1 − S1)
(B17)

We denote the strictly positive dummy variables C1 = T0 −R0, C2 = R1 − T1, D1 = P0 − S0 and D2 = S1 − P1 and
rewrite Eq. (B17) as:

C1 + θD1

C1 + C2 + θD1 + θD2
>

D1

D1 +D2
(B18)

which after some algebraic re-arrangement yields

C1

C1 + C2
>

D1

D1 +D2
(B19)

where we recognize the l.h.s. as

R0 − T0
(R0 − T0) + (T1 −R1)

(B20)

or equivalent to nc(1) in the main text, i.e., the intersection of the nullcline of ẋ with the (x = 1, n) boundary. To
summarize, the interior fixed point is unstable when

R0 − T0
(R0 − T0) + (T1 −R1)

>
S0 − P0

(S0 − P0) + (P1 − S1)
(B21)

This can be further reduced to the boxed equation in the main text:

P1 − S1

T1 −R1
>
S0 − P0

R0 − T0
. (B22)

This condition is equivalent to the requirement that nc(0) < nc(1). We have already shown that all boundary fixed
points are unstable. The only other rest point in the interior of the domain is unstable. In the next section we
demonstrate that dynamics in the interior converge to an aymptotically stable heteroclinic cycle, i.e., attracting all
points that are not initially at a fixed point to the boundary.

Appendix C: Stability proof of heteroclinic cycle

We consider the planar dynamical system

x′ = x(1− x)g(x, n) (C1)

n′ = εn(1− n)(−1 + (1 + θ)x) (C2)

where

g(x, n) = x
[
n((R1 − T1) + (P1 − S1) + (T0 −R0) + (S0 − P0)) + (R0 − T0) + (P0 − S0)

]
+ n((S1 − P1) + (P0 − S0)) + (S0 − P0) (C3)

The state space of the system is the unit square X = [0, 1]2 with boundary ∂X (the set of points on the edges), which
is invariant under the dynamics. Using the condition in Eq. (19) of the main text, we prove the dynamical system
has an attracting heteroclinic cycle Λ = ∂X with orientation (0, 0)→ (1, 0)→ (1, 1)→ (0, 1)→ (0, 0) connecting the
four corner fixed points along the boundary of the unit square. Under this condition, the four corner fixed points are
saddles and the interior fixed point is unstable. The proof relies on properties of the characteristic matrix C of the
heteroclinic cycle Λ (see Section 2, [26]), which encodes its stability properties and is constructed as follows.
Observe that X is the intersection of four halfspaces,

X = {x ≥ 0} ∩ {1− n ≥ 0} ∩ {n ≥ 0} ∩ {1− x ≥ 0}. (C4)
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Define x1 = x, x2 = 1− n, x3 = n, x4 = 1− x. We can write the augmented dynamics as

x′1 = x1x4 (r1(x1, x2)− r2(x1, x2)) (C5)

x′2 = −εx2x3(−1 + (1 + θ)x1) (C6)

x′3 = εx2x3(−1 + (1 + θ)x1) (C7)

x′4 = −x1x4 (r1(x1, x2)− r2(x1, x2)) (C8)

(C9)

The characteristic matrix C has elements defined by

Cij =
ẋj
xj

∣∣∣∣
zi

, i, j = 1, 2, 3, 4 (C10)

where zi is one of the four corner fixed points. We obtain C by following the scheme below.

x1 x2 x3 x4
(0,0) S0 − P0 0 −ε 0

(1,0) S1 − P1 ε 0 0

(0,1) 0 0 εθ T0 −R0

(1,1) 0 −εθ 0 T1 −R1

(C11)

Recall that S0 − P0 > 0, S1 − P1 < 0, T0 − R0 < 0, and T1 − R1 > 0. We find that C has positive entries occuring
only on the diagonal and each row and column contains only one positive entry. Thus, Λ is a simple heteroclinic cycle
[26]. We review some technical conditions for the stability of heteroclinic cycles. From section 4 in [26], it is required
that

• The heteroclinic cycle Λ is a compact invariant subset of the boundary ∂X.

• Let Λk ⊂ Λ for k = 1, . . . ,m (m is the number of fixed points in Λ) be such that for each x ∈ Λ, there is a k
with ω(x) ⊂ Λk (ω(x) is the ω-limit set of x).

The above conditions are satisfied in our case since Λ = ∂X is compact, ∂X is invariant under the dynamics, and the
four corner fixed points serve as the Λk’s. The stability of Λ invokes the following result from [26]:

Theorem C.1 (Corollary 1 in [26]). Let Λ be a simple heteroclinic cycle, which is asymptotically stable within
∂X. (This is automatically satisfied if the cycle is robust and all Λk are fixed points.) Then C is a square matrix
(after elimination of superfluous columns) with positive entries occuring only in the main diagonal (after a suitable
rearrangement of the rows or columns). Let detC 6= 0. If C is not an M -matrix (at least one leading principal minor
is negative) then Λ is asymptotically stable.

Indeed, C is not an M -matrix by the following calculation and invoking Eq. (19) of the main text:

detC = ε2θ
[

(S0 − P0)(T1 −R1)− (P1 − S1)(R0 − T0)
]
< 0 (C12)

We note that this condition is equivalent to the interpretation from [27] that a robust heteroclinic cycle is asymp-
totically stable when the cumulative strength of the stable eigenvalues in the cycle exceeds that of the unstable
eigenvalues. In addition we note that the condition is ε-invariant.

Appendix D: Generalized dynamics of replicator dynamics with feedback evolving games

In this section we analyze the structure of fixed points and their local stability given variations in the state-dependent
payoff matrix for replicator dynamics with feedback evolving games. As in the main text, we consider the symmetric
2× 2 game defined for n ∈ [0, 1] by the matrix

A(n) = (1− n)

[
R0 S0

T0 P0

]
+ n

[
R1 S1

T1 P1

]
. (D1)

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/043299doi: bioRxiv preprint 

https://doi.org/10.1101/043299
http://creativecommons.org/licenses/by/4.0/


16

We are interested in the dynamics that occur for any combination of these eight parameter values given the restriction
that R1 < T1, S1 < P1. Thus when n = 1, mutual defection is the Nash equilibrium. The replicator dynamics with
feedback evolving games given ε = 1 are:

ẋ = h1(x, n) := x(1− x)g(x, n), (D2)

ṅ = h2(x, n) := n(1− n)(−1 + (1 + θ)x), (D3)

where θ > 0 and

g(x, n) = r1(x, n)− r2(x, n), (D4)

r1(x, n) = xA11(n) + (1− x)A12(n), (D5)

r2(x, n) = xA21(n) + (1− x)A22(n). (D6)

The four corner points are fixed points. Under certain conditions, there is an interior fixed point given by

(x∗, n∗) =

(
1

1 + θ
,

θ(P0 − S0) + (T0 −R0)

θ(P0 − S0) + (T0 −R0) + θ(S1 − P1) + (R1 − T1)

)
(D7)

To study the stability properties, we need to compute the Jacobian matrix of h. We have

dh1
dx

(x, n) = (1− 2x)g(x, n) +
dg

dx
(n)x(1− x) (D8)

dh1
dn

(x, n) = x(1− x)
dg

dn
(x) (D9)

dh2
dx

(x, n) = n(1− n)(1 + θ) (D10)

dh2
dn

(x, n) = (1− 2n)((1 + θ)x− 1) (D11)

and

J(x, n) =

[
dh1

dx
dh1

dn
dh2

dx
dh2

dn

]
(D12)

For future reference, we compute

g(x, n) = x [n((R1 − T1) + (P1 − S1) + (T0 −R0) + (S0 − P0)) + (R0 − T0) + (P0 − S0)] (D13)

+ n((S1 − P1) + (P0 − S0)) + (S0 − P0)

At the corner fixed points, we have

J(0, 0) =

[
S0 − P0 0

0 −1

]
, J(1, 0) =

[
T0 −R0 0

0 θ

]
(D14)

J(0, 1) =

[
S1 − P1 0

0 1

]
, J(1, 1) =

[
T1 −R1 0

0 −θ

]
Our analysis applies to all possible combinations of conditions of the payoff matrix when n = 0. We denote these
combinations as follows:

Case 1 - Anti-coordination game when n = 0: In the event that R0 < T0, S0 > P0.

Case 2 - Coordination game when n = 0: In the event that R0 > T0, S0 < P0.

Case 3 - Unique Nash equilibrium by mutual cooperation when n = 0: In the event that R0 > T0, S0 > P0.

Case 4 - Unique Nash equilibrium by mutual defection when n = 0: In the event that R0 < T0, S0 < P0.

Case 3 is already treated in the main text and in Section B. The possible outcomes of dynamics that do not begin
at a fixed point include convergence to a stable interior fixed point or persistent oscillations in the interior. Case
4 corresponds to domination by a defector strategy when n = 0 and when n = 1. Therefore, defection will be the
dominant strategy for all values of n. The population will converge to x∗ = 0 and, by extension, to the depleted
environmental state n = 0. There are no additional dynamics possible given the feedback structure studied here. In
the following sections we treat Cases 1 and 2 at length.
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FIG. S1: Global dynamics given an anti-coordination game in the depleted state (Case 1). The panels denote the cases when
xm < x∗ (left) and xm > x∗ (right). The open circles denote unstable fixed points, the red line denotes the value x = 1

1+θ
, and

the solid blue circle denotes the stable fixed point. The gray lines denote trajectories initiated at the small, closed diamonds.
In both cases there is a single, locally stable fixed point which is also globally stable. Numerical simulations share common
parameters θ = 0.2 and ε = 1. (Left) Payoff matrix parameters are R0 = 5, S0 = 4, T0 = 6, P0 = 1, R1 = 3, S1 = 0, T1 = 5,
and P1 = 1. (Right) Payoff matrix parameters are R0 = 5, S0 = 9, T0 = 6, P0 = 1, R1 = 3, S1 = 0, T1 = 5, and P1 = 1.

Case 1 - Anti-coordination game: R0 < T0, S0 > P0

In this payoff structure, the game A(0) has a mixed Nash equilibrium at

xm =
S0 − P0

(S0 − P0) + (T0 −R0)
∈ (0, 1) (D15)

From the Jacobian analysis, all corner points are unstable fixed points. The following result characterizes the stability
properties of the system.

Theorem D.1. If xm < 1
1+θ , (xm, 0) is a stable fixed point and n∗ /∈ (0, 1). If xm > 1

1+θ , (xm, 0) is unstable,

n∗ ∈ (0, 1), and (x∗, n∗) is stable.

Proof. We have

J(xm, 0) =

[
(T0−R0)(P0−S0)
(S0−P0)+(T0−R0)

xm(1− xm) dgdn (xm)

0 (1 + θ)xm − 1

]
(D16)

The eigenvalues λ1, λ2 are the diagonal elements of the above. We already have λ1 < 0 since S0 > P0. To ensure
stability, we need (1 + θ)xm − 1 < 0, or when xm < 1

1+θ . Under this condition, θ(S0 − P0) < T0 − R0, which makes

n∗ /∈ (0, 1).
For the second claim, we have xm > 1

1+θ , or θ(P0 − S0) + (T0 − R0) < 0. This ensures that n∗ ∈ (0, 1), since

θ(S1 − P1) + (R1 − T1) < 0. Also,

J(x∗, n∗) =

[
dg
dx (n∗) θ

(1+θ)2
dg
dn (x∗) θ

(1+θ)2

n∗(1− n∗)(1 + θ) 0

]
(D17)

The eigenvalues are

1

2

 dg
dx

(n∗)
θ

(1 + θ)2
±
√(

dg

dx
(n∗)

θ

(1 + θ)2

)2

+ 4
dg

dn
(x∗)

θn∗(1− n∗)
1 + θ

 (D18)
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The fixed point (x∗, n∗) is stable if both eigenvalues have negative real parts. This is the case if dg
dx (n∗), dgdn (x∗) < 0.

Indeed, from (D13), we need

dg

dx
(n∗) = (1 + θ)

(
n∗((P1 − S1) + (S0 − P0)) + (P0 − S0)

)
< 0 (D19)

or

θ(S0 − P0)

θ(S0 − P0) + θ(P1 − S1)
>

θ(S0 − P0)− (T0 −R0)

θ(S0 − P0) + θ(P1 − S1)− (T0 −R0) + (T1 −R1)
(D20)

By inspection, the above is satisfied and therefore dg
dx (n∗) < 0. We also need

dg

dn
(x∗) =

1

n∗

(
(P0 − S0) + x∗((T0 −R0) + (S0 − P0))

)
< 0 (D21)

which reduces to xm > 1
1+θ .

There are two alternative outcomes in this case. The outcomes correspond to either a single, locally stable fixed
point on the n = 0 boundary or a single, locally stable fixed point in the interior. In both outcomes, all other fixed
points are unstable. Numerical simulation confirms that these locally stable fixed points are also globally stable (see
Figure S1).

Case 2 - Coordination game: T0 < R0, P0 > S0

In this payoff structure, the game A(0) has a mixed Nash equilibrium at

xm =
P0 − S0

(P0 − S0) + (R0 − T0)
∈ (0, 1) (D22)

From the Jacobian analysis in (D14), the corner point (0, 0) is stable and remaining corner points are unstable. The
following result characterizes the stability properties of the other (mixed) fixed points of h.

Theorem D.2. (xm, 0) is unstable, n∗ /∈ (0, 1) when xm > 1
1+θ , and (x∗, n∗) is unstable when xm < 1

1+θ .

Proof. At (xm, 0) the Jacobian have the same structure in (D16). The first diagonal element of J(x, n) in (D16) is
positive in this case, implying λ1 > 0. Hence, (xm, 0) is unstable.

Second, we consider (x∗, n∗) with the Jacobian in (D17). First note that if xm > 1
1+θ then n∗ /∈ (0, 1) by (D7).

Next, we focus on the case xm < 1
1+θ , which implies θ(P0 − S0) < R0 − T0. In this case, the numerator of n∗ is

negative. The denominator of n∗ is a smaller negative value because θ(S1 − P1) +R1 − T1 < 0 hence n∗ ∈ (0, 1). We

consider the condition dg
dx (n∗) > 0, which is given by

n∗((P1 − S1) + (S0 − P0)) > S0 − P0, (D23)

to show eigenvalues (D18) are positive. Note here that if P0−S0 < P1−S1 then the left hand side is positive because
n∗ > 0. Hence the condition in (D23) is true. When the reverse holds, that is, P0 − S0 > P1 − S1, then the condition
above becomes

n∗ <
(S0 − P0)

(P1 − S1) + (S0 − P0)
=

θ(P0 − S0)

θ(S1 − P1) + θ(P0 − S0)
(D24)

Note here that the right hand side is greater than 1 because S1−P1 < 0. Hence the condition above holds. Therefore,
dg
dx (n∗) > 0 when xm < 1

1+θ .

We conclude that there is a single, stable fixed point at (0, 0) and that all other fixed points are unstable. Numerical
simulation confirms that this locally stable fixed point is also globally stable (see Figure S2).
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FIG. S2: Global dynamics given a coordination game in the depleted state (Case 2). The panels denote the cases when xm > x∗

(left) and xm < x∗ (right). The open circles denote unstable fixed points, the red line denotes the value x∗ = 1
1+θ

, and the solid
blue circle denotes the stable fixed point. The gray lines denote trajectories initiated at the small, closed diamonds. In both
cases there is a single, locally stable fixed point which is also globally stable. Numerical simulations share common parameters
θ = 0.7 and ε = 1. (Left) Payoff matrix parameters are R0 = 8, S0 = 1, T0 = 7, P0 = 4, R1 = 4, S1 = 1, T1 = 5, and P1 = 2.
(Right) Payoff matrix parameters are R0 = 6, S0 = 2, T0 = 4, P0 = 3, R1 = 4, S1 = 1, T1 = 6, and P1 = 2.
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