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Summary 12 

 13 

Despite an increasing number of studies documenting life-history evolution during range 14 

expansions or shifts, we lack a mechanistic understanding of the underlying physiological 15 

processes. In this explorative study, we used a metabolomics approach to study 16 

physiological changes associated with the recent range expansion of the two-spotted spider 17 

mite (Tetranychus urticae). Mite populations were sampled along a latitudinal gradient from 18 

range core to edge and reared under benign common garden conditions for two 19 

generations. Using Gas Chromatography-Mass Spectrometry (GC-MS), we obtained 20 

metabolic population profiles, which showed a gradual differentiation along the latitudinal 21 

gradient, indicating (epi)genetic changes in the metabolome in association with range 22 

expansion. These changes seemed not related with shifts in the mites’ energetic 23 

metabolism, but rather with differential use of amino acids. Particularly, more dispersive 24 

northern populations showed lowered concentrations of several essential and non-essential 25 

amino acids, suggesting a potential downregulation of metabolic pathways associated with 26 

protein synthesis.  27 

 28 

Keywords: essential amino acids, common garden, life-history evolution, GC-MS 29 
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Introduction 32 

 33 

During range expansions or range shifts, species’ life histories can evolve on 34 

ecological timescales (Phillips, Brown & Shine 2010). Changing environmental conditions 35 

force species to locally adapt and spatial assortment of dispersive phenotypes leads to 36 

increased dispersiveness at the expanding/shifting range edge (Shine, Brown & Phillips 37 

2011). These evolutionary processes of local adaptation and spatial selection affect key life-38 

history traits like fecundity, development and dispersal (reviewed in Chuang & Peterson 39 

2015). We therefore expect range edge populations to exhibit physiological adaptations that 40 

underlie these observed trait evolutions. Such adaptations should be especially significant in 41 

energy-producing pathways, and more particularly in glycolysis (Eanes 2011). Indeed, any 42 

elevation of the performance of one life-history trait augments its energetic and metabolite 43 

demands at the expense of other traits (cfr. the “Y” model of resource allocation, Van 44 

Noordwijk & de Jong 1986; Zera & Harshman 2001), thus modifying the global metabolic 45 

network operation. For instance, variations in lipid biosynthesis in association with dispersal 46 

strategy highly impact metabolite fluxes through lipid pathways (see Zera 2011 for a review). 47 

As a result, life-history differentiation is expected to be associated with changes in the 48 

metabolome (i.e. the set of circulating metabolites within an organism, Oliver et al. 1998), as 49 

was for example found for ageing in Caenorhabditis elegans (Fuchs et al. 2010) and 50 

reproduction in the Malaria Mosquito Anopheles gambiae (Fuchs et al. 2014). 51 

 52 

Metabolomics is a convenient technique which can be used as a candidate approach 53 

to explore an organism’s response to environmental variations and forthcoming 54 

environmental changes (Hines et al. 2007; Miller 2007; Viant 2008; Bundy, Davey & Viant 55 
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2009; Lankadurai, Nagato & Simpson 2013; Hidalgo et al. 2014). It provides information on 56 

the interaction between an organism’s physiology and its natural environment by identifying 57 

metabolites of low to moderate molecular mass within the whole body, cells, tissues or 58 

biofluids. Compared to other –omics technologies like genomics and transcriptomics, 59 

metabolomics has the significant advantage to focus on ‘downstream’ cellular functions 60 

(Snart, Hardy & Barrett 2015), providing a more direct picture of the functional links 61 

between causes and consequences of environmental variation (Foucreau et al. 2012). 62 

Essentially, metabolomics can potentially provide a link between genotypes and phenotypes 63 

(Fiehn 2002). When applied on individuals originating from different localities from range 64 

core to edge, but reared for several generations under common garden conditions, it should 65 

provide insights on the physiological adaptations that underlie life-history evolution during 66 

range expansion. 67 

 68 

Though a consideration of the whole-organism physiology allows a better 69 

understanding of how life-history evolution in natural populations might occur and why this 70 

evolution is sometimes constrained (Zera et al. 2001; 2011; Ricklefs & Wikelski 2002), few 71 

studies documented metabolic variation in wild populations along natural gradients 72 

(Sardans, Penuelas & Rivas-Ubach 2011). Instead, most studies assess plastic or evolutionary 73 

responses to environmental stressors by manipulating abiotic variables in controlled 74 

environments (Sardans et al. 2011; Colinet et al. 2012; Padfield et al. 2016). Notable 75 

exceptions are the studies on Arabidopsis lyrata that demonstrated distinct metabolic 76 

phenotypes along the species’ latitudinal distribution, with a typical cold-induced 77 

metabolome in the north, indicating adaptation to the local climate (Davey et al. 2008; 78 

Davey, Woodward & Quick 2009), but no difference in metabolic fingerprint between large 79 
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connected versus marginal fragmented populations (Kunin et al. 2009). These studies, 80 

however, used plants that were grown from seeds collected directly from the field. 81 

Environmental maternal effects can therefore not be excluded. 82 

 83 

The two-spotted spider mite, Tetranychus urticae Koch (Acari, Tetranychidae; Fig. 1), 84 

a generalist pest species in greenhouses and orchards, expanded its European range from 85 

the Mediterranean to at least southern Scandinavia (K. H. P. Van Petegem, personal 86 

observation in 2011) during the last decades (for more information, see Carbonnelle et al. 87 

2007). Previous research with T. urticae showed quantitative genetic life-history 88 

differentiation along this latitudinal gradient, with daily fecundity, lifetime fecundity and 89 

longevity decreasing from range core to edge, and egg survival, dispersal propensity and sex 90 

ratio increasing from range core to edge (Van Petegem et al. 2016). We expected this life-91 

history differentiation to be associated with an evolution of the species’ intermediary 92 

metabolism, which would manifest into distinct metabolic phenotypes among populations 93 

sampled along its expansion gradient. 94 

 95 

Using a metabolomics approach, the current study aimed to test (i) whether the 96 

metabolome of T. urticae evolved during its recent range expansion; i.e. whether a gradual 97 

change in the mite’s intermediary metabolism is present from range core to range edge, 98 

showing in the appearance of progressively distinct metabolic phenotypes (metabotypes) (ii) 99 

whether this metabolic differentiation could be associated with the up- or downregulation 100 

of certain metabolic pathways, for instance enhanced glycolytic activities or lipid metabolism 101 

and (iii) whether this evolutionary change in the species’ metabotype is associated with the 102 

life-history differentiation that has occurred during its range expansion.  103 
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Materials and methods 104 

 105 

Field sampling and common garden 106 

In August 2012, we hand-sampled mites from nine localities (one population per 107 

locality) along an 800 km latitudinal gradient from northwestern Belgium to northern 108 

Denmark (Fig. 2). Mites were found on infested leaves of Lonicera periclymenum (European 109 

honeysuckle, five populations) at high latitudes and on Euonymus europaeus (European 110 

spindle, one population), Humulus lupulus (common hop, one population), Sambucus nigra 111 

(European black elderberry, one population) or Lonicera periclymenum (European 112 

honeysuckle, one population) at lower latitudes. (More information is provided in appendix 113 

A.1.) In the laboratory, fifty to several hundreds of mites per population were put on 114 

separate whole bean plants (Phaseolus vulgaris, variety Prélude –a highly suitable host for T. 115 

urticae, see Agrawal et al. 2002; Gotoh et al. 2004) and kept under controlled conditions at 116 

room temperature with a light-regime of 16:8 LD. After one generation, ten adult female 117 

mites per population were taken from their bean plant and put on a piece of bean leaf 118 

(±30cm
2
) on wet cotton in a Petri dish. Two such Petri dishes were prepared for each 119 

population. The Petri dishes were then used to create a pool of synchronised two-day adult 120 

female mites for each population (two-day adult females were preferred, since these are 121 

significantly bigger than fresh adults). For this purpose, all females were allowed to lay eggs 122 

during 24 hours in a climate room at 27 °C (an optimal temperature for our study species, 123 

see Sabelis 1981), with a light-regime of 16:8 LD. The resulting same-aged eggs were 124 

subsequently left to develop until they were two-day adult mites, of which only females 125 

(which are easily visually recognised) were selected. As mites were kept in common garden 126 

for two generations, all direct environmental effects were excluded. Furthermore, since the 127 
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common garden conditions were optimal for T. urticae (bean as host plant, 27°C, 16:8 LD 128 

and relatively low mite densities), we could reasonably assume that potential differences 129 

among metabotypes of mites from different origins (populations) did not result from 130 

differential responses to restrictive/stressful rearing. 131 

 132 

Metabolomic profiling using Gas Chromatography-Mass Spectrometry (GC-MS) 133 

As we wanted to scan metabolites from different metabolite families (because of 134 

their various but connected roles in general organismal physiology), we used GC-MS 135 

metabolomics (Koek et al. 2011; Khodayari et al. 2013). For each population, we constructed 136 

the metabolomic profile of five replicated pooled sets of fifty two-day-adult female mites. 137 

Each set was placed in a microtube and directly transferred to -80 °C. To be able to measure 138 

true quantities of metabolites, it is important to standardise the initial masses of each 139 

extract. However, even when pooling fifty individuals, the masses of the replicates were too 140 

low to be accurately measured (the measurement error for the mass of the microtube was 141 

greater than the summed mass of the fifty mites). Yet, previous research showed that 142 

female adult size does not differ among the nine sampled populations (Van Petegem et al. 143 

2016). We could thus confidently use and interpret metabolite concentrations in 144 

nmol/sample. The samples were first homogenised in ice-cold (-20 °C) methanol-chloroform 145 

(2:1), using a tungsten-bead beating equipment (RetschTM MM301, Retsch GmbH, Haan, 146 

Germany) at 25 Hz for 1.5 min. After addition of ice-cold ultrapure water, the samples were 147 

centrifuged at 4,000 g for 5 min at 4 °C. The upper aqueous phase was then transferred to 148 

new chromatographic glass vials, dried-out and resuspended in 30 μl of 20 mg L-1 149 

methoxyamine hydrochloride (Sigma-Aldrich, St. Louis, MO, USA) in pyridine and incubated 150 

under automatic orbital shaking at 40 °C for 60 min. Subsequently, 30 μl of N-methyl-N-151 
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(trimethylsilyl) trifluoroacetamide (MSTFA; Sigma, #394866) was added and the 152 

derivatisation was conducted at 40 °C for 60 min under agitation. The samples were then 153 

analysed in a GC-MS system (Thermo Fischer Scientific Inc., Waltham, MA, USA), using the 154 

same settings as in Khodayari et al. (2013). For this purpose, one microliter of each sample 155 

was injected in the GC-MS system using the split mode (split ratio: 25:1). After that, the 156 

selective ion monitoring (SIM) mode (electron energy: -70 eV) was used to search for the 157 

sixty primary metabolites that are most often found in arthropod samples and that were 158 

included in our spectral database (see appendix A.2 for a complete overview of these sixty 159 

metabolites). The SIM mode ensured a precise annotation of the detected peaks. The 160 

calibration curves were set using samples consisting of sixty pure reference compounds at 161 

concentrations of 1, 2, 5, 10, 20, 50, 100, 200, 500, 750, 1000, 1500 and 2000 μM. 162 

Chromatograms were deconvoluted using XCalibur v2.0.7 software (Thermo Fischer 163 

Scientific Inc., Waltham, MA, USA). Finally, metabolite concentrations were quantified 164 

according to their calibration curves. 165 

 166 

Statistics 167 

A total of forty-three metabolites were identified. 168 

In a first step, we examined whether distinct metabotypes existed among the 169 

sampled populations of T. urticae by running a MANOVA. Nine metabolites were first 170 

removed from the dataset because they showed a more than 85% correlation with (an)other 171 

metabolite(s). Then, all remaining metabolites were log-transformed to obtain a normal 172 

distribution, which allowed to proceed to the MANOVA. 173 

In a second step, we tested whether the metabolic profile was gradually changing as 174 

a function of latitude (from range core to edge), or as a function of one of the six life-history 175 
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traits that were previously shown to covary with latitude (daily and lifetime fecundity, egg 176 

survival, longevity, dispersal propensity and sex ratio; see Van Petegem et al. 2016, see also 177 

appendix A.3). The concentrations of all forty-three metabolites were first auto-scaled and 178 

transformed (the transformation that best fitted and normalised the data was retained: cube 179 

root when looking for covariation with daily fecundity and egg survival; log for latitude; no 180 

transformation for lifetime fecundity, longevity, dispersal propensity and sex ratio). Then, 181 

metabolic differences among the nine populations were visualised using Partial Least 182 

Squares – Discriminant Analysis (PLS-DA). This multivariate analysis was performed using 183 

MetaboAnalyst 3.0 (Xia et al. 2009; Xia et al. 2012; Xia et al. 2015). By ordering the 184 

populations according to their latitude or according to one of the six life-history traits 185 

covarying with latitude, it was possible to check for trends in the metabolite concentrations. 186 

To validate the significance of this interpopulation variation, permutation tests (2000 187 

permutations) were run for replicates (with 5 replicates per population) using separation 188 

distance (B/W) test statistics. The PLS-DA provided Variable Importance in Projection (VIP) 189 

scores, which gave a first overview of the possible existence of a general pattern in the 190 

concentrations of quantified metabolites along our invasion gradient: low VIP-scores depict 191 

a weak and high scores a strong global pattern. Using a step-wise procedure, only those 192 

metabolites with a VIP score of at least 1.2 (1.0 for egg survival because removing the 193 

metabolites with a score between 1.0 and 1.2 resulted in a decreased percentage of 194 

variation explained) for the first and/or second component were retained for further 195 

analysis (compared to 0.8 in Tenenhaus 1998). 196 

In a third step, univariate analyses were performed to test, metabolite by metabolite, 197 

whether the global patterns obtained in the previous step could be confirmed. As we aimed 198 

at determining if the metabolite levels showed latitudinal patterns along the expansion, we 199 
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did not run an ANOVA on individual metabolites, but rather processed regressions. Using 200 

SAS 9.4 (SAS Institute Inc. 2013), the linear regressions were run for all influential 201 

metabolites (VIP scores >1.2, except for egg survival, as mentioned above). Because all five 202 

collected replicates per population originated from only one field sample, we ran the 203 

regressions using population averages. As our study is explorative, we wanted to avoid false 204 

negatives (with the chance of making a Type II error). We therefore did not correct for 205 

multiple comparisons (e.g. Bonferroni correction). Given the large number of statistical tests, 206 

the limited number of populations, and the fact that we highly smoothed differences among 207 

populations by rearing the specimens under common garden conditions for two generations 208 

(which is atypical for metabolomics studies, where organisms are usually subject to a 209 

stressor to elicit a strong response), such a correction would have greatly diminished the 210 

statistical power. 211 

A final step linked the selected individual metabolites with one or more metabolic 212 

pathways, thus identifying those pathways that were potentially up- or downregulated 213 

during the range expansion of T. urticae. Pathway enrichment analyses were performed in 214 

Metaboanalyst 3.0 (Xia et al. 2009; Xia et al. 2012; Xia et al. 2015) with those metabolites 215 

that showed significant effects in the univariate analyses of step three. These pathway 216 

analyses were performed with a Fisher’s exact test algorithm, which we ran using the 217 

metabolic pathways of Drosophila melanogaster (no closer relative of T. urticae was 218 

available in the program, but primary metabolites are anyway highly conserved, especially 219 

among non-blood feeding arthropods). The algorithm calculates the match (number of hits) 220 

between the metabolites in a dataset and the totality of metabolites present in a specific 221 

pathway. Furthermore, it uses a pathway topology analysis to compute a value for the 222 
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impact of these metabolites on the pathway. As multiple comparisons are made, corrected 223 

Holm p-values are provided. 224 

  225 
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Results 226 

 227 

MANOVA 228 

The metabotypes of the female mites significantly differed among the nine sampled 229 

populations (F184,160=2.2, p<0.001). In further analyses, the potential covariation of 230 

metabolite levels with latitude or one of the life-history traits covarying with latitude was 231 

then assessed. 232 

 233 

Latitudinal covariation 234 

The PLS-DA showed a separation among the nine populations, which was visible on 3-235 

D score plots (see appendix A.4). Of the forty-three identified metabolites, seventeen had 236 

VIP scores of at least 1.2 and were thus retained for further analysis (Fig. 3A). They showed a 237 

clear general trend from high values in southern to low values in northern populations (Fig. 238 

3A).  239 

In the subsequent linear regressions, eleven of these seventeen metabolite 240 

concentrations varied significantly: ten decreased and one increased with increasing latitude 241 

(Fig. 3A and appendix A.6). Among these eleven metabolites, five essential amino acids, 242 

three non-essential amino acids (see Rodriguez & Hampton (1966) for an overview of all 243 

essential amino acids in T. urticae –we defined tryptophan, which is not included in this 244 

overview, as essential) and one intermediate of the citric acid cycle can be mentioned.  245 

Pathway analysis indicated that of these eleven metabolites, eight play a significant 246 

role in the aminoacyl-tRNA biosynthesis (total: 67, hits: 8, impact=0, Holm p=2.7062E-6) and 247 
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four in the valine, leucine and isoleucine biosynthesis (total: 13, hits: 4, impact=0.9999, Holm 248 

p=4.0129E-4) (both pathway maps are provided in appendix A.7). 249 

 250 

Life history covariation 251 

The PLS-DA showed a separation between the nine (eight for egg survival, for which 252 

no data were available for population SVI) populations, which was visible on 3-D score plots 253 

(see appendix A.4). Of the forty-three identified metabolites, only those which explained 254 

most of the interpopulation variation for a certain life-history trait (high VIP score) were 255 

retained for further analysis. Fourteen were retained for daily and sixteen for lifetime 256 

fecundity, twenty were retained for egg survival, eleven for longevity, thirteen for dispersal 257 

propensity and ten for sex ratio (Fig. 3B-G). Figure 3 (B-G) shows clear indications of a 258 

positive correlation between lifetime fecundity and its sixteen selected metabolites. In 259 

contrast, figure 3 (B-G) suggests a negative correlation between the twenty and thirteen 260 

metabolites selected for, respectively, egg survival and dispersal propensity. For daily 261 

fecundity, longevity and sex ratio, no clear trends were visible.  262 

In the subsequent linear regressions, one significant correlation was found for egg 263 

survival (a sugar alcohol) and seven for dispersal propensity (including four essential amino 264 

acids and one sugar). No significant results were found for lifetime fecundity, daily fecundity, 265 

longevity and sex ratio (Fig. 3B-G and appendix A.6). 266 

Pathway analysis indicated that four of the seven metabolites which negatively 267 

correlated with dispersal propensity play a significant role in the aminoacyl-tRNA 268 
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biosynthesis (total: 67, hits: 4, impact=0, Holm p=0.0417) (the pathway map is provided in 269 

appendix A.7). No associated pathways were found for egg survival. 270 

  271 
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Discussion 272 

 273 

Of the forty-three metabolites identified in the GC-MS analysis, eighteen correlated 274 

with latitude and/or one or more life-history traits. More specifically, eleven covaried 275 

positively or negatively with latitude, seven showed a negative correlation with dispersal 276 

propensity and one showed a negative correlation with egg survival. Of the eighteen 277 

different metabolites, eleven amino acids could be shown to play an important role in the 278 

aminoacyl-tRNA biosynthesis and four in the valine, leucine and isoleucine biosynthesis (see 279 

pathway maps provided in appendix A.7). 280 

 281 

Contrary to our hypothesis, our results indicate that the life-history evolution which 282 

occurred during the recent range expansion of T. urticae (Van Petegem et al. 2016) was not 283 

associated with shifts in the mites’ energetic metabolism, but rather with shifts in its 284 

anabolism. While our spectral database contained eleven sugars, only one sugar (fructose) 285 

accounted for the separation among populations. This suggests that the genes involved in 286 

encoding the mite’s energetic metabolism (i.e. glycolysis, citric acid cycle, which typically 287 

involve sugars) have not been significantly affected during the range expansion of T. urticae. 288 

Instead, the observed differentiation in the mites’ metabolome probably involved 289 

evolutionary changes in the mites’ anabolism, where amino acids play a central role in the 290 

metabolic turnover of proteins. In more northern and more dispersive populations, the 291 

aminoacyl-tRNA biosynthesis was downregulated. In this pathway, aminoacyl-tRNA is 292 

formed by charging tRNA with an amino acid. The aminoacyl-tRNA then serves as a substrate 293 

in protein synthesis or plays one of its many other roles in, for example, cell wall formation 294 

or antibiotic biosynthesis (Raina & Ibba 2014). In accordance, the valine, leucine and 295 
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isoleucine biosynthesis, important for protein synthesis as well (Ahmed & Khan 2006; 296 

Tamanna & Mahmood 2014), was downregulated in more northern populations. 297 

 298 

The affected amino acids showed decreased concentrations toward higher latitudes 299 

and showed a negative correlation with the dispersal propensity of T. urticae, which 300 

increases towards the north. While, in general, amino acids are considered fundamental for 301 

egg production and thus fecundity (Tulisalo 1971; O'Brien, Fogel & Boggs 2002; Mevi-Schutz 302 

& Erhardt 2005; Fuchs et al. 2014, but see Heagle et al. 2002), not a single correlation was 303 

found for fecundity, despite a clear positive trend in the PLS-DA. Of the eleven affected 304 

amino acids, eight were essential and three non-essential. While the non-essential amino 305 

acids could have been synthesised de novo from glucose, the essential amino acids could 306 

only have been supplied through the mite’s diet (Rodriguez et al. 1966). Though all mites 307 

were kept in common garden, mites from northern, more dispersive populations were found 308 

to contain lower essential amino acid concentrations. In line with the recent finding of 309 

Fronhofer & Altermatt (2015) that a dispersal-foraging trade-off leads to a reduced 310 

exploitation of resources at range margins, our results could indicate that northern, more 311 

dispersive mites evolved lower essential amino acid concentrations because they consume 312 

less of their food source. We should, however, keep in mind that metabolites were 313 

measured only at one point in time and from whole organism samples. We are therefore 314 

missing the temporal fluctuations of the metabolome over a day, and our data therefore 315 

represent only a snapshot of the existing balance in terms of metabolite demand among 316 

metabolic pathways. 317 

 318 
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An important challenge for metabolomics is understanding the relative contribution 319 

of environmental and genetic factors in shaping an organism’s metabolic phenotype (Bundy 320 

et al. 2009). In the current study, mites were kept in common garden for two generations, 321 

during which they were reared under optimal, non-stressful conditions. In contrast with 322 

most metabolomic studies, mites were thus not subjected to a stressor to elicit a strong 323 

environmentally-induced plastic stress-response. Therefore, any metabolomic 324 

differentiation was expected to be far less pronounced compared to stress-exposure studies. 325 

As plastic, environmentally driven field-differences among populations were largely levelled 326 

out through the two generations in common garden, only genetic factors were retained. 327 

Long-lasting transgenerational plasticity can, however, not be fully excluded and we 328 

therefore refer further to (epi)genetic factors (Verhoeven et al. 2016). Though (epi)genetic 329 

factors are generally considered less determining than environmental factors (Robinson et 330 

al. 2007; Frank, Noerenberg & Engel 2009; Matsuda et al. 2012), our results demonstrate a 331 

clear (epi)genetic signal of metabolic differentiation along T. urticae’s invasion gradient. We 332 

acknowledge, however, that we cannot exclude neutral processes, like for example serial 333 

bottlenecks –including surfing mutations (Travis et al. 2007; Klopfstein et al. 2016) as 334 

potential (co)sources of the found latitudinal metabolomic patterns. Furthermore, as the 335 

host plant species on which the mites were sampled in the field covaried with latitude (with 336 

L. periclymenum typically in the north), this could also have influenced our results. Yet, 337 

regression slopes barely differed between models including all populations (hence all host 338 

plant species) or models run for the subset of six populations collected on L. periclymenum 339 

only (see appendix A.8). This indicates that the latitudinal signal was independent of host 340 

plant identity. 341 

 342 
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This explorative study specifically examined whether range expansion might result in 343 

evolutionary changes in an organism’s metabolism. Despite non-stressful common garden 344 

conditions, approximately forty per cent of the identified metabolites showed (epi)genetic 345 

differentiation among populations. The more dispersive northern mites exhibited lower 346 

concentrations of several essential and non-essential amino acids, suggesting a 347 

downregulation of certain pathways linked to protein synthesis. Though effects were subtle 348 

(but see earlier), our results clearly indicate that the metabolome of T. urticae underwent 349 

(epi)genetic changes during the species’ recent range expansion.   350 
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Figure legends 362 

 363 

Figure 1 364 

Picture showing two females and one egg of the two-spotted spider mites 365 

(Tetranychus urticae Koch; Acari, Tetranychidae). 366 

 367 

Figure 2 368 

The map shows the nine field collection sites, which are situated in Belgium, The 369 

Netherlands and Denmark. The graph shows the yearly number of frost days and the 370 

average yearly temperature for each collection site along the latitudinal gradient. These 371 

climatic data were obtained from FetchClimate (Microsoft Research, Cambridge) and were 372 

averaged over a period of 35 years (1980 to 2015). Below the graph, arrows for each of six 373 

life-history traits depict their trend along the latitudinal gradient (increase, decrease). (For 374 

more detailed information, see appendix A.1 and Van Petegem et al. 2015.) 375 

 376 

Figure 3 377 

Variable importance plots resulting from the multivariate analyses (PLS-DA) on the 378 

metabolomic data. These plots list those metabolites that, based on their VIP score, 379 

contribute the most to explaining the variation among the nine populations in our dataset 380 

(ODK, KVS, CAS, LAU, HED, BLA, TVE; SVI, SKA). The metabolites are ordered from high to low 381 

VIP scores for component 1 (an overview off all scores for component 1 and 2 is provided in 382 

appendix A.5). The colour codes indicate the relative concentration of a given metabolic 383 

compound for each population (green=low concentration, to red= high concentration). The 384 

populations themselves are ordered according to their latitude (A), or from low values at the 385 
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left to high values at the right for a given life-history trait (daily (B) or lifetime (C) fecundity, 386 

egg survival (D), longevity (E), dispersal propensity (F) or sex ratio (G)). For example, in Fig. 387 

3A, LAU is the population with the highest concentration of proline and ODK is the 388 

southernmost population (lowest latitude). Below each column (population), a letter 389 

signifies the host plant species from which mites were sampled in this population (H.= H. 390 

lupulus, S.= S. nigra, L.= L. periclymenum, E.= E. europaeus). At the bottom of each plot, the 391 

p-value resulting from the permutation test is given. At the left side of each plot, an asterisk 392 

next to a metabolite name indicates a significant correlation between this metabolite and 393 

latitude or the denoted life-history trait. For example, in Fig. 3A, proline shows a significant 394 

negative correlation with latitude. (A detailed overview, including p- and F-values, of all 395 

linear regressions is found in appendix A.6.) 396 
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Figures 399 

 400 

Figure 1 401 
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Appendix 556 

 557 

A.1: Overview of the field collection sites and their respective life-history trait values 558 

An overview of the localities where T. urticae was sampled in the field, together with population-level life-history trait values (daily fecundity (#eggs/day), lifetime fecundity (total #eggs), egg survival (%), 559 

longevity (#days), dispersal propensity (%) and sex ratio (#male/total)). These values, originating from a previous study (Van Petegem et al. 2016), were used as the independent values in our linear regressions. 560 

Field collection sites were located along a latitudinal gradient, spanning the coasts of Belgium (BEL), The Netherlands (NTL), Germany and Denmark (DEN). The denoted plant species (Lonicera periclymenum, 561 

Euonymus europaeus, Sambucus nigra and Humulus lupulus) are the species on which the mites were found and sampled. 562 

code collection site city, country Coordinates  

(WGS 84) 

plant species daily  

fecundity 

lifetime  

fecundity 

egg  

survival 

longevity dispersal  

propensity 

sex  

ratio 

SKA Flagbakkevej Skagen, DEN 57.72, 10.53 L. periclymenum 3.85 33.42 96.72 10.80 9.47 0.33 

SVI Sletteåvej Fjerritslev, DEN 57.15, 9.33 L. periclymenum 5.19 29.33 . 6.33 41.41 0.32 

TVE Hindingvej Thisted, DEN 57.04, 8.62 L. periclymenum 3.65 23.42 100.00 7.42 14.53 0.26 

BLA V. Hennebysvej Henne, DEN 55.74, 8.22 L. periclymenum 3.72 40.92 100.00 11.00 39.47 0.29 

HED picnic-place along 11/24  Gredstedbro, DEN 55.39, 8.74 L. periclymenum 3.48 29.17 96.88 9.60 31.45 0.22 

LAU Schildhoek Lauwersoog, NTL 53.41, 6.22 E. europaeus 4.25 37.00 87.30 9.75 16.75 0.34 

CAS Hoofdweg Heemskerk, NTL 52.53, 4.65 L. periclymenum 5.54 41.75 96.15 9.40 19.21 0.28 

KVS Bosweg Burgh-Haamstede, NTL 51.68, 3.72 S. nigra 6.34 98.67 99.02 17.55 15.03 0.19 

ODK Duinparklaan Koksijde, BEL 51.12, 2.68 H. lupulus 5.22 50.42 98.99 10.08 9.81 0.25 
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A.2: Overview of the 60 metabolites included in our spectral database 564 

A list of all 60 metabolites screened for in our single quadrupole GC-MS. Each of these metabolites can be characterised by several ions 565 

of different masses. We used the selective ion monitoring mode (SIM, see Waller et al. 2007) instead of the full scan mode. In this SIM 566 

mode, the MS instrument is set to only look for specific previously-known ion masses of interest rather than to screen for all masses 567 

over a wide range. The instrument can therefore be very specific for a particular compound of interest. Our original database contained 568 

spectral information for 85 primary metabolites from a range of plant and invertebrate models. After removing all metabolites specific 569 

to plant models and those (polyamines for instance) having concentrations lower than the detection limit of our equipment, only the 60 570 

specific metabolites listed in the table below remained in our spectral database. Metabolites are classified according to six categories: 571 

amino acid, polyol, sugar, intermediate of the citric acid cycle, ‘other’ metabolite and metabolite not found in any of our samples. 572 

category metabolite 

amino acid Alanine 

amino acid Aspartic acid 

amino acid Glutamic acid 

amino acid Glycine 

amino acid Isoleucine 

amino acid Leucine 

amino acid Lysine 

amino acid Methionine 

amino acid Phenylalanine 

amino acid Proline 

amino acid Serine 

amino acid Threonine 

amino acid Tryptophan 

amino acid Tyrosine 

amino acid Valine 

intermediate citric acid cycle Citric acid 

intermediate citric acid cycle Fumaric acid 

intermediate citric acid cycle Malic acid 

intermediate citric acid cycle Succinic acid 

polyol Adonitol 

polyol Arabitol 

polyol Glycerol 

polyol Glycerol-3-phosphate 

polyol Inositol 

polyol Sorbitol 

polyol Xylitol 

sugar Fructose 

sugar Fructose-6-phosphate 

sugar Galactose 

sugar Glucose 
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 573 

  574 

sugar Glucose-6-phosphate 

sugar Mannose 

sugar Ribose 

other Ethanolamine 

other GABA 

other Gluconolactone 

other Glyceric acid 

other Lactic acid 

other Ornithine 

other Phosphoric acid 

other Putrescine 

other Quinic acid 

other Spermidine 

not found Arabinose 

not found Asparagine 

not found Cadaverine 

not found Citrulline 

not found Cytosine 

not found Erythritol 

not found Galactitol 

not found Galacturonic acid 

not found Maltose 

not found Mannitol 

not found Octopamine 

not found Pipecolic acid 

not found Saccharose 

not found Spermine 

not found Trehalose 

not found Tyramine 

not found Xylose 
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A.3: correlation matrix 575 

LAT (latitude), LIFE (lifetime fecundity), DAFE (daily fecundity), DISP (dispersal propensity), EGSU (egg survival), LONG (longevity), DIAP 576 

(diapause incidence) and SERA (sex ratio). All significant correlations (Bonferroni correction not implemented) are in bold. As only a 577 

selection of populations was included in the current study, the strength of the correlations between latitude and the shown life-history 578 

traits decreased relative to the correlations found in Van Petegem et al. (2016). 579 

 580 

Pearson Correlation Coefficients  

Prob > |r| under H0: Rho=0  

Number of Observations 

  LAT LIFE DAFE DISP EGSU LONG DIAP SERA 

LAT 

1 -0.67384 -0.67452 0.38101 0.13882 -0.52688 0.47464 0.43955 

0.0466 0.0463 0.3117 0.743 0.145 0.1967 0.2365 

9 9 9 9 8 9 9 9 

LIFE 

-0.67384 1 0.75065 -0.27469 0.18641 0.9203 -0.337 -0.5922 

0.0466 0.0198 0.4744 0.6585 0.0004 0.3752 0.0929 

9 9 9 9 8 9 9 9 

DAFE 

-0.67452 0,75065 1 -0.18302 0.06919 0.46919 0.13277 -0.33554 

0.0463 0.0198 0.6374 0.8707 0.2026 0.7335 0.3774 

9 9 9 9 8 9 9 9 

DISP 

0.38101 -0.27469 -0.18302 1 0.14537 -0.31841 0.66023 0.11912 

0.3117 0.4744 0.6374 0.7313 0.4037 0.0529 0.7602 

9 9 9 9 8 9 9 9 

EGSU 

0.13882 0.18641 0.06919 0.14537 1 0.16269 0.19129 -0.59346 

0.743 0.6585 0.8707 0.7313 0.7003 0.65 0.1209 

8 8 8 8 8 8 8 8 

LONG 

-0.52688 0.9203 0.46919 -0.31841 0.16269 1 -0.52876 -0.54739 

0.145 0.0004 0.2026 0.4037 0.7003 0.1433 0.1271 

9 9 9 9 8 9 9 9 

DIAP 

0.47464 -0.337 0.13277 0.66023 0.19129 -0.52876 1 0.29697 

0.1967 0.3752 0.7335 0.0529 0.65 0.1433 0.4377 

9 9 9 9 8 9 9 9 

SERA 

0.43955 -0.5922 -0.33554 0.11912 -0.59346 -0.54739 0.29697 1 

0.2365 0.0929 0.3774 0.7602 0.1209 0.1271 0.4377 

9 9 9 9 8 9 9 9 

 581 
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A.4: 3-D score plots 583 

3-D score plots resulting from the multivariate analyses (PLS-DA) performed on our metabolomic data are given for latitude (A) and each 584 

of six life-history traits (daily fecundity (B), lifetime fecundity (C), egg survival (D), longevity (E), dispersal propensity (F) and sex ratio 585 

(G)). The mean metabolic phenotypes for each replicate (five in total) of all nine populations (eight for egg survival) are represented by a 586 

dot and arranged in space according to their projections on three component axes. Each of these axes explains a certain amount (%) of 587 

the metabolic variation that is present in the dataset. More similar points (populations with a similar metabolome) are placed closer 588 

together. 589 

 590 
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A.5 overview of the VIP scores resulting from the PLS-DA 598 

An overview off all metabolites with a VIP score of at least 1.2 (1.0 for egg survival because removing the metabolites with a score 599 

between 1.0 and 1.2 resulted in a decreased percentage of variation explained) for component 1 and/ or 2 in the PLS-DA performed for 600 

latitude (A) and each of six life-history traits (daily fecundity (B), lifetime fecundity (C), egg survival (D), longevity (E), dispersal 601 

propensity (F) and sex ratio(G)). Note that in the tables below, the VIP scores for the original dataset (containing all forty-three 602 

identified metabolites) are given. The order of the metabolites (from high to low VIP scores) in these tables can therefore deviate from 603 

the order in Fig. 3 (main text), as Fig. 3 is based on VIP scores of the final dataset (after removal of all non-explanatory metabolites). 604 

A. latitude 605 

metabolite Comp. 1 Comp. 2 

Proline 1.6583 1.0501 

Tryptophan 1.5937 1.0289 

Inositol 1.5831 1.0274 

Malic acid 1.4947 0.9356 

Lysine 1.4669 0.9290 

Valine 1.4577 0.9261 

Isoleucine 1.4219 0.9054 

Methionine 1.4115 0.8879 

Glycine 1.4090 0.8936 

Aspartic acid 1.3881 0.8733 

Threonine 1.3705 0.9118 

Alanine 1.3572 0.8500 

Leucine 1.3414 0.9084 

Quinic acid 1.3313 1.6940 

Glucose-6-phosphate 0.6854 2.0669 

Sorbitol 1.0691 1.9186 

Fructose-6-phosphate 0.4123 1.7967 

Ribose 0.8471 1.2669 

 606 

B. daily fecundity 607 

metabolite Comp. 1 Comp. 2 

Glycerol 1.7613 1.8109 
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Phenylalanine 1.6599 1.2292 

Sorbitol 1.6526 1.4537 

Valine 1.5163 1.1636 

Xylitol 1.4767 1.2651 

Lysine 1.4179 1.0710 

Isoleucine 1.4127 1.1010 

Glutamic acid 1.3973 0.9667 

Tyrosine 1.3441 1.0950 

Leucine 1.3261 1.1045 

Threonine 1.2862 1.0977 

Inositol 1.2444 0.9216 

Glycine 1.2215 0.9496 

Tryptophan 1.2095 0.9172 

 608 

C. lifetime fecundity 609 

metabolite Comp. 1 Comp. 2 

Lysine 1.5753 0.8880 

Glycine 1.5660 0.8728 

Tryptophan 1.5312 0.8706 

Inositol 1.5101 0.8566 

Valine 1.4669 0.9187 

Proline 1.4248 0.8628 

Alanine 1.4119 0.7920 

Isoleucine 1.3774 0.8873 

Malic acid 1.3485 0.8655 

Phenylalanine 1.3188 0.9131 

Leucine 1.3161 0.9319 

Lactic acid 1.2638 1.3055 

Glucose-6-phosphate 1.2298 1.7909 

Quinic acid 1.2139 0.9298 

Fructose-6-phosphate 0.9630 1.6380 

 610 

D. egg survival 611 
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metabolite Comp. 1 Comp. 2 

Glutamic acid 1.7874 1.3641 

Alanine 1.6795 1.1028 

Tyrosine 1.4029 0.9337 

Phenylalanine 1.3828 0.9234 

Fructose-6-phosphate 1.3581 0.8561 

Glucose-6-phosphate 1.3492 0.8500 

Methionine 1.2596 0.8576 

Xylitol 1.2585 1.0527 

Glycerol-3-phosphate 1.2193 0.7804 

Citric acid 1.2164 0.8394 

Serine 1.1977 0.9293 

GABA 1.1951 2.2339 

Gluconolactone 1.1857 0.8810 

Adonitol 1.1823 0.8112 

Succinic acid 1.1628 1.0936 

Leucine 1.1035 0.9157 

Threonine 1.0640 0.9255 

Valine 1.0216 0.8728 

Ornithine 1.0141 0.6404 

Ethanolamine 0.8772 1.9297 

Glycerol 0.5981 1.7154 

Fumaric acid 0.0152 1.5159 

Glutamic acid 1.7874 1.3641 

Glyceric acid 2.1181 1.3224 

 612 

E. longevity 613 

metabolite Comp. 1 Comp. 2 

Glucose 2.1463 1.4658 

Succinic acid 1.9802 1.3826 

Sorbitol 1.9329 1.3478 

Citric acid 1.6265 1.5863 

Glycine 1.4818 1.1018 
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Galactose 1.4447 1.1659 

Lysine 1.4091 1.0542 

Lactic acid 1.3965 1.0108 

Fructose-6-phosphate 1.3276 1.4043 

Glucose-6-phosphate 1.3168 1.3696 

Phosphoric acid 1.2220 1.0486 

 614 

F. dispersal propensity 615 

metabolite Comp. 1 Comp. 2 

Putrescine 1.9187 1.2144 

Phosphoric acid 1.7678 1.0416 

Lysine 1.7503 1.0280 

Methionine 1.7343 1.0303 

Xylitol 1.7230 1.9394 

Phenylalanine 1.5574 0.9821 

Fructose 1.4964 0.9235 

Tryptophan 1.2684 0.7950 

Glycerol-3-phosphate 1.2602 0.7514 

Leucine 1.2553 0.9363 

Inositol 1.2549 0.7824 

Glucose-6-phosphate 0.6820 1.4379 

Mannose 0.2110 1.3947 

 616 

G. sex ratio 617 

metabolite Comp. 1 Comp. 2 

GABA 2.7316 2.5800 

Succinic acid 2.5829 2.4256 

Glutamic acid 2.0087 1.8893 

Glucose-6-phosphate 1.7334 1.6527 

Sorbitol 1.5872 1.4965 

Citric acid 1.4820 1.4001 
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Fructose-6-phosphate 1.4541 1.3954 

Xylitol 1.2478 1.3554 

Ethanolamine 1.2072 1.3270 

Fructose 0.9418 0.9842* 

* After removal of the least explanatory metabolites in the dataset, the VIP score of fructose changed to >1.2. Fructose was therefore 618 

retained for further analysis. 619 

  620 
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A.6 overview of all linear regressions 621 

An overview of all linear regressions according to latitude (A) and each of the six life-history traits (daily fecundity (B), lifetime fecundity 622 

(C), egg survival (D), longevity (E), dispersal propensity (F) and sex ratio(G)) known to covary with latitude in the study species (see Van 623 

Petegem et al. 2016). The direction of change (correlation) is each time given, together with the F- and p-value of the linear regression. 624 

The degrees of freedom used in determining the F-value (Num DF and Den DF) are also shown. 625 

 626 

A. latitude 627 

metabolite correlation Num DF Den DF F p 

Proline negative 1 7 9.85 0.0164 

Tryptophan negative 1 7 6.48 0.0383 

Inositol negative 1 7 6.43 0.0389 

Aspartic acid negative 1 7 6.62 0.0369 

Glycine negative 1 7 7.19 0.0315 

Malic acid negative 1 7 6.59 0.0372 

Valine negative 1 7 8.15 0.0245 

Lysine negative 1 7 3.77 0.0932 

Alanine negative 1 7 4.16 0.0808 

Methionine negative 1 7 3.06 0.1238 

Isoleucine negative 1 7 8.81 0.0209 

Quinic acid positive 1 7 5.59 0.0500 

Threonine negative 1 7 7.35 0.0301 

Leucine negative 1 7 6.71 0.0359 

Sorbitol positive 1 7 1.13 0.3221 

Glucose-6-phosphate positive 1 7 1.00 0.3511 

Fructose-6-phosphate positive 1 7 0.34 0.5789 

 628 

B. daily fecundity 629 
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metabolite correlation Num DF Den DF F p 

Glycerol negative 1 7 1.91 0.2096 

Phenylalanine positive 1 7 1.87 0.2135 

Glutamic acid positive 1 7 0.47 0.5193 

Sorbitol negative 1 7 3.37 0.0947 

Valine positive 1 7 2.41 0.1648 

Isoleucine positive 1 7 2.46 0.1606 

Lysine positive 1 7 1.34 0.2588 

Tyrosine positive 1 7 1.31 0.2897 

Leucine positive 1 7 1.54 0.2553 

Threonine positive 1 7 1.83 0.2182 

Xylitol negative 1 7 0.46 0.5193 

Glycine positive 1 7 1.51 0.2587 

Inositol positive 1 7 0.71 0.4284 

Tryptophan positive 1 7 0.62 0.4584 

 630 

C. lifetime fecundity 631 

metabolite correlation Num DF Den DF F p 

Lysine positive 1 7 2.57 0.1531 

Glycine positive 1 7 3.86 0.0903 

Tryptophan positive 1 7 0.60 0.4629 

Inositol positive 1 7 0.61 0.4592 

Valine positive 1 7 1.61 0.2455 

Proline positive 1 7 0.36 0.5665 

Alanine positive 1 7 0.15 0.7089 
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Isoleucine positive 1 7 1.47 0.2653 

Malic acid positive 1 7 1.24 0.3026 

Phenylalanine positive 1 7 0.70 0.4317 

Leucine positive 1 7 0.91 0.3717 

Lactatic acid positive 1 7 0.22 0.6503 

Glucose-6-phosphate negative 1 7 2.38 0.1671 

Quinic acid negative 1 7 0.58 0.4716 

Fructose-6-phosphate negative 1 7 2.15 0.1862 

Glycerol-3-phosphate negative 1 7 1.07 0.3363 

 632 

D. egg survival 633 

metabolite correlation Num DF Den DF F p 

Glutamic acid negative 1 6 3.79 0.0994 

Alanine negative 1 6 4.40 0.0808 

Tyrosine negative 1 6 5.24 0.0621 

Phenylalanine negative 1 6 2.70 0.1516 

Fructose-6-phosphate negative 1 6 4.55 0.0770 

Glucose-6-phosphate negative 1 6 4.66 0.0742 

Methionine negative 1 6 1.84 0.2238 

Xylitol negative 1 6 0.37 0.5649 

Succinic acid negative 1 6 3.02 0.1327 

Glycerol-3-phosphate negative 1 6 4.70 0.0733 

Citric acid negative 1 6 4.61 0.0754 

Serine negative 1 6 5.03 0.0661 

GABA positive 1 6 0.38 0.5580 
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Adonitol negative 1 6 9.07 0.0237 

Gluconolactone negative 1 6 0.60 0.4697 

Leucine negative 1 6 3.16 0.1260 

Threonine negative 1 6 2.85 0.1425 

Valine negative 1 6 2.23 0.1860 

Ornithine negative 1 6 2.68 0.1525 

Ethanolamine negative 1 6 0.00 0.9891 

Glycerol positive 1 6 0.03 0.8651 

Malic acid negative 1 6 2.22 0.1871 

Glyceric acid negative 1 6 0.94 0.3698 

Fumaric acid negative 1 6 0.44 0.5305 

 634 

E. longevity 635 

metabolite correlation Num DF Den DF F p 

Glucose positive 1 7 0.52 0.4955 

Succinic acid negative 1 7 0.00 0.9482 

Sorbitol positive 1 7 0.05 0.8306 

Citric acid negative 1 7 2.14 0.1870 

Glycine positive 1 7 2.83 0.1365 

Galactose positive 1 7 1.13 0.3236 

Lysine positive 1 7 1.65 0.2404 

Lactic acid positive 1 7 0.89 0.3777 

Fructose-6-phosphate negative 1 7 1.16 0.3174 

Glucose-6-phosphate negative 1 7 1.16 0.3172 

Phosphoric acid positive 1 7 0.97 0.3573 
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Ornithine positive 1 7 0.79 0.4023 

Ribose positive 1 7 0.23 0.6430 

Xylitol negative 1 7 0.07 0.7935 

Ethanolamine positive 1 7 1.09 0.3310 

Glycerol positive 1 7 0.06 0.8184 

Glutamic acid positive 1 7 0.18 0.6826 

Mannose positive 1 7 0.88 0.3804 

Glycerol-3-phosphate negative 1 7 0.61 0.4607 

Methionine positive 1 7 0.05 0.8332 

Arabitol positive 1 7 0.15 0.7066 

Serine positive 1 7 0.15 0.7117 

Adonitol positive 1 7 0.00 0.9879 

 636 

F. dispersal propensity 637 

metabolite correlation Num DF Den DF F p 

Putrescine negative 1 7 8.64 0.0218 

Phosphoric acid negative 1 7 7.33 0.0303 

Lysine negative 1 7 6.38 0.0394 

Methionine negative 1 7 8.16 0.0245 

Xylitol positive 1 7 0.66 0.4436 

Phenylalanine negative 1 7 9.05 0.0197 

Fructose negative 1 7 7.29 0.0307 

Tryptophan negative 1 7 5.10 0.0585 

Glycerol-3-phosphate negative 1 7 3.67 0.0969 

Leucine negative 1 7 8.14 0.0246 
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Inositol negative 1 7 4.94 0.0615 

Glucose-6-phosphate positive 1 7 0.37 0.5608 

Mannose negative 1 7 0.02 0.9013 

 638 

G. sex ratio 639 

metabolite correlation Num DF Den DF F p 

GABA negative 1 7 3.26 0.1141 

Succinic acid positive 1 7 3.49 0.1038 

Glutamic acid positive 1 7 0.91 0.3716 

Glucose-6-phosphate positive 1 7 2.60 0.1511 

Sorbitol positive 1 7 0.83 0.3932 

Citric acid positive 1 7 1.82 0.2193 

Fructose-6-phosphate positive 1 7 1.91 0.2089 

Xylitol negative 1 7 0.26 0.6281 

Ethanolamine negative 1 7 1.20 0.3091 

Fructose negative 1 7 0.70 0.4294 

 640 

 641 
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A.7 pathway maps 642 

Pathway maps of the two pathways in which some of the metabolites identified in the GC-MS analysis (visualised with either red or blue 643 

rectangles) play an important role. In the aminoacyl-tRNA biosynthesis pathway, the metabolites in the red rectangles correlate 644 

negatively with latitude and the blue ones correlate negatively with dispersal propensity. In the valine, leucine and isoleucine 645 

biosynthesis pathway, the metabolites in the red rectangles correlate negatively with latitude. The maps were used from KEGG (Kyoto 646 

Encyclopedia of Genes and Genomes) (Kanehisa et al. 2015). 647 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 5, 2016. ; https://doi.org/10.1101/043208doi: bioRxiv preprint 

https://doi.org/10.1101/043208


 648 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 5, 2016. ; https://doi.org/10.1101/043208doi: bioRxiv preprint 

https://doi.org/10.1101/043208


58 

 

 649 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 5, 2016. ; https://doi.org/10.1101/043208doi: bioRxiv preprint 

https://doi.org/10.1101/043208


59 

 

A.8 regression for all populations versus for L. periclymenum only 650 

For those metabolites that gave significant results (see appendix A.6) for latitude or a specific life-history trait (daily fecundity, lifetime 651 

fecundity, egg survival, longevity, dispersal propensity or sex ratio) in the regressions run for all nine populations (hence for L. 652 

periclymenum, Euonymus europaeus, Sambucus nigra and Humulus lupulus), we repeated these regressions but then for L. 653 

periclymenum only (hence for only six populations –see appendix A.1). The table gives the slopes and p-values of both the regressions 654 

run for all populations (slope_all and p_all) and those run for L. periclymenum only (slope_per and p_per). 655 

 656 

trait metabolite slope_per slope_all p_per p_all 

latitude Proline -0.04354 -0.02733 0.0205 0.0164 

latitude Tryptophan -0.05170 -0.04474 0.1766 0.0383 

latitude Inositol -0.05628 -0.04890 0.1880 0.0389 

latitude Aspartic acid -0.01956 -0.02840 0.2757 0.0369 

latitude Glycine -0.00681 -0.03254 0.6500 0.0315 

latitude Malic acid -0.00703 -0.03858 0.6992 0.0372 

latitude Valine -0.02914 -0.02727 0.1726 0.0245 

latitude Isoleucine -0.03947 -0.02997 0.0947 0.0209 

latitude Quinic acid 0.02094 0.01594 0.2119 0.0500 

latitude Threonine -0.02807 -0.02700 0.2046 0.0301 

latitude Leucine -0.01727 -0.02270 0.3466 0.0359 

egg survival Adonitol -0.00651 -0.00258 0.0751 0.0237 

dispersal propensity Putrescine -0.00092 -0.00108 0.0854 0.0218 

dispersal propensity Phosphoric acid -0.10219 -0.13336 0.0492 0.0303 

dispersal propensity Lysine -0.00277 -0.00553 0.0942 0.0394 

dispersal propensity Methionine -0.00793 -0.01081 0.1461 0.0245 

dispersal propensity Phenylalanine -0.01652 -0.02201 0.1208 0.0197 

dispersal propensity Fructose -0.00266 -0.00221 0.0744 0.0307 

dispersal propensity Leucine -0.03211 -0.04462 0.1224 0.0246 

  657 
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