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ABSTRACT: 34 

Background:  Rhesus macaques are widely used in biomedical research, but the application of 35 

genomic information in this species to better understand human disease is still undeveloped. 36 

Whole-genome sequence (WGS) data in pedigreed macaque colonies could provide substantial 37 

experimental power, but the collection of WGS data in large cohorts remains a formidable 38 

expense.  Here, we describe a cost-effective approach that selects the most informative 39 

macaques in a pedigree for whole-genome sequencing, and imputes these dense marker data 40 

into all remaining individuals having sparse marker data, obtained using Genotyping-By-41 

Sequencing (GBS).  42 

Results:  We developed GBS for the macaque genome using a single digest with PstI, followed 43 

by sequencing to 30X coverage.  From GBS sequence data collected on all individuals in a 16-44 

member pedigree, we characterized an optimal 22,455 sparse markers spaced ~125 kb apart.  45 

To characterize dense markers for imputation, we performed WGS at 30X coverage on 9 of the 46 

16 individuals, yielding ~10.2 million high-confidence variants.  Using the approach of 47 

“Genotype Imputation Given Inheritance” (GIGI), we imputed alleles at an optimized dense set 48 

of 4,920 variants on chromosome 19, using 490 sparse markers from GBS.  We assessed 49 

changes in accuracy of imputed alleles, 1) across 3 different strategies for selecting individuals 50 

for WGS, i.e., a) using “GIGI-Pick” to select informative individuals, b) sequencing the most 51 

recent generation, or c) sequencing founders only; and 2) when using from 1-9 WGS individuals 52 

for imputation.  We found that accuracy of imputed alleles was highest using the GIGI-Pick 53 

selection strategy (median 92%), and improved very little when using >4 individuals with WGS 54 

for imputation.  We used this ratio of 4 WGS to 12 GBS individuals to impute an expanded set of 55 

~14.4 million variants across all 20 macaque autosomes, achieving ~85-88% accuracy per 56 

chromosome. 57 

Conclusions:  We conclude that an optimal tradeoff exists at the ratio of 1 individual selected for 58 

WGS using the GIGI-Pick algorithm, per 3-5 relatives selected for GBS, a cost savings of ~67-59 
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83% over WGS of all individuals. This approach makes feasible the collection of accurate, 60 

dense genome-wide sequence data in large pedigreed macaque cohorts without the need for 61 

expensive WGS data on all individuals.  62 

 63 

KEYWORDS:  whole-genome sequencing, genotyping-by-sequencing, imputation, macaque, 64 

pedigree 65 

 66 

BACKGROUND: 67 

 68 

The analysis of whole-genome sequence data in non-human primates (NHPs) can play a 69 

significant role in advancing the application of genomic medicine to human disease.  Potential 70 

uses of these data include the identification of novel genetic variants that influence conserved 71 

pathways of disease pathology, the development of novel therapeutics that target these 72 

variants, and the characterization of variants that influence efficacy and response to 73 

therapeutics. Given their high degree of genetic and physiological similarity to humans, and their 74 

ubiquity in biomedical research, it is surprising that the use of the rhesus macaque for these 75 

purposes has been so slow to develop. One likely reason for this delay is the dearth of genome-76 

wide sequence information on sufficient numbers of animals to support such studies, which 77 

typically require large numbers of phenotyped and genotyped subjects. However, the collection 78 

of dense sequence data in large cohorts remains a formidable expense, and a cost-effective 79 

solution to this problem is needed if we are to reap the full benefit of non-human primate (NHP) 80 

models in both basic science and preclinical research. 81 

 82 

Whole-genome sequencing (WGS) of large cohorts remains a very expensive undertaking, both 83 

now and likely long after we achieve the $1,000 per genome benchmark. Several sequencing 84 

strategies have been developed to address this problem, each of which strikes a different 85 
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balance between sequencing costs, sequence depth, and coverage across the genome.  86 

Although deep WGS is the most unbiased and comprehensive method for surveying genetic 87 

variants [1], at approximately $3000/genome for standard 30X coverage, its cost remains 88 

prohibitive in the foreseeable future for large cohort studies. A second strategy aims to cover the 89 

whole genome but at greatly reduced depth (i.e., “low coverage sequencing”), which lowers 90 

costs to $200-600/genome. However, this approach reduces the accuracy of resulting genotype 91 

data, particularly for smaller studies of rare or low-frequency variants [2].  Another strategy is to 92 

sequence only a portion of the genome, i.e., “reduced representation” approaches, which offers 93 

a reasonable compromise between sequencing depth and breadth of coverage.  The most 94 

common of the reduced representation approaches is whole-exome sequencing, currently 95 

~$300/genome for 30X coverage, in which a commercial hybridization kit is used to capture 96 

genomic fragments enriched for exons in protein-coding genes.  While this approach produces 97 

coverage of genomic regions that are of interest to many Mendelian diseases, coverage of 98 

regulatory elements or other non-coding regions is sacrificed. Moreover, most commercial 99 

exome capture tools are designed for humans or rodents, and thus will miss some portion of the 100 

NHP exome. 101 

 102 

More recently, a reduced representation approach called genotyping-by-sequencing (GBS) has 103 

lowered the cost per genome dramatically, by taking advantage of classical molecular biology 104 

methods that capture a more evenly distributed subset of the genome. In the GBS method, 105 

standard restriction enzymes target conserved cut sites that span the genome, and the resulting 106 

fragments are sequenced to the desired coverage. While these fragments still represent only a 107 

small portion of the genome, they can be distributed more evenly than in other methods such as 108 

exome capture. Importantly, because the GBS approach does not require proprietary capture 109 

technology and can be highly multiplexed, costs can be reduced to as little as $50 per genome 110 

and this approach can be applied to species that lack available commercial arrays. This 111 
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approach has been applied to many agricultural and other economically important species to 112 

construct dense genetic linkage maps and identify QTLs [3-8], to improve genome assemblies 113 

[9], and to investigate population structure, diversity, and evolutionary history [10-12].   114 

 115 

Further gains in the amount of sequence information obtained at the lowest possible cost could 116 

be achieved by combining GBS data with imputation, particularly for NHP cohorts with pedigree 117 

information. In this approach, whole-genome sequence data collected in selected individuals 118 

within the pedigree are used to impute dense genotypes into their many relatives, in which only 119 

sparse genotype data (e.g., obtained by GBS) has been collected. These sparse data from GBS 120 

are used to anchor the imputation of genotypes at intervening and more densely spaced loci 121 

across the genome, by leveraging information on expected allele-sharing among relatives.  This 122 

strategy is appealing for many captive NHP breeding colonies, where deep and well-defined 123 

pedigrees could permit extremely cost-effective, whole-genome characterization. However, the 124 

selection of the most informative animals in the pedigree for whole-genome sequencing is 125 

expected to have a large impact on the success of this approach, and studies addressing 126 

optimal selection strategies have only been published for human pedigrees, which are typically 127 

much smaller and less complex than those characterized for NHP cohorts. 128 

 129 

Although whole-genome sequencing combined with GBS and imputation presents a significant 130 

opportunity for obtaining dense sequence data at minimal cost, this approach has not yet been 131 

applied to a pedigreed NHP cohort.  Thus, our objectives were to, 1) develop a reliable GBS 132 

method in the macaque genome to support pedigree-based imputation; 2) to assess the extent 133 

and accuracy of imputed dense marker data from WGS using sparse marker data from GBS; 134 

and 3) to compare the accuracy of imputed dense marker data among different strategies 135 

commonly used to select individuals for WGS, and among different ratios of WGS to GBS 136 

individuals in the pedigree.  Here, we show that a PstI digest in the macaque genome produces 137 
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>22,000 high-quality sparse variants that are suitable for use in imputation. We further show 138 

that the pedigree-based “Genotype Imputation Given Inheritance” imputation approach (i.e., 139 

“GIGI”; [13]), combined with the GIGI-Pick method [14] of selecting individuals for WGS, allowed 140 

us to impute >14 million variants throughout a 16-member pedigree with ~85-88% accuracy, 141 

using only 4 individuals with WGS and 12 individuals with GBS. This strategy represents a 142 

reasonable tradeoff between sequencing costs, and the amount and quality of dense sequence 143 

data obtained on as many individuals as possible. 144 

 145 

METHODS: 146 

 147 

Animal care and welfare: All macaque samples used in this study were collected during routine 148 

veterinary care procedures approved by the Institutional Animal Care and Use Committee of the 149 

Oregon Health & Science University (Protocol Number: IS00002621); these samples are part of 150 

the much larger ONPRC DNA Biobank. Animal care personnel and staff veterinarians of the 151 

ONPRC provide routine and emergency health care to all animals in accordance with the Guide 152 

for the Care and Use of Laboratory Animals, and the ONPRC is certified by the Association for 153 

Assessment and Accreditation of Laboratory Animal Care International. 154 

 155 

Pedigree configuration and validation: We selected 16 closely related animals from the larger 156 

Oregon National Primate Research Center (ONPRC) colony pedigree as the focus of this study 157 

(see Fig. 1).  These animals were selected to represent the most common relationships in the 158 

colony, including parent/offspring, half-sibling, half-avuncular, half-cousin, and 159 

grandparent/grandchild relationships. Because assumed pedigree relationships may prove to be 160 

incorrect when comprehensive genotype data are examined, we explored the accuracy of our 161 

focal 16-member pedigree using a set of ~5,000 markers on chromosome 19 generated from 162 

our GBS sequencing experiments (see Imputation accuracy on chromosome 19 across 163 
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selection strategies, below), employing algorithms that assess Mendelian consistent error both 164 

pairwise between relatives and within families, as implemented in PedCheck [15] and GIGI-165 

Check [16] software. No significant departures from expected patterns of allele-sharing were 166 

noted, confirming the validity of the pedigree configuration depicted in Fig. 1. Nine animals were 167 

selected using an ad hoc approach for whole-genome sequencing in this study, based on their 168 

position within the pedigree.   169 

 170 

Genomic DNA Isolation and Quantification:  Genomic DNA (gDNA) was extracted from 3 ml of 171 

whole blood using the ArchivePure DNA Blood Kit (5 Prime, Inc.), following the manufacturer’s 172 

recommendations. Genomic DNA was quantified with the Qubit High Sensitivity dsDNA Assay 173 

(Life Technologies, CA).  174 

 175 

Genotyping-By-Sequencing (GBS): To determine the optimal restriction enzymes for conducting 176 

GBS in rhesus macaques, we first performed in silico prediction of cut sites using the most 177 

recent build of the macaque genome [17] that would be expected to produce 60,000-100,000 178 

DNA fragments in the 200-500 bp size range, while also minimizing the presence of repeat 179 

sequences (e.g. retrotransposons, DNA satellites).  We initially tested the enzymes ApeKI, BglII, 180 

EcoRI, HindIII, PspXI, PstI, and SalI, ultimately selecting BglII and PstI as the two enzymes 181 

most likely to meet these criteria.  We then generated GBS libraries based on these 2 enzymes 182 

using a modified version of the method described by Elshire et al. [18]. Specifically, to create the 183 

adaptors, oligonucleotides for the top and bottom strands for each barcoded adaptor and for the 184 

two common adaptors (one for BglII and one for PstI) were paired and annealed in 1X 185 

Annealing Buffer (20mM NaCl, 10mM Tris-HCl pH 7.5, 2mM MgCl2) using a thermal cycler (3 186 

min at 95C, ramp down 1.6C/min for 44 cycles, cool to 4C). All adaptors were quantified with the 187 

Qubit Broad Range dsDNA Assay (Invitrogen). Each of the 32 barcoded adaptors was then 188 

paired with a common adaptor at a 1:1 ratio. Each of the 16 genomic DNAs was digested with 189 
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BglII and PstI in separate reactions.  All 32 reactions (500ng DNA, 10U enzyme, in 20uL 190 

volume) were incubated for 2 hours at 37°C, and digests were ligated (400U T4 DNA Ligase 191 

(New England Biolabs) to adaptor mixes (4.5ng BglII, 15ng PstI, in 50ul volume) for 1 hour at 192 

22°C.  Four (4) ul from each ligation reaction was combined into two separate pools, one per 193 

enzyme.  Both pools were cleaned with DNA Clean and Concentrator (Zymo Research) and 194 

eluted in 50uL. Following amplification parameters in Elshire et al [18], PCR was performed on 195 

10 ul of each pool (Q5 High Fidelity 2X MM (New England Biolabs), 25 pmol of each primer, in 196 

50 ul volume) using Primers A and B, to extend and complete the sequencing adaptors. 197 

Libraries were purified using the Qiaquick PCR Purification Kit (Qiagen), quantified with the 198 

Qubit High Sensitivity dsDNA Assay (Invitrogen) and validated with the Bioanalyzer High 199 

Sensitivity Assay (Agilent).  A one-sided 0.8X size selection with AMPure XP beads (Beckman-200 

Coulter) was used to enrich larger size fragments. Libraries were sequenced on an Illumina 201 

NextSeq at the Oregon Health & Science University Integrated Genomics Laboratory to produce 202 

30X coverage. 203 

 204 

Whole Genome Sequencing: Per sample, 1 µg of gDNA was sheared using a Bioruptor 205 

UCD200 (Diagenode, Denville, NJ), generating fragments around 300 bp. Libraries were 206 

constructed using the NEXTflex DNA Sequencing Kit and NEXTflex DNA barcodes (BIOO 207 

Scientific, Austin,TX) following the manufacturer’s instructions. Briefly, the ends of the sheared 208 

gDNA were repaired and adenylated, then ligated to barcoded adaptors using the reagents 209 

provided. Next, fragments of 200-400 bp were excised from a 1% agarose gel. The products 210 

were amplified by PCR using 8 cycles, then purified using 1X AMPure XP beads (Beckman-211 

Coulter). The final libraries were quantified with the Qubit High Sensitivity dsDNA Assay (Life 212 

Technologies, CA) and validated using the 2100 Bioanalyzer High Sensitivity Assay (Agilent 213 

Technologies, Santa Clara, CA). Libraries were sequenced on a HiSeq3000 at the Oregon State 214 
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University Center for Genome Research and Biocomputing, to produce 30x coverage with 215 

paired-end, 150 bp reads.   216 

 217 

Analysis of Sequence Data: Both whole genome and GBS data were processed using the best 218 

practice recommendations from the Broad Institute’s Genome Analysis Toolkit (GATK; [19, 20]), 219 

adapted for rhesus macaque. Briefly, paired-end reads were trimmed using Trimmomatic [21], 220 

and aligned to the most current rhesus macaque reference genome, “MacaM” [17], using 221 

Burrows-Wheeler Aligner [22].  GATK’s HaplotypeCaller was used to produce VCF files, 222 

followed by genotype calling using GenotypeGVCFs. The resulting VCF was filtered for quality, 223 

strand bias, and proximity to the read end.  Additional hard filters include removal of, 1) single-224 

nucleotide variant (SNV) clusters within a 20 bp span, 2) SNVs located within regions with 225 

greater than twice the mean coverage (potential CNV or mismapped reads), 3) SNVs that 226 

display non-Mendelian inheritance, and 4) SNVs located within repetitive regions.  The analyses 227 

also employed Picard tools [23] and FASTQC [24] for quality control of the raw data, JBrowse 228 

[25] to visualize data, and BEDTools [26] to evaluate SNV and imputation marker distribution.  229 

Sequence data were managed and analyzed using DISCVR-Seq [27], a LabKey Server-based 230 

system [28]. 231 

 232 

Sequencing and imputation strategy:  We focused on chromosome 19 as a test case in order to 233 

develop an analytical pipeline that could be applied to all the remaining chromosomes.  We 234 

performed imputation using the method of GIGI (“Genotype Imputation Given Inheritance”; [13]), 235 

as this method has been successfully used to impute genotypes with high accuracy in extended 236 

human pedigrees. This approach infers inheritance vectors (IVs, representing shared 237 

chromosomal segments) at sparse marker locations conditioned on observed sparse marker 238 

genotypes, and then infers IVs at dense marker locations conditioned on the sparse marker IVs, 239 

together with the genetic map. The probability distribution is then estimated for each missing 240 
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genotype at a dense marker position, conditioned on observed genotypes at all dense marker 241 

positions, corresponding allele frequencies, and IVs corresponding to dense markers.  In the 242 

last step, genotypes may be called using these estimated probabilities, based on user-defined 243 

thresholds.  We estimated inheritance vectors according to the algorithm of [29], as 244 

implemented using a Markov-Chain Monte-Carlo (MCMC) sampler in the gl_auto function in the 245 

software package for genetic epidemiology MORGAN 3; available at[30].  The GIGI approach 246 

has been implemented in a software package of the same name, and is available at [31]. 247 

 248 

To characterize the sparse set of markers needed to facilitate imputation of dense marker 249 

genotypes on chromosome 19, we identified a set of markers that could be detected reliably by 250 

GBS for as many macaques as possible.  Accordingly, we selected a set of high-quality SNVs  251 

that, 1) were sequenced to at least 20X depth across the majority of GBS libraries, 2) were 252 

spaced evenly across the genome, 3) had minor allele frequencies (MAF) >0.25, and 4) were in 253 

excess of what was needed to meet the desired goal of ~0.5-1.0 cM average marker spacing. 254 

We refer to these as “framework” markers, as discussed in Cheung et al., 2013 [13].  Using this 255 

approach, the desired spacing can be maintained in an approximate fashion, even when 256 

individuals are missing a substantial amount of genotype data, an outcome characteristic of the 257 

GBS method [32]. Second, we selected a non-overlapping set of SNVs from our WGS data that 258 

were more densely distributed than the framework markers, designated as our “dense” markers, 259 

and which we attempted to impute into animals having only sparse framework marker 260 

genotypes from GBS.  These dense markers were selected from the set of all high-confidence 261 

SNVs identified in our cohort.   262 

 263 

To determine the success of imputing dense marker data into animals having only sparse 264 

framework marker data, we evaluated the accuracy of imputed alleles for each recipient based 265 

on their framework marker data obtained by GBS.  Here, we define accuracy as the proportion 266 
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of alleles imputed correctly among all attempted allele calls at that position, such that a correctly 267 

imputed allele is concordant with the allele call from either WGS or GBS sequence data. We 268 

additionally define rare variants as those having only 1 copy among a total of 30 chromosomes 269 

(i.e., singletons, present at ~3% frequency) with WGS data that we have studied to date, 270 

including the 9 individuals discussed in this paper and an additional 6 unrelated rhesus 271 

macaques (unpublished data). We define accuracy of imputation for rare variants as the 272 

proportion of rare alleles imputed correctly among all rare variant heterozygotes called from 273 

either WGS or GBS sequence data.   274 

 275 

We assessed accuracy of imputed variants over a range of 1-9 animals with dense marker data 276 

from WGS, imputed into the remaining pedigree members using only sparse data from GBS.  277 

Individuals with WGS data were added consecutively in the following order: B, H, J, F, M, K, P, 278 

C, D (SEE FIG. 1).  Thus, the first scenario used only the most informative animal (B) with WGS 279 

to impute genotypes into the remaining 15 animals within the pedigree.  Subsequent scenarios 280 

retained the previous animal(s), added the next most informative animal, and imputed 281 

genotypes into the remaining animals within the pedigree.  This procedure was conducted 282 

iteratively, until all 9 animals with WGS were used to impute genotypes into the remaining 7 283 

animals in the pedigree.  We used the GIGI-Pick algorithm [14] to rank our 9 animals with WGS. 284 

This algorithm calculates a metric of coverage, defined as the expected percentage of allele 285 

copies called for a variant at a random locus, conditional on fixed IVs for a specific choice of 286 

individual(s), and then iteratively selects those individuals with the highest coverage, calculated 287 

by integrating over all possible genotype configurations within a given pedigree. This algorithm 288 

is implemented in the suite of software based on the GIGI approach, and is available at [33]. We 289 

evaluated accuracy of imputed genotypes for each of our recipient macaques by masking all 290 

non-framework genotypes in recipient animals, and comparing imputed genotypes to masked 291 

genotypes obtained from either WGS or GBS data, depending on the data available for each 292 
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recipient.  Specifically, imputed genotypes were compared to genotypes from WGS where 293 

available, but for recipients with only GBS data available, imputed genotypes were compared to 294 

genotypes at any SNVs with coverage by GBS that were not designated as framework markers. 295 

Imputed genotypes were called as the most probable genotype at that position, using allele 296 

frequencies established from all Indian-origin rhesus macaques sequenced to date at the 297 

ONPRC as a reference (n=15, including the 9 animals from this study and 6 additional unrelated 298 

animals).  299 

 300 

To evaluate differences in imputation success associated with different sequencing strategies, 301 

we compared the accuracy of genotypes imputed by GIGI on chromosome 19, among 3 302 

different sequencing strategies, including GIGI-Pick and two common heuristic methods.  These 303 

2 heuristic methods include whole-genome sequencing of, 1) pedigree founders only, or 2) the 304 

most recent generation (i.e., individuals typically located at the bottom of the pedigree). To 305 

compare the different selection strategies, we examined accuracy for the scenario in which 306 

dense markers from 3 animals selected for WGS are imputed into the remaining 13 pedigree 307 

members with GBS data, based on using individuals B, H, and J (GIGI-Pick selections), B, C, 308 

and D (“Founders”), and M, P, and K (“Pedigree bottom”) strategies (see Fig. 1).  Imputed 309 

genotypes were called using 2 different strategies available in the GIGI algorithm, i.e., 310 

genotypes were either above the default probability threshold, or simply as the most probable 311 

genotype at that position (“Threshold” vs. “Most Likely”, respectively), using allele frequencies 312 

established from all Indian-origin rhesus macaques sequenced to date at the ONPRC as a 313 

reference. To assess the utility of the GIGI imputation approach for imputing low-frequency 314 

variants, we further evaluated genotype accuracy within the GIGI-Pick strategy of 3 WGS into 315 

13 GBS described above.  316 

 317 

 318 
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RESULTS: 319 

Whole-genome Sequencing and Variant Calling:  We obtained an average 566,035,688 read 320 

pairs per sample (range 495,617,772-735,313,000) for each of the 9 individuals with WGS.  321 

These reads were aligned to MacaM, the most recent macaque genome build [17], to produce 322 

an average 27X coverage across the genome (range 24-33X).  From these reads, a total of 323 

10,193,425 high-confidence SNVs were identified across all 9 individuals, with an average of 324 

5,037,341 variants detected per individual. The  transition/transversion ratio (Ti/Tv) observed in 325 

this study was 2.17, consistent with observations in larger macaque cohorts (unpublished data).  326 

This set of sites served as the source of our optimal dense marker set, as described in Methods. 327 

 328 

Genotyping-By-Sequencing and Variant Calling:  For each of the 16 pedigree members, we 329 

prepared and sequenced GBS libraries based on individual digests for both BglII and PstI.  330 

Among BglII libraries, we obtained an average 3,754,352 reads per sample, resulting in an 331 

average 4,851,004 base-pairs (bp) from 42,919 fragments with at least 20X coverage per 332 

sample (equivalent to 0.17% of the genome).  In contrast, among PstI libraries, we obtained an 333 

average 5,686,709 reads per sample, resulting in an average 10,682,162 bp from 130,247 334 

fragments with >20X coverage per sample (equivalent to 0.38% of the genome) (Fig. 2A-2B). 335 

Notably, although the PstI libraries originally had ~1.5X more reads than BglII libraries, they had 336 

>3-fold the number of fragments with high-depth coverage. Virtually all GBS fragments were 337 

adjacent to their predicted restriction sites, but a small number appeared to be distant from 338 

these sites (Fig. 2C-D).  While these results may reflect off-target sequencing, it is also possible 339 

that they reflect restriction sites in the genome of one or more individuals not predicted by the 340 

current macaque reference genome.     341 

 342 

We next determined the number of high-quality SNVs available from each digest that would be 343 

suitable for use as framework markers in imputation. We first restricted SNVs to those with 344 
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>20X coverage, leaving a total of 52,500 high-confidence variants in the BglII samples, and 345 

239,428 variants in PstI samples.  We further restricted these SNVs to only those that were 346 

concordant between WGS and GBS data, which included 96.3% of SNVs for BglII (range 95.9-347 

97.2% among individuals) and 96.6% of SNVs for PstI (range 96.1-97.2% among individuals).  348 

To maximize the probability of the variant being present in as many animals as possible, we 349 

also restricted SNVs to only those with MAF >0.25, which further reduced these numbers to 350 

7,399 variants for BglII and 22,455 variants for PstI, with an average distance between SNVs of 351 

376,818 bp and 125,280 bp, respectively (see Fig. 2E-F). We were not able to call genotypes in 352 

all individuals for all SNV sites, due to variation among individuals in sequence quality at each 353 

site.  From the PstI data, all individuals had sufficient data to call genotypes at an average 354 

15,516 (~69% of 22,455) of these SNVs, but only an average of 4,418 (~60% of 7,399) of these 355 

sites could be called for all individuals from the BglII data.  Based on the significantly greater 356 

numbers of high-quality SNVs across the macaque genome available from PstI sequence data, 357 

we chose this enzyme for all final imputation analyses.  358 

 359 

Imputation accuracy on chromosome 19 across 3 different selection strategies:  Our initial tests 360 

of imputation focused on chromosome 19.  To characterize the set of framework markers 361 

needed to facilitate imputation on this chromosome, we selected 490 variants spaced ~100 kb 362 

apart, from the set of 981 high-MAF variants on this chromosome, as described above (Fig. 363 

2G).  To characterize the set of dense markers to be imputed on this chromosome, we selected 364 

4,920 variants spaced ~10 kb apart and which were not framework markers, from the set of 365 

260,000 SNVs located on this chromosome (see above).  We additionally removed a set of 578 366 

markers that consistently performed poorly in imputation. This reduced and optimized set of 367 

dense markers on chromosome 19 was used in all imputation analyses on this chromosome, in 368 

order to limit the computational time required. 369 

 370 
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Using these chromosome-specific framework and dense marker sets, we evaluated the “Bottom 371 

of Pedigree”, the “Founders”, and the “GIGI-Pick” strategies for selecting the 3 most informative 372 

of the 9 individuals with WGS data, followed by imputation of dense markers into the remaining 373 

13 individuals, based on their framework marker data from GBS.  For both genotype-calling 374 

methods, the GIGI-Pick selection strategy produced slightly higher median accuracy of imputed 375 

genotypes than either of the other strategies, at 89.5% (“Most Likely” method, ML) or 90.1% 376 

accuracy (“Threshold” method, THR), compared to median accuracy of 88.4% (ML) or 88.8% 377 

(THR) in the “Bottom of Pedigree” strategy, and 88.6% (ML) or 87.6% (THR) in the “Founders” 378 

strategy (Fig. 3A-B).  However, more individuals in the “GIGI-Pick” strategy displayed greater 379 

genotype accuracy than in either of the other 2 strategies (interquartile range (IQR) from 89.5%-380 

92.6% for GIGI-Pick, compared to 84.2-90.1% for “Bottom of Pedigree”, and 85.9-89.5% for 381 

“Founders”). While the difference in median accuracy estimated by both genotype calling 382 

methods was <1%, 100% of genotypes were called in the ML method, while only 47.7% were 383 

called using the THR method across all strategies. Thus, the ML method called genotypes at an 384 

average 2,350 more markers per subject, while maintaining nearly identical accuracy. The GIGI-385 

Pick strategy did produce one individual that consistently displayed much lower genotype 386 

accuracy than all other individuals; individual D had only 72.9-75.6% of genotypes accurately 387 

imputed, depending on calling method.  Neither the “Bottom of Pedigree” nor the “Founders” 388 

strategy produced any individuals with substantially lower genotype accuracy than other 389 

pedigree members.  Finally, we used the GIGI-Pick results to examine accuracy of imputed 390 

singleton alleles, as defined in Methods. These rare alleles were imputed a total of 405 times, 391 

representing 178 distinct alleles, with an accuracy of 93%. 392 

 393 

Imputation accuracy on chromosome 19 across 9 sequencing ratios:  Using the same 394 

chromosome 19 framework and dense marker sets, we used the GIGI algorithm with the ML 395 

genotype-calling method to impute our dense markers from 1-9 individuals with WGS into the 396 
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remaining 7-15 pedigree members, as described in Methods.  Among all imputation scenarios 397 

that added consecutively from 1 to 9 individuals with WGS, median accuracy among recipients 398 

increased from 86.3% to 93.2%, while variation in accuracy decreased (IQR from 5% at N=1 399 

WGS, to 1% at N=9 WGS).  Variability in accuracy improved in a stepwise fashion; greater 400 

variability tended to occur in parallel with an increase in median accuracy, but would improve 401 

during the following scenario in which the greater accuracy was retained or further increased. 402 

Individual D was consistently an outlier across 8 out of 9 scenarios, from 1 through 5 at 76% 403 

accuracy, then increasing to 84% accuracy in scenarios 6-8, due to the inclusion of WGS data 404 

from K, the child of D.  Median accuracy surpassed 90% beginning at N=4 individuals with 405 

WGS; although variation in accuracy continued to decrease across all remaining scenarios, only 406 

slight gains in median accuracy were observed beyond this sequencing ratio (i.e., imputing from 407 

4 individuals with WGS into 12 individuals with GBS) (Fig. 4).   408 

 409 

Imputation of dense markers across the genome: To evaluate our imputation strategy across 410 

the whole genome, we employed the same criteria outlined above to generate framework 411 

marker sets for each of the 20 macaque autosomes.  The number of framework markers per 412 

chromosome ranged from 350 to 636, with mean spacing between framework markers among 413 

all chromosomes of ~273 kb (108 kb-467 kb).  At this stage, we expanded our dense marker set 414 

to a total 14,384,988 SNVs across the macaque genome, by including SNVs discovered 415 

previously from whole-genome sequence data in an additional 6 unrelated ONPRC animals (in 416 

prep).  Using the strategy identified by our analyses as the one most likely to maximize 417 

genotype accuracy while minimizing overall costs, we used the first 4 individuals among our 9 418 

with WGS ranked by the GIGI-Pick algorithm, and imputed our expanded dense marker data 419 

into the remaining 12 pedigree members, based on the ML call method (Fig 5).  Per 420 

chromosome, median accuracy ranged from 85-88%; this accuracy is somewhat lower than the 421 

~92% accuracy achieved in our original experiment using chromosome 19.  However, unlike our 422 
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previous analysis that imputed a much smaller set of dense markers on chromosome 19, our 423 

final genome-wide imputation included all known variants.  As before, D had consistently lower 424 

genotype accuracy at 73-77%.  Individual E was also an outlier on multiple chromosomes, with 425 

accuracy ranging from 79-84%.   426 

 427 

DISCUSSION: 428 

 429 

The rhesus macaque is widely used in academic biomedical research, primarily due to its utility 430 

as a model of human HIV infection and pathology.  Although this species is well-known for the 431 

susceptibility to HIV that it shares with humans [34, 35], it is not widely appreciated that 432 

macaques naturally display variation in susceptibility to a broad spectrum of diseases and 433 

disorders that mimic those found in humans, e.g., dyslipidemia, alcohol abuse, macular 434 

degeneration, and anxiety [36-42]. While the macaque was identified early as a high priority for 435 

assembly of a reference genome, and a draft genome subsequently published in 2007[43], the 436 

systematic application of genome-wide data in the macaque to the study of human health and 437 

disease has yet to materialize. Since 2007, next-generation sequencing technology has 438 

speeded the collection of genomic data at steadily decreasing cost, but only a relatively small 439 

number of additional macaque genomes have been explored for variation, and none have yet 440 

been systematically applied to the problem of human disease. This is unfortunate, given that 441 

rhesus macaque colonies at many of the national primate research centers constitute a powerful 442 

resource for genetic analysis of disease that is on par with many human genetic isolates, due to 443 

their maintenance in large outbred and pedigreed colonies within a homogeneous environment. 444 

Here, in order to catalyze the application of genomic data in macaques to the study of human 445 

disease, we present an approach that will make feasible the collection of accurate, dense 446 

genome-wide sequence data in large numbers of pedigreed macaques without the need for 447 

expensive whole-genome sequence data on all individuals.  448 
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 449 

Our approach is based on using a low-cost reduced representation sequencing method 450 

(genotyping-by-sequencing, GBS), to facilitate pedigree-based imputation of dense marker 451 

genotypes from selected individuals with whole genome sequence data.  In this study, we 452 

evaluated the ability of 2 candidate restriction enzymes (BglII and PstI) to produce genomic 453 

fragments for GBS, using both in silico and empirical methods.  When compared to BglII, we 454 

show that PstI produces substantially larger numbers of high-quality SNVs that are supported by 455 

greater sequence read depth. Further, we found that PstI libraries provided sufficient coverage 456 

over more than twice the number of high-quality variants needed to generate the sparse 457 

“framework” markers required to support imputation. This is important because fluctuations in 458 

sequencing coverage among individuals are a known characteristic of the GBS method [32], 459 

resulting in the frequent inability to call genotypes at all sites in all individuals. Thus, PstI 460 

produces far more high-quality SNVs than are actually needed, which increases the likelihood of 461 

observing a minimum number of framework markers in every individual.  Ultimately, the extent 462 

of coverage provided by PstI allowed us to impute genotypes at ~14.4 million SNVs over all 20 463 

autosomes, using only 4 individuals with WGS and 12 individuals with GBS, at a median 85-464 

88% accuracy throughout our 16-member pedigree. This approach could be applied at a 465 

relatively reasonable cost to other managed or natural colonies of Indian-origin rhesus 466 

macaques with pedigree information, and potentially to similar groups of other macaque 467 

subspecies. 468 

  469 

The selection of individuals for WGS that will maximize the accuracy of imputed genotypes 470 

throughout the pedigree is a critical component of this approach. We compared GIGI-Pick [14], 471 

a pedigree-based statistical approach to prioritizing subjects for WGS, to two other common 472 

heuristic methods for selecting individuals for WGS, including sequencing only the most recent 473 

generation of the pedigree (“Bottom of Pedigree”), and sequencing only pedigree founders 474 
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(“Founders”).  Due to the small size of our sample pedigree, we used 3 individuals with WGS to 475 

impute genotypes at our streamlined set of dense markers, into 13 remaining individuals based 476 

on their framework marker genotypes from GBS data. We show that while median accuracy is 477 

only somewhat greater for the GIGI-Pick approach compared to the other two approaches, 478 

many more individuals overall displayed higher accuracy using the GIGI-Pick selection method, 479 

as reflected in the strong upward shift of the interquartile range. Importantly, rare alleles were 480 

imputed with exceptionally high accuracy using the GIGI-Pick selection strategy, suggesting that 481 

this strategy offers powerful support for downstream analysis of rare variant effects on complex 482 

traits. It is possible that these 3 selection methods may perform differently for alternative 483 

pedigree configurations, e.g., in a more shallow pedigree, sequencing founders or the most 484 

recent pedigree members may provide information equivalent to the more formal strategy 485 

implemented in GIGI-Pick.  However, we note that the GIGI-Pick approach results in a clear 486 

advantage even in our small pedigree that extends to only 2 generations, but which includes 487 

many of the most common relationship types found in NHP colonies.  Our results are consistent 488 

with those of Cheung et al. [14], in that the GIGI-Pick selection approach substantially 489 

outperformed both the “Bottom of Pedigree” and “Founders” (i.e., “PRIMUS” in [14]) approaches 490 

in the ability to impute common alleles, although our results indicate more consistent accuracy 491 

with the “Founders” approach than with the “Bottom of Pedigree” approach.  492 

  493 

Using the WGS individuals ranked in order of priority by the GIGI-Pick algorithm, we examined 494 

the gain in accuracy of imputed genotypes throughout the pedigree achieved by the consecutive 495 

addition of from 1-9 whole-genome sequences.  Our results demonstrate that there are 496 

excellent compromises available that balance sequencing costs and the ability to obtain dense 497 

and accurate marker data.  While the accuracy of imputed genotypes was greatest when using 498 

all 9 individuals with WGS, most of this accuracy was achieved using the first 4 WGS 499 

individuals, i.e., at 4 WGS individuals, median accuracy is at ~92.4% but increased only another 500 
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0.8% with the addition of the remaining 5 genomes. These results suggest that an optimal 501 

tradeoff between the animals selected for WGS and GBS exists at the ratio of 1 individual 502 

selected for WGS, per 3-5 relatives selected for GBS, a cost savings of ~67-83% over WGS of 503 

all 6 individuals. We note that these estimates of accuracy were based on careful selection of an 504 

optimal, and thus reduced, set of dense markers that were available on chromosome 19.  While 505 

this strategy was used deliberately to reduce the total computational time required for this study, 506 

in our subsequent imputation of the full set of dense markers across the genome, median 507 

accuracy only decreased by 5-8% for all chromosomes.   508 

 509 

The increase in overall accuracy observed with additional WGS individuals was not shared 510 

uniformly among all individuals in the pedigree.  For example, while there was a large increase 511 

in accuracy between 3 and 4 individuals with WGS, all of this change is due to increased 512 

accuracy in A, a founder (see Fig. 1).  In this scenario, this improvement is almost certainly due 513 

to the inclusion of WGS data from F, a child of A.  We note that D remained an outlier in the 514 

distribution of genotype accuracy throughout virtually all imputation analyses based on the 515 

ranking of WGS individuals by the GIGI-Pick algorithm.  This may be due to the limited initial 516 

selection of WGS individuals located in the far right lineage, i.e., only when K, P, and C are 517 

added to J and used for imputation does accuracy rise for D.  This result is consistent with the 518 

GIGI-Pick approach, which balances the selection of closely related individuals within the 519 

pedigree to facilitate phasing of genotypes, with the selection of more distant relatives to 520 

increase the chance of observing unique founder alleles [14].  Because of this compromise, we 521 

note that while sequencing only pedigree founders is not the best strategy for maximizing 522 

accuracy, founders may remain unselected using the GIGI-Pick approach when the ability to 523 

phase genotypes produces more expected allele calls than does the observation of unique 524 

founder alleles, for a fixed number of selected individuals.  This result also highlights the 525 

importance that prior knowledge of phenotypes plays in selecting individuals for WGS. If traits of 526 
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interest are known to segregate in a particular lineage within the larger pedigree, it may be 527 

advisable to manually assign either founders or a close descendant in that lineage for WGS, if 528 

neither individual is selected using a more unbiased approach.  529 

 530 

The imputation of dense, genome-wide genotypes with high accuracy will allow the unbiased 531 

mapping of genetic variants in the macaque genome to disease traits, using either linkage or 532 

association approaches. Both of these approaches are important tools in translational research, 533 

and should further advance the understanding of human disease already made possible by 534 

research in this species. Large pedigreed colonies of macaques, such as the ~4,500 macaques 535 

found at the Oregon National Primate Research Center, provide an almost unequaled resource 536 

for translational genetic research, due to their multi-generational pedigree structure and the 537 

excess of rare and low-frequency variants expected to segregate within this pedigree.  Rare and 538 

low-frequency variants are expected to play a significant role in human disease [44-47], and we 539 

have shown that we can impute these variants in the macaque genome with high accuracy and 540 

at a reasonable cost, using the approach we outline here. Moreover, our findings suggest that 541 

this approach can be modified to support specific research goals.  For example, it may be 542 

beneficial to take advantage of the less accurate but greater amount of information provided by 543 

the full set of imputed dense markers during initial discovery of variants either linked to or 544 

associated with a disease trait, while fine-mapping or replication of a putative trait locus might 545 

employ a reduced, optimal set of dense markers likely to provide greater genotype accuracy 546 

over a smaller region of interest.  547 

 548 

In this study, we demonstrated that it is feasible to obtain comprehensive genome-wide variation 549 

at a fraction of the cost of whole-genome sequencing using the GBS method and pedigree-550 

based imputation, which we describe for the first time in a non-human primate genome. 551 

However, imputed genotypes will only be as accurate as the underlying whole-genome 552 
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sequence data and the reference genome to which it is compared. The macaque genome has 553 

undergone multiple revisions; however, it remains in draft form and is less complete than many 554 

other common model organisms [17, 43].  There are also extremely limited available data on 555 

genetic variants in macaques, and no databases with comprehensive information on known 556 

variants or population-level allele frequency information are publicly accessible.  Both of these 557 

factors present obstacles for accurate whole-genome variant calling in macaques, and will thus 558 

reduce accuracy for any genotyping approach. Improvements in both of these areas are 559 

urgently needed in order to fully realize the value of the macaque as a genetic model of human 560 

disease. 561 

 562 
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12)   Figure titles and captions:  Figures 1-5, uploaded separately.  Figure titles and captions are 757 

as follows: 758 

 759 

Figure 1. Pedigree diagram. Pedigree diagram of the 16 subjects included in this study. 760 

Subjects with whole genome sequence data are shown in gray; all subjects have GBS data.  761 

 762 

Figure 2. Evaluation of GBS library coverage and SNVs. a) The number of positions with at 763 

least 20X coverage; b) Total contiguous fragments with >20X coverage; c) Distance between 764 

each GBS fragment and nearest predicted cut site for the BglII libraries (all fragments >400 bp 765 

are grouped into a single bin); d) Distance between each GBS fragment and the nearest 766 

predicted cut site for PstI libraries; e) Distance between high MAF (>0.25) SNVs in BglII; f) 767 

Distance between high MAF SNVs in PstI; g) Total SNVs detected per enzyme, total that were 768 

concordant with WGS data, and total SNVs with MAF >0.25.  769 

  770 

Figure 3. Imputation accuracy on chromosome 19, among different strategies for selecting 3 771 

individuals for WGS.  Comparison of imputation accuracy among 3 different strategies for 772 

selecting 3 individuals for WGS within the 16-member pedigree: “Bottom of Pedigree” (subjects 773 

M, P, K), “Founders” (subjects B, C, D), and “GIGI-Pick” (B, H, J).  Imputation of an optimal set 774 

of dense markers was conducted for chromosome 19 from the 3 individuals with WGS, into the 775 

13 recipient individuals with GBS data, using the GIGI imputation algorithm with the “Most-776 
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Likely” (A) and “Threshold” (B) genotype calling methods. Circles indicate accuracy for each of 777 

the 13 individuals; triangles indicate outlier individuals.    778 

 779 

Figure 4. Imputation accuracy on chromosome 19 by total number of individuals selected for 780 

WGS.  Accuracy for an optimal set of dense markers on chromosome 19, using 1-9 individuals 781 

with WGS data, imputed into all remaining pedigree members with GBS data , using the “most 782 

likely” genotype calling method in the GIGI algorithm [13].  Circles indicate accuracy for each 783 

individual; triangles indicate outliers.  Individuals with WGS data were selected by the GIGI-Pick 784 

algorithm [14] and used for imputation in the following order: B, H, J, F, M, K, P, C, D (see Fig. 785 

1).   786 

 787 

Figure 5. Imputation accuracy across the genome at an expanded set of dense markers.  788 

Accuracy of alleles imputed across all autosomes at 14,384,988 dense markers.  Data 789 

represent accuracy of alleles imputed at dense markers for 12 pedigree members with GBS 790 

data, imputed from individuals B, H, J, and F.  Alleles were called using the “most likely” 791 

genotype calling method in the GIGI algorithm [13].  Triangles indicate outliers. 792 

 793 

13)   Tables and captions: Not applicable. 794 
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