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Summary	13	

	14	

1. During	 range	 expansions	 or	 range	 shifts,	 species’	 life	 histories	 evolve	 due	 to	 changing	15	

selection	 pressures	 or	 spatial	 sorting.	 Despite	 an	 increasing	 number	 of	 studies	16	

documenting	 such	 life-history	 evolution,	 we	 lack	 a	 mechanistic	 understanding	 of	 the	17	

underlying	physiological	processes.	18	

2. We	used	a	powerful	metabolomics	approach	to	study	physiological	changes	associated	19	

with	 the	 recent	 range	 expansion	 of	 a	 model	 arthropod,	 the	 two-spotted	 spider	 mite	20	

Tetranychus	urticae.	21	

3. Mite	populations	were	sampled	in	the	field	along	a	latitudinal	gradient	from	range	core	22	

to	 range	 edge,	 and	 reared	 under	 common	 garden	 conditions	 for	 two	 generations.	23	

Thereafter,	we	obtained	metabolic	population	profiles	using	Gas	Chromatography-Mass	24	

Spectrophotometry	(GC-MS).	25	

4. We	 found	 gradual	 metabolic	 differentiation	 along	 the	 latitudinal	 gradient,	 indicating	26	

rapid	evolution	of	the	metabolome	in	association	with	range	expansion.	In	addition,	we	27	

observed	 that	 some	 of	 this	 differentiation	 covaried	 with	 the	 life-history	 evolution	28	

previously	found	to	be	associated	with	the	mite’s	range	expansion.	29	

5. Particularly,	 more	 northern	 populations,	 which	 evolved	 a	 higher	 dispersal	 tendency,	30	

showed	 lowered	 concentrations	 of	 several	 essential	 and	 non-essential	 amino	 acids,	31	

suggesting	 a	 downregulation	 of	 certain	metabolic	 pathways	 and	 a	 potential	 dispersal-32	

foraging	trade-off.	33	
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6. This	 study	 is	 the	 first	 to	 demonstrate	 how	metabolic	 adaptations	might	 underlie	 life-34	

history	evolution	during	range	expansion.	35	

Keywords:	 amino	 acids,	 common	 garden,	 GC-MS	 metabolomics,	 global	 change,	 latitudinal	36	

gradient,	Tetranychus	urticae	37	
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Introduction	39	

	40	

During	 range	 expansions	 or	 range	 shifts,	 species’	 life	 histories	 can	 evolve	 at	41	

contemporary	 timescales	 (Phillips,	 Brown	 &	 Shine	 2010).	 Changing	 environmental	 conditions	42	

force	 species	 to	 locally	 adapt	 and	 spatial	 assortment	 of	 dispersive	 phenotypes	 leads	 to	43	

increased	dispersiveness	at	 the	expanding/shifting	 range	edge	 (Shine,	Brown	&	Phillips	2011).	44	

These	 evolutionary	 processes	 of	 local	 adaptation	 and	 spatial	 selection	 affect	 key	 life-history	45	

traits	 like	 fecundity,	 development	 and	 dispersal	 (reviewed	 in	 Chuang	 &	 Peterson	 2015).	 We	46	

therefore	 expect	 range	 edge	 populations	 to	 exhibit	 physiological	 adaptations	 that	 underlie	47	

these	observed	trait	evolutions,	more	particularly	at	the	metabolism	level.	Indeed,	any	elevation	48	

of	the	performance	of	one	life-history	trait	augments	its	energetic	and	metabolite	demands	at	49	

the	expense	of	other	traits	(cfr.	the	“Y”	model	of	resource	allocation,	Van	Noordwijk	&	de	Jong	50	

1986;	 Zera	&	Harshman	 2001),	 thus	modifying	 the	 global	metabolic	 network	 operation.	 As	 a	51	

result,	life-history	differentiation	is	expected	to	be	associated	with	changes	in	the	metabolome	52	

(i.e.	the	set	of	circulating	metabolites	within	an	organism,	Oliver	et	al.	1998),	as	was	for	example	53	

found	for	ageing	in	Caenorhabditis	elegans	(Fuchs	et	al.	2010)	and	reproduction	in	the	Malaria	54	

Mosquito	(Fuchs	et	al.	2014).	55	

	56	

Metabolomics	 is	 a	 powerful	 technique	which	 can	be	 used	 as	 a	 candidate	 approach	 to	57	

explore	 an	 organism’s	 response	 to	 environmental	 variations	 and	 forthcoming	 environmental	58	

change	 (Hines	 et	 al.	 2007;	Miller	 2007;	 Viant	 2008;	 Bundy,	 Davey	 &	 Viant	 2009;	 Lankadurai,	59	

Nagato	 &	 Simpson	 2013;	 Hidalgo	 et	 al.	 2014).	 It	 provides	 information	 on	 the	 interaction	60	
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between	an	organism’s	physiology	and	its	natural	environment	by	identifying	metabolites	of	low	61	

to	moderate	molecular	mass	 within	 the	 whole	 body,	 cells,	 tissues	 or	 biofluids.	 Compared	 to	62	

other	–omics	technologies	like	genomics	and	transcriptomics,	metabolomics	has	the	significant	63	

advantage	to	focus	on	‘downstream’	cellular	functions	(Snart,	Hardy	&	Barrett	2015),	providing	64	

a	 more	 direct	 picture	 of	 the	 functional	 links	 between	 causes	 and	 consequences	 of	65	

environmental	 variation	 (Foucreau	 et	 al.	 2012).	 Essentially,	 metabolomics	 provides	 the	 link	66	

between	genotypes	and	phenotypes	(Fiehn	2002).	When	applied	on	individuals	originating	from	67	

different	localities	from	range	core	to	edge,	but	reared	for	several	generations	under	common	68	

garden	 conditions,	 it	 can	 provide	 insights	 on	 the	 physiological	 adaptations	 that	 underlie	 life-69	

history	evolution	during	range	expansion.	70	

	71	

Though	a	consideration	of	the	whole-organism	physiology	allows	a	better	understanding	72	

of	 how	 life-history	 evolution	 in	 natural	 populations	 might	 occur	 and	 why	 this	 evolution	 is	73	

sometimes	 constrained	 (Zera	et	 al.	 2001;	 Ricklefs	&	Wikelski	 2002),	 few	 studies	 documented	74	

metabolic	 variation	 in	 wild	 populations	 along	 natural	 gradients	 (Sardans,	 Penuelas	 &	 Rivas-75	

Ubach	2011).	 Instead,	most	 studies	assess	plastic	or	evolutionary	 responses	 to	environmental	76	

stressors	 by	 manipulating	 abiotic	 variables	 in	 controlled	 environments	 (Sardans	 et	 al.	 2011;	77	

Colinet	 et	 al.	 2012;	 Padfield	 et	 al.	 2016).	 Notable	 exceptions	 are	 the	 studies	 on	Arabidopsis	78	

lyrata	 that	 demonstrated	 distinct	 metabolic	 phenotypes	 along	 the	 species’	 latitudinal	79	

distribution,	with	a	typical	cold-induced	metabolome	in	the	north,	indicating	adaptation	to	the	80	

local	 climate	 (Davey	 et	 al.	 2008;	 Davey,	 Woodward	 &	 Quick	 2009),	 but	 no	 difference	 in	81	

metabolic	fingerprint	between	large	connected	versus	marginal	fragmented	populations	(Kunin	82	
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et	al.	2009).	These	studies,	however,	used	plants	that	were	grown	from	seeds	collected	directly	83	

from	the	field.	Environmental	maternal	effects	can	therefore	not	be	excluded.	In	fact,	so	far,	no	84	

study	 to	 our	 knowledge	 assessed	 true	 evolutionary	 changes	 in	 the	 metabolome	 of	 natural	85	

populations.	86	

	87	

The	 two-spotted	 spider	 mite,	 Tetranychus	 urticae	 Koch	 (Acari,	 Tetranychidae),	 a	88	

generalist	 pest	 species	 in	 greenhouses	 and	 orchards,	 expanded	 its	 European	 range	 from	 the	89	

Mediterranean	 to	at	 least	 southern	Scandinavia	 (K.	H.	P.	Van	Petegem,	personal	observation)	90	

during	the	last	decades	(for	more	information,	see	Carbonnelle	et	al.	2007).	Previous	research	91	

with	 T.	 urticae	 showed	 quantitative	 genetic	 life-history	 differentiation	 along	 this	 latitudinal	92	

gradient,	with	daily	 fecundity,	 lifetime	 fecundity	 and	 longevity	decreasing	 from	 range	 core	 to	93	

edge,	 and	egg	 survival,	dispersal	propensity	and	 sex	 ratio	 increasing	 from	 range	 core	 to	edge	94	

(Van	Petegem	et	al.	2015).	We	expected	this	life-history	differentiation	to	be	associated	with	an	95	

enhancement	of	different	metabolic	pathways	and	thus	distinct	metabolic	phenotypes.	96	

	97	

Using	 a	 metabolomics	 approach,	 the	 current	 study	 aimed	 to	 test	 (i)	 whether	 the	98	

metabolome	 of	 T.	 urticae	 evolved	 during	 its	 recent	 range	 expansion;	 i.e.	 whether	 a	 gradual	99	

change	in	the	mite’s	metabolic	phenotype	is	present	from	range	core	to	range	edge,	(ii)	whether	100	

this	metabolic	differentiation	is	associated	with	the	up-	or	downregulation	of	certain	metabolic	101	

pathways	 and	 (iii)	 whether	 this	 evolutionary	 change	 in	 the	 species’	 metabolic	 phenotype	 is	102	

associated	with	the	life-history	differentiation	that	has	occurred	during	its	range	expansion.	 	103	
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Materials	and	methods	104	

	105	

Field	sampling	and	common	garden	106	

In	August	2012,	we	hand-sampled	mites	from	nine	localities	(one	population	per	locality)	107	

along	an	800	km	latitudinal	gradient	from	north-western	Belgium	to	northern	Denmark	(Fig.	1).	108	

Mites	were	found	on	infested	leaves	of	Lonicera	periclymenum	(European	honeysuckle)	at	high	109	

latitudes	and	on	Euonymus	europaeus	 (European	 spindle),	Humulus	 lupulus	 (common	hop)	or	110	

Sambucus	nigra	(European	black	elderberry)	at	lower	latitudes.	(More	information	is	provided	in	111	

online	 supporting	 information	 SI.1.)	 In	 the	 laboratory,	 fifty	 to	 several	 hundreds	 of	mites	 per	112	

population	were	put	on	 separate	whole	bean	plants	 (Phaseolus	 vulgaris,	 variety	Prélude)	 and	113	

kept	under	controlled	conditions	at	room	temperature	with	a	light-regime	of	16:8	LD.	After	one	114	

generation,	ten	adult	female	mites	per	population	were	taken	from	their	bean	plant	and	put	on	115	

a	piece	of	bean	leaf	on	wet	cotton	in	a	Petri	dish.	Two	such	Petri	dishes	were	prepared	for	each	116	

population.	 The	 Petri	 dishes	were	 then	 used	 to	 create	 a	 pool	 of	 synchronised	 two-day	 adult	117	

female	 mites	 for	 each	 population.	 (Two-day	 adult	 females	 were	 preferred,	 since	 these	 are	118	

significantly	 bigger	 than	 fresh	 adults.)	 For	 this	 purpose,	 all	 females	were	 allowed	 to	 lay	 eggs	119	

during	24	hours	in	a	climate	room	at	27	°C,	with	a	light-regime	of	16:8	LD.	The	resulting	same-120	

aged	eggs	were	subsequently	left	to	develop	until	they	were	two-day	adult	mites,	of	which	only	121	

females	(which	are	easily	recognized)	were	selected.	As	mites	were	kept	in	common	garden	for	122	

two	generations,	all	direct	environmental	effects	were	excluded.	123	

	124	

Metabolomic	profiling	using	Gas	Chromatography-Mass	Spectrophotometry	(GC-MS)	125	
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As	we	wanted	to	scan	metabolites	 from	different	metabolite	 families	 (because	of	their	126	

various	but	 connected	 roles	 in	general	organismal	physiology),	we	used	GC-MS	metabolomics	127	

(Koek	et	al.	2011;	Khodayari	et	al.	2013).	For	each	population,	we	constructed	the	metabolomic	128	

profile	of	five	replicated	pooled	sets	of	fifty	two-day-adult	female	mites.	Each	set	was	placed	in	129	

a	microtube	and	snap-frozen	at	-80	°C.	To	be	able	to	measure	true	quantities	of	the	metabolites,	130	

it	 is	 important	 to	 standardise	 the	 initial	masses	of	each	extract.	However,	even	when	pooling	131	

fifty	 individuals,	 the	 masses	 of	 the	 replicates	 were	 too	 low	 to	 be	 accurately	 measured.	 Yet,	132	

previous	 research	 showed	 that	 female	 adult	 size	 does	 not	 differ	 among	 the	 nine	 sampled	133	

populations	(Van	Petegem	et	al.	2015).	We	could	thus	confidently	use	and	interpret	metabolite	134	

concentrations	 in	 nmol/sample.	 The	 samples	 were	 first	 homogenized	 in	 ice-cold	 (-20	 °C)	135	

methanol-chloroform	 (2:1),	 using	 a	 tungsten-bead	 beating	 equipment	 (RetschTM	 MM301,	136	

Retsch	GmbH,	Haan,	Germany)	at	25	Hz.	After	addition	of	ice-cold	ultrapure	water,	the	samples	137	

were	centrifuged	at	4,000	g	for	5	min	at	4	°C.	The	upper	aqueous	phase	was	then	transferred	to	138	

new	 chromatographic	 glass	 vials,	 dried-out	 and	 resuspended	 in	 30	 μl	 of	 20	 mg	 L-1	139	

methoxyamine	 hydrochloride	 (Sigma-Aldrich,	 St.	 Louis,	 MO,	 USA)	 in	 pyridine	 and	 incubated	140	

under	 automatic	 orbital	 shaking	 at	 40	 °C	 for	 60	 min.	 Subsequently,	 30	 μl	 of	 N-methyl-N-141	

(trimethylsilyl)	 trifluoroacetamide	 (MSTFA;	 Sigma,	#394866)	was	added	and	 the	derivatisation	142	

was	conducted	at	40	°C	for	60	min	under	agitation.	The	samples	were	then	analysed	in	a	GC-MS	143	

system	 (Thermo	 Fischer	 Scientific	 Inc.,	 Waltham,	 MA,	 USA),	 using	 the	 same	 settings	 as	 in	144	

Khodayari	et	al.	(2013).	For	this	purpose,	one	microliter	of	each	sample	was	injected	in	the	GC-145	

MS	system	using	the	split	mode	(split	ratio:	25:1).	After	that,	the	selective	ion	monitoring	(SIM)	146	

mode	 (electron	energy:	 -70	eV)	was	used	to	search	 for	 the	sixty	primary	metabolites	 that	are	147	
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most	often	found	in	insect	samples	and	that	were	included	in	our	spectral	database(see	online	148	

supporting	information	SI.2	for	a	complete	overview	of	these	sixty	metabolites).	This	database	149	

consisted,	 amongst	 others,	 out	 of	 sixteen	 amino	 acids	 and	 eleven	 sugars.	 The	 SIM	 mode	150	

ensured	 a	 precise	 annotation	 of	 the	 detected	 peaks.	 The	 calibration	 curves	 were	 set	 using	151	

samples	consisting	of	sixty	pure	reference	compounds	at	concentrations	of	1,	2,	5,	10,	20,	50,	152	

100,	 200,	 500,	 750,	 1000,	 1500	 and	 2000	 μM.	 Chromatograms	 were	 deconvoluted	 using	153	

XCalibur	v2.0.7	software	(Thermo	Fischer	Scientific	Inc.,	Waltham,	MA,	USA).	Finally,	metabolite	154	

concentrations	were	quantified	according	to	their	calibration	curves.	155	

	156	

Statistics	157	

A	total	of	forty-three	metabolites	were	identified.	In	a	first	step,	we	examined	whether	a	158	

general	pattern	in	the	concentrations	of	these	metabolites	exists	along	the	invasion	gradient	of	159	

our	study	species	 (i.e.	whether	 the	metabolic	profile	 is	gradually	changing	 from	range	core	 to	160	

edge).	More	specifically,	we	examined	whether	the	metabolite	concentrations	could	be	sorted	161	

as	a	function	of	latitude	or	as	a	function	of	one	of	the	six	life-history	traits	that	were	previously	162	

shown	 to	 covary	 with	 latitude	 (daily	 and	 lifetime	 fecundity,	 egg	 survival,	 longevity,	 dispersal	163	

propensity	 and	 sex	 ratio,	 see	 Van	 Petegem	et	 al.	 2015).	 The	metabolite	 concentrations	were	164	

first	 auto-scaled	 and	 cube	 root-	 (when	 looking	 for	 covariation	 with	 daily	 fecundity	 and	 egg	165	

survival)	or	log-	(for	latitude)	transformed	(no	transformation	was	needed	for	lifetime	fecundity,	166	

longevity,	 dispersal	 propensity	 and	 sex	 ratio).	 Then,	 a	 Partial	 Least	 Squares	 –	 Discriminant	167	

Analysis	 (PLS-DA)	 was	 performed	 to	 examine	 interpopulation	 variation	 in	 the	 metabolite	168	

concentrations.	 This	multivariate	 analysis	 was	 performed	 using	MetaboAnalyst	 3.0	 (Xia	 et	 al.	169	
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2009;	Xia	et	al.	2012;	Xia	et	al.	2015).	By	ordering	the	populations	according	to	their	latitude	or	170	

according	to	one	of	the	six	life-history	traits	covarying	with	latitude,	it	was	possible	to	check	for	171	

trends	 in	 the	 metabolite	 concentrations.	 To	 check	 the	 significance	 of	 this	 interpopulation	172	

variation,	permutation	tests	(2,000	permutations)	were	run	using	separation	distance	(B/W)	test	173	

statistics.	 The	 PLS-DA	 provided	 Variable	 Importance	 in	 Projection	 (VIP)	 scores,	 which	 were	174	

subsequently	used	to	select	the	most	important	metabolites	in	explaining	the	variation	among	175	

populations	 (low	 VIP-scores	 depict	 a	weak,	 and	 high	 scores	 a	 strong	 global	 pattern).	 Using	 a	176	

step-wise	procedure,	only	those	metabolites	with	a	VIP	score	of	at	least	1.2	(1.0	for	egg	survival	177	

because	 removing	 the	metabolites	with	 a	 score	between	1.0	 and	1.2	 resulted	 in	 a	decreased	178	

percentage	 of	 variation	 explained)	 for	 the	 first	 and/or	 second	 component	 were	 retained	 for	179	

further	analysis	(compared	to	0.8	in	Tenenhaus	1998).		180	

In	a	second	step,	univariate	analyses	were	performed	to	test,	metabolite	by	metabolite,	181	

whether	 the	global	patterns	obtained	 in	 the	previous	 step	could	be	 confirmed.	Using	SAS	9.4	182	

(SAS	 Institute	 Inc.	 2013),	 linear	 regressions	 were	 run	 for	 all	 those	 metabolites	 that	 were	183	

retained	during	 the	above	described	multivariate	analysis.	As	our	study	 is	explorative	 (though	184	

on	 highly	 standardised	 samples	 regarding	 environmental	 conditions	 during	 development),	we	185	

wanted	to	avoid	false	negatives	(with	the	chance	of	making	a	Type	II	error).	We	therefore	did	186	

not	 correct	 for	multiple	 comparisons	 (e.g.	 Bonferroni	 correction).	 Given	 the	 large	 number	 of	187	

statistical	tests,	such	a	correction	would	have	greatly	diminished	our	statistical	power.		188	

In	a	final	step,	a	metabolic	pathway	analysis	was	performed	in	Metaboanalyst	3.0	(Xia	et	189	

al.	2009;	Xia	et	al.	2012;	Xia	et	al.	2015)	with	those	metabolites	that	showed	significant	effects	190	

in	 the	univariate	analyses.	These	pathway	analyses	were	performed	with	a	Fisher’s	exact	 test	191	
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algorithm,	 which	 we	 ran	 using	 the	 metabolic	 pathways	 of	Drosophila	 melanogaster	 (i.e.	 the	192	

closest	 relative	 of	 T.	 urticae	 available	 in	 the	 program).	 The	 algorithm	 calculates	 the	 match	193	

(number	of	hits)	between	the	metabolites	in	a	dataset	and	the	totality	of	metabolites	present	in	194	

a	specific	pathway.	Furthermore,	it	uses	a	pathway	topology	analysis	to	compute	a	value	for	the	195	

impact	 of	 these	 metabolites	 on	 the	 pathway.	 As	 multiple	 comparisons	 are	 made,	 corrected	196	

Holm	p-values	are	provided.	This	final	step	linked	the	selected	individual	metabolites	with	one	197	

or	 more	 metabolic	 pathways,	 thus	 identifying	 those	 pathways	 that	 were	 potentially	 up-	 or	198	

downregulated	during	the	range	expansion	of	T.	urticae.	199	

	 	200	
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Results	201	

	202	

Latitudinal	covariation	203	

The	PLS-DA	showed	a	separation	between	the	nine	populations,	which	was	visible	on	3-D	204	

score	plots	 (see	online	 supporting	 information	SI.3).	Of	 the	 forty-three	 identified	metabolites,	205	

seventeen	had	VIP	scores	of	at	 least	1.2	and	were	thus	retained	in	the	analysis	(Fig.	2A).	They	206	

showed	a	clear	general	trend	from	high	values	in	southern	to	low	values	in	northern	populations	207	

(Fig.	2A).		208	

In	 the	 subsequent	 linear	 regressions,	 thirteen	 of	 these	 seventeen	 metabolite	209	

concentrations	decreased	significantly	with	 increasing	 latitude	(Fig.	2A).	Among	these	thirteen	210	

metabolites,	six	essential	amino	acids,	five	non-essential	amino	acids	(see	Rodriguez	&	Hampton	211	

(1966)	for	an	overview	of	all	essential	amino	acids	in	T.	urticae	–we	defined	tryptophan,	which	is	212	

not	included	in	this	overview,	as	essential)	and	one	intermediate	of	the	citric	acid	cycle	can	be	213	

mentioned.		214	

Pathway	analysis	 indicated	that	of	 these	thirteen	metabolites,	eleven	play	a	significant	215	

role	in	the	aminoacyl-tRNA	biosynthesis	(total:	67,	hits:	11,	impact=0,	Holm	p=2.6066E-10)	and	216	

four	 in	 the	valine,	 leucine	and	 isoleucine	biosynthesis	 (total:	13,	hits:	4,	 impact=0.9999,	Holm	217	

p=8.5705E-4)	(both	pathway	maps	are	provided	in	online	supporting	information	SI.6).	218	

	219	

Life	history	covariation	220	
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The	PLS-DA	showed	a	separation	between	the	nine	(eight	for	egg	survival,	for	which	no	221	

data	 were	 available	 for	 population	 SVI)	 populations,	 which	 is	 visible	 on	 3-D	 score	 plots	 (see	222	

online	supporting	information	SI.3).	Of	the	forty-three	identified	metabolites,	only	those	which	223	

explained	most	of	the	interpopulation	variation	for	a	certain	life-history	trait	(high	VIP	score,	see	224	

above)	 were	 retained	 for	 further	 analysis.	 Fourteen	 were	 retained	 for	 daily	 and	 sixteen	 for	225	

lifetime	 fecundity,	 twenty	 were	 retained	 for	 egg	 survival,	 eleven	 for	 longevity,	 thirteen	 for	226	

dispersal	propensity	and	ten	for	sex	ratio	(Fig.	2B-G).	Figure	2	(B-G)	shows	clear	indications	of	a	227	

positive	correlation	between	lifetime	fecundity	and	its	sixteen	selected	metabolites.	In	contrast,	228	

figure	 2	 (B-G)	 suggests	 a	 negative	 correlation	 between	 the	 twenty	 and	 thirteen	 metabolites	229	

selected	 for,	 respectively,	 egg	 survival	 and	dispersal	 propensity.	 For	 daily	 fecundity,	 longevity	230	

and	sex	ratio,	no	clear	trends	were	visible.		231	

In	 the	 subsequent	 linear	 regressions,	 performed	 with	 the	 selected	 metabolites,	 one	232	

significant	 correlation	 was	 found	 for	 daily	 fecundity	 (a	 polyol),	 four	 for	 egg	 survival	 (one	233	

essential	 amino	 acid,	 two	 non-essential	 amino	 acids	 and	 one	 intermediate	 of	 the	 citric	 acid	234	

cycle),	eight	for	dispersal	propensity	(including	five	essential	amino	acids)	and	two	for	sex	ratio	235	

(including	 one	 intermediate	 of	 the	 citric	 acid	 cycle).	 No	 significant	 results	 were	 found	 for	236	

lifetime	fecundity	or	longevity	(Fig.	2B-G).		237	

Pathway	 analysis	 indicated	 that	 three	 of	 the	 four	 metabolites	 that	 were	 negatively	238	

correlated	 with	 egg	 survival	 play	 a	 significant	 role	 in	 the	 alanine,	 aspartate	 and	 glutamate	239	

metabolism	 (total:	 23,	 hits:	 3,	 impact=0.2770,	 Holm	 p=0.0032)	 and	 that	 five	 of	 the	 eight	240	

metabolites	which	negatively	correlated	with	dispersal	propensity	play	a	significant	role	 in	the	241	

aminoacyl-tRNA	biosynthesis	(total:	67,	hits:	5,	impact=0,	Holm	p=0.0041)	(both	pathway	maps	242	
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are	 provided	 in	 online	 supporting	 information	 SI.6).	 No	 associated	 pathways	 were	 found	 for	243	

daily	fecundity	and	sex	ratio.	244	

	 	245	
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Discussion	246	

	247	

Of	 the	 forty-three	metabolites	 identified	 in	 the	GC-MS	analysis,	 twenty-one	correlated	248	

with	 latitude	 and/or	 one	 or	 more	 life-history	 traits.	 More	 specifically,	 thirteen	 showed	 a	249	

significantly	reduced	concentration	with	increasing	latitude,	eight	showed	a	negative	correlation	250	

with	dispersal	propensity,	four	showed	a	negative	correlation	with	egg	survival,	two	showed	a	251	

correlation	 (one	positive,	one	negative)	with	sex	 ratio	and	one	showed	a	negative	correlation	252	

with	 daily	 fecundity.	 Of	 the	 twenty-one	 different	metabolites,	 thirteen	 amino	 acids	 and	 one	253	

intermediate	of	the	citric	acid	cycle	could	be	shown	to	play	an	important	role	in	the	aminoacyl-254	

tRNA	biosynthesis,	the	valine,	leucine	and	isoleucine	biosynthesis	and/or	the	alanine,	aspartate	255	

and	glutamate	metabolism	(see	pathway	maps	provided	in	online	supporting	information	SI.6).	256	

	257	

Our	 results	 indicate	 that	 the	 life-history	 evolution	 which	 occurred	 during	 the	 recent	258	

range	expansion	of	T.	urticae	 (Van	Petegem	et	al.	2015)	was	not	associated	with	 shifts	 in	 the	259	

mites’	energetic	metabolism,	but	rather	with	shifts	in	its	anabolism.	While	our	spectral	database	260	

contained	eleven	 sugars,	not	a	 single	 sugar	accounted	 for	 the	 separation	among	populations.	261	

This	 suggests	 that	 the	 genes	 involved	 in	 encoding	 the	 mite’s	 energetic	 metabolism	 (i.e.	262	

glycolysis,	 citric	 acid	 cycle,	 which	 typically	 involve	 sugars)	 have	 not	 been	 affected	 during	 the	263	

range	expansion	of	T.	urticae.	 Instead,	 the	observed	differentiation	 in	 the	mites’	metabolome	264	

probably	 involved	 evolutionary	 changes	 in	 the	 mites’	 anabolism,	 where	 amino	 acids	 play	 a	265	

central	 role	 in	 the	 metabolic	 turnover	 of	 proteins.	 In	 more	 northern	 and	 more	 dispersive	266	

populations,	the	aminoacyl-tRNA	biosynthesis	was	downregulated.	In	this	pathway,	aminoacyl-267	
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tRNA	 is	 formed	 by	 charging	 tRNA	with	 an	 amino	 acid.	 The	 aminoacyl-tRNA	 then	 serves	 as	 a	268	

substrate	 in	 protein	 synthesis	 or	 plays	 one	 of	 its	many	 other	 roles	 in,	 for	 example,	 cell	 wall	269	

formation	or	antibiotic	biosynthesis	(Raina	&	Ibba	2014).	In	accordance,	the	valine,	leucine	and	270	

isoleucine	biosynthesis,	important	for	protein	synthesis	as	well	(Ahmed	&	Khan	2006;	Tamanna	271	

&	Mahmood	2014),	was	downregulated	in	more	northern	populations.	We	did	nonetheless	find	272	

one	possible	connection	with	the	energetic	metabolism.	In	populations	with	a	high	egg	survival,	273	

the	 alanine,	 aspartate	 and	 glutamate	 metabolic	 pathway,	 which	 acts	 directly	 in	 fuelling	274	

energetic	metabolism	(Sacktor	1955;	Maity	et	al.	2012),	was	downregulated.	275	

	276	

The	affected	amino	acids	showed	decreased	concentrations	toward	higher	latitudes	and	277	

showed	a	negative	correlation	with	the	dispersal	propensity	and	egg	survival	of	T.	urticae,	both	278	

of	which	increase	towards	the	north.	While,	in	general,	amino	acids	are	considered	fundamental	279	

for	egg	production	and	thus	fecundity	(Tulisalo	1971;	O'Brien,	Fogel	&	Boggs	2002;	Mevi-Schutz	280	

&	Erhardt	2005;	Fuchs	et	al.	2014,	but	see	Heagle	et	al.	2002),	not	a	single	correlation	was	found	281	

for	fecundity,	despite	a	clear	positive	trend	in	the	PLS-DA.	Of	the	fourteen	affected	amino	acids,	282	

eight	were	essential	and	six	non-essential.	While	the	non-essential	amino	acids	could	have	been	283	

synthesized	 de	 novo	 from	 glucose,	 the	 essential	 amino	 acids	 could	 only	 have	 been	 supplied	284	

through	the	mite’s	diet	(Rodriguez	et	al.	1966).	Though	all	mites	were	kept	in	common	garden,	285	

mites	from	northern,	more	dispersive	populations	were	found	to	contain	lower	essential	amino	286	

acid	 concentrations.	 In	 line	 with	 the	 recent	 finding	 of	 Fronhofer	 &	 Altermatt	 (2015)	 that	 a	287	

dispersal-foraging	trade-off	 leads	to	a	reduced	exploitation	of	resources	at	range	margins,	our	288	

results	 could	 indicate	 that	 northern,	 dispersive	 mites	 evolved	 lower	 essential	 amino	 acid	289	
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concentrations	because	they	consume	 less	of	 their	 food	source.	We	should,	however,	keep	 in	290	

mind	 that	 metabolites	 were	 measured	 only	 at	 one	 point	 in	 time	 and	 from	 whole	 organism	291	

samples.	We	 are	 therefore	missing	 the	 temporal	 fluctuations	 of	 the	metabolome	over	 a	 day,	292	

and	our	data	therefore	represent	only	a	snapshot	of	the	existing	balance	in	terms	of	metabolite	293	

demand	among	metabolic	pathways.	294	

	295	

An	 important	challenge	 for	metabolomics	 is	understanding	 the	 relative	contribution	of	296	

environmental	and	genetic	factors	in	shaping	an	organism’s	metabolic	phenotype	(Bundy	et	al.	297	

2009).	 In	 the	 current	 study,	mites	were	 kept	 in	 common	 garden	 for	 two	 generations,	 during	298	

which	they	were	reared	under	optimal	conditions.	As	such,	only	genetic	factors	were	retained.	299	

Though	genetic	 factors	are	considered	 less	determining	 than	environmental	 factors	 (Robinson	300	

et	al.	2007;	Frank,	Noerenberg	&	Engel	2009;	Matsuda	et	al.	2012),	our	results	demonstrate	a	301	

clear	 genetic	 signal	 of	 metabolic	 differentiation.	 With	 our	 common	 garden	 setup,	 we	 could	302	

show	that	the	metabolome	of	T.	urticae	underwent	persistent	changes	through	local	adaptation	303	

and/or	spatial	selection	along	the	species’	invasion	gradient.	Interestingly,	as	metabolic	changes	304	

were	 mainly	 linked	 with	 latitude	 and	 dispersal	 propensity,	 the	 metabolic	 differentiation	 is	305	

anticipated	to	be	mostly	caused	by	spatial	selection	and	not	local	adaptation.	306	

	307	

This	 explorative	 study	 is	 the	 first	 that	 specifically	 examined	whether	 range	 expansion	308	

results	 in	 evolutionary	 changes	 in	 an	 organism’s	 metabolism.	 Despite	 non-stressful	 common	309	

garden	 conditions,	 approximately	 forty	 per	 cent	 of	 the	 identified	 metabolites	 showed	 rapid	310	

evolutionary	 changes.	 Though	 effects	 were	 small,	 our	 results	 clearly	 indicate	 that	 the	311	
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metabolome	 of	 T.	 urticae	 underwent	 genetic	 changes	 during	 the	 species’	 recent	 range	312	

expansion.	By	linking	this	metabolic	differentiation	with	the	life-history	evolution	observed	in	a	313	

previous	study,	we	could	furthermore	show	that	for	dispersal	propensity	and	egg	survival,	some	314	

of	the	trait	variation	was	associated	with	changes	in	the	mite’s	metabolism.	 	315	
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Figure	legends	445	

	446	

Figure	1	447	

The	map	shows	the	nine	field	collection	sites,	which	are	situated	 in	Belgium,	The	Netherlands	448	

and	 Denmark.	 The	 graph	 shows	 the	 yearly	 number	 of	 frost	 days	 and	 the	 average	 yearly	449	

temperature	 for	 each	 collection	 site	 along	 the	 latitudinal	 gradient.	 These	 climatic	 data	 were	450	

obtained	from	FetchClimate	(Microsoft	Research,	Cambridge)	and	were	averaged	over	a	period	451	

of	35	years	(1980	to	2015).	Below	the	graph,	arrows	for	each	of	six	life-history	traits	depict	their	452	

trend	 along	 the	 latitudinal	 gradient	 (increase,	 decrease).	 (For	more	 detailed	 information,	 see	453	

online	supporting	information	SI.1	and	Van	Petegem	et	al.	2015.)	454	

	455	

Figure	2	456	

Variable	importance	plots	resulting	from	the	multivariate	analyses	(PLS-DA)	on	the	metabolomic	457	

data.	These	plots	 list	those	metabolites	that,	based	on	their	VIP	score,	contribute	the	most	to	458	

explaining	the	variation	among	the	nine	populations	in	our	dataset	(ODK,	KVS,	CAS,	LAU,	HED,	459	

BLA,	TVE;	SVI,	SKA).	The	metabolites	are	ordered	from	high	to	low	VIP	scores	for	component	1	460	

(an	overview	off	all	scores	for	component	1	and	2	is	provided	in	online	supporting	information	461	

SI.4).	The	colour	codes	 indicate	 the	relative	concentration	of	a	given	metabolic	compound	for	462	

each	 population	 (green=low	 concentration,	 to	 red=	 high	 concentration).	 The	 populations	463	

themselves	 are	ordered	according	 to	 their	 latitude	 (A),	 or	 from	 low	values	 at	 the	 left	 to	high	464	

values	at	the	right	for	a	given	life-history	trait	(daily	(B)	or	lifetime	(C)	fecundity,	egg	survival	(D),	465	

longevity	 (E),	 dispersal	 propensity	 (F)	 or	 sex	 ratio	 (G)).	 For	 example,	 in	 Fig.	 3A,	 LAU	 is	 the	466	
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population	with	the	highest	concentration	of	proline	and	ODK	is	the	southernmost	population	467	

(lowest	latitude).	At	the	bottom	of	each	plot,	the	p-value	resulting	from	the	permutation	test	is	468	

given.	At	the	left	side	of	each	plot,	an	asterisk	next	to	a	metabolite	name	indicates	a	significant	469	

correlation	between	this	metabolite	and	latitude	or	the	denoted	life-history	trait.	For	example,	470	

in	Fig.	3A,	proline	shows	a	significant	negative	correlation	with	 latitude.	 (A	detailed	overview,	471	

including	 p-	 and	 F-values,	 of	 all	 significant	 linear	 regressions	 is	 found	 in	 online	 supporting	472	

information	SI.5.)	473	
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Figures	475	

	476	

Figure	1	477	
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Figure	2	479	
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