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Abstract

One goal of human genetics is to understand the genetic basis of disease, a challenge

for diseases of complex inheritance because risk alleles are few relative to the vast set

of benign variants. Risk variants are often sought by association studies in which allele

frequencies in cases are contrasted with those from population-based samples used as

controls. In an ideal world we would know population-level allele frequencies, releasing
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researchers to focus on case subjects. We argue this ideal is possible, at least theoreti-

cally, and we outline a path to achieving it in reality. If such a resource were to exist,

it would yield ample savings and would facilitate the effective use of data repositories

by removing administrative and technical barriers. We call this concept the Universal

Control Repository Network (UNICORN), a means to perform association analyses

without necessitating direct access to individual-level control data. Our approach to

UNICORN uses existing genetic resources and various statistical tools to analyze these

data, including hierarchical clustering with spectral analysis of ancestry; and empirical

Bayesian analysis along with Gaussian spatial processes to estimate ancestry-specific

allele frequencies. We demonstrate our approach using tens of thousands of controls

from studies of Crohn’s disease, showing how it controls false positives, provides power

similar to that achieved when all control data are directly accessible, and enhances

power when control data are limiting or even imperfectly matched ancestrally. These

results highlight how UNICORN can enable reliable, powerful and convenient genetic

association analyses without access to the individual level data.

1 Introduction

To detect genetic variants affecting risk for complex disease, the ideal association study

would contrast a large number of affected subjects to an even larger set of population-based

samples used as controls. Ideally these controls would be so numerous and so well-matched

to cases, ancestrally, that the power to detect risk variants would be limited solely by the

size of the case sample. This article outlines an approach to turn this ideal into reality.

The challenges in accruing a large control sample are numerous. It requires a substan-

tial portion of the research budget; while data repositories, such as dbGaP [1, 2], contain

genetic data from tens of thousands of potential control samples, using these data requires

considerable and independent effort from each research team; and issues such as population

structure and genotyping platform require additional work before an adequately-controlled
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association test can be performed. Family-based studies obviate concerns about ancestry

[3, 4], but they have other drawbacks [5, 6, 7, 8, 9].

Instead we show here that it is theoretically possible to build a web resource that enables

research teams to focus on maximizing the value of their case sample, by providing control

allele frequency information that is optimally matched to the available cases. Additionally,

information can be exchanged via a web server similar to the existing Exome Aggregation

server (exac.broadinstitute.org), without revealing individual genetic information. We call

such a resource the Universal Control Repository Network (UNICORN), because it provides

matched control data for a variety of ancestries. In our vision, and to ensure the confiden-

tiality of both cases and controls, no case genotype information is passed to UNICORN, nor

will the controls data processed to produce UNICORN be accessible to this resource.

Our approach to building UNICORN employs the spectral graph approach [10], which has

similarities to principal component analysis [11, 12], to obtain a hierarchical representation

of ancestry, where individuals are clustered into increasingly finer ancestry spaces. Using a

Bayesian model we infer allele frequencies over all such clusters, always borrowing strength

across the entire hierarchy to maximize power. We then perform a second layer of inference

within clusters to model spatial variation. This step picks up fine-grained ancestry structure

that the hierarchical clustering did not by assuming that deviations from a cluster-wide

average follow a Gaussian process with a covariance structure that is inferred from the

ancestry space. This model is appropriate because it is flexible enough to accommodate

smooth allele frequency fluctuations with varying degrees of spatial correlation.

Our results on both simulated data and imputation-based genotype level data from seven

studies of Crohn’s disease show that UNICORN has the potential to greatly improve power

in genetic association tests. First we show that UNICORN not only controls false positives,

but it makes efficient use of the control data, providing power similar to a setting in which

all control data are directly accessible to the researcher. We then show that UNICORN

can improve power relative to a carefully matched case-control study simply by using all
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available control information, even though the additional controls are not perfectly matched

to cases.

2 Subjects and Methods

2.1 Overview of UNICORN

The steps involved in building our version of UNICORN (henceforth simply UNICORN)

and performing an association study are now outlined (Figure 1). Existing publicly available

collections of control data determine a common genetic ancestry space onto which cases

and controls can be projected independently. GemTools [10, 13, 14] constructs ancestry

spaces and performs such projections. The projected controls are then used to estimate the

control minor allele frequency distribution (MAFD) over the ancestry space. For efficiency

of computations, the MAFD would be precomputed and stored for application whenever

users request control information. To query the repository, researchers project their cases

onto the public control ancestry space and submit the locations to UNICORN. Based on

the pre-computed surface, the system will infer allele frequencies as well as the degree of

uncertainty associated with the estimates at all relevant locations and return the results to

the users, who can then proceed with an association test, such as the one we describe in the

sequel.

To estimate the MAFD, UNICORN employs a combination of empirical Bayesian analysis

across a hierarchical clustering of the controls and, for localized ancestry regions, a Gaussian

process model of the minor allele frequency (Figure 2). To visualize the algorithm in action

we utilize the the Europeans in the Population Reference Sample (POPRES) [15] (dbGaP

accession number phs000145.v4.p2), which yields an ancestry map that approximates the

geographic map of Europe [16, 17]. Two SNPs in LCT (lactase persistence) and OCA2

(hair, skin and eye color) provide examples of UNICORN’s MAFD for SNPs under selection,

and provide an illustration of clines in allele frequency across Europe. Intensity of color
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displays allele frequency estimates that vary smoothly across the map (Figure 3).

Conceptually UNICORN aims to use as many control samples as justifiable, based on

ancestry, to estimate the MAFD associated with each case sample. To motivate this model,

consider two different matched case-control studies: one with equal numbers of cases and

controls and the other with ten controls for each case. In the first instance, the statistical

power is driven equally by cases and controls; for the latter, the number of cases is the key

determinant for power. For UNICORN, the matching of controls to cases is determined by

how many controls are located near each case in ancestry space. Regardless of the number of

cases and controls, if there were very few controls similar in ancestry to cases, any test will

have a large variance and little power. Alternatively, if there are many controls that are close

in ancestry space to each case, then the variance of the test will be dominated by the case

sample size. UNICORN seeks to achieve power by using information on allele frequencies

from a very large sample of controls.

2.2 Ancestry Mapping via GemTools

Dimension reduction techniques such as principal-component analysis (PCA) are tradition-

ally used to model complex genetic structure and to control for population stratification

[11, 12, 18, 19, 17, 20]. These approaches often require many dimensions to describe the

ancestry space, and this is not ideal for downstream steps of UNICORN. Instead, our algo-

rithm first discovers clusters of subjects with relatively homogeneous ancestry, which then

require fewer eigenvectors to represent ancestry within a cluster. To achieve this purpose

we use GemTools [13], a software tool based on a spectral graph approach [10] quite sim-

ilar to PCA. We note, however, that many popular ancestry mapping techniques could be

successfully paired with UNICORN in place of GemTools.

A first step in the UNICORN algorithm involves plotting both case and control samples

onto a common ancestry map without data exchanging hands (Figure 1). This is achieved by

generating an ancestry map using a publicly available repository, called the “base sample”,
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and then projecting cases and controls onto this map via the Nyström approximation [21,

22, 23, 24]. When samples are projected onto a given ancestry map, it accurately reflects

their ancestry only if the base sample spans the full range of ancestries included in the new

samples [21]. Individuals with unrepresented ancestry will be projected into the available

range and they will be falsely represented as more similar to the base sample. Thus, as

with any genetic association study, the case collection should be restricted to samples with

ancestry similar to the available control samples.

The aim of the spectral graph approach is to obtain a useful eigenmap of the genetic

ancestry present in a sample. The population is represented as a weighted graph with

vertices denoting individuals and weights denoting genetic similarity. Define the matrix Y

such that yik is the minor allele count for the ith subject at the kth SNP. Center and scale

the columns of Y . Instead of proceeding with computing eigenvectors and eigenvalues of

Y Y t define the weight matrix W as wij =
√
ytiyj if ytiyj ≥ 0 and 0 otherwise for similarity

between the ith and jth subjects. Setting a threshold on Y Y t to guarantee non-negative

weights creates a skewed distribution of weights, so the choice of a square-root transformation

leads to more symmetric distributions. This transformation also increases the robustness

to outliers. Let the degree of vertex i be di =
∑n

j=1wij and define the diagonal matrix

D = diag(d1, ..., dn). The normalized graph Laplacian matrix for W is defined as 1 − L,

where L = D−1/2WD−1/2. Let νi and ui be the eigenvalues and eigenvectors of 1−L and let

λi = max{0, 1− νi}. We can then map the ith subject onto an s-dimensional ancestry space

according to:
[
λ
1/2
i u1(i), ..., λ

1/2
s us(i)

]
. See [10] for further details.

GemTools builds on this spectral graph approach to construct eigenmaps and provide a

hierarchical clustering of individuals based on ancestry [13]. To speed up computation, it is

useful to avoid the cost of calculating the inner product matrix Y Y t and then performing

a spectral decomposition on a large matrix. GemTools uses a divide and conquer approach

that clusters individuals of similar ancestry and then finds eigenmaps for each cluster. Ho-

mogeneous clusters of individuals are derived via Ward’s k-means algorithm. In addition
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to reducing computation time, this approach focuses on fine scale structure across clusters,

leading to more informative maps than those resulting from a brute force computation of a

single eigenmap of the entire dataset [10, 14].

New subjects are mapped onto an existing map via Nyström projection. Let Y represent

the scaled and centered allele count vectors for the initial n subjects. Let z be the scaled

allele count vector of a new individual we wish to project. We define the edge weights be-

tween the new subject and an existing individual as wij =
√
zty if zty ≥ 0 and 0 otherwise.

The vertex degree of z is d(z) = w(z, z) +
∑n

i=1w(z, yi). Then the eigenvector coordi-

nates of z for dimensions k = 1, ..., s are uk(z) = λk−1
∑n

i=1 L(z, yi)uk(yi), where L(z, yi) =

[d(z)d(yi)]
−1/2w(z, yi). Nyström projection plays a critical role in UNICORN since it allows

two datasets to be mapped to the same ancestry space without the need for data sharing.

To highlight the importance of choosing a representative base sample, we estimate the

eigenvectors using two different base samples derived from POPRES [15] and HGDP [25]

European samples (Figure 4) [21]. When using the HGDP populations as a base (4a), the

axes do not differentiate the POPRES sample. Rather the points clump together in the

center of the eigenspace because their differences are dwarfed by the differences in the more

diverse HGDP sample. Likewise, we found that when using the POPRES sample as a base

(4b), the axes do not capture the strong differences in the highly diverse HGDP data.

2.3 Cluster-wide Inference

UNICORN estimates ancestry-specific allele frequencies using an efficient, flexible semi-

parametric model. Frequencies are modeled in two stages to account for global and local

structure. In the first stage, the data are partitioned into approximately homogeneous ances-

try clusters based on eigenanalysis [14]. Next, each of these clusters is subsequently described

by a secondary eigenanalysis that models local ancestry within a cluster. In stage two, local

variability is modeled over the ancestry space using a Gaussian spatial process. The key to

modeling local variation in allele frequency is to obtain a parsimonious representation of the
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ancestry not unlike a geographic map. GemTools recursively partitions the subjects until

the clusters are approximately homogeneous, as judged by the leading eigenvalues [14]. Con-

sequently two eigenvectors are sufficient to describe the residual ancestry differences within

clusters at the final stage.

Each stage of the model is amenable to a simple statistical model that accounts for

allele frequency variation over the ancestry space and records variability in the allele fre-

quency estimate. In the first stage, the allele counts are modeled using a beta-binomial

model with variance a function of the well-known genetic parameter FST . Assume we have

a data set in which GemTools detects n subpopulations. At this stage we want to find good

estimates of the true cluster-wide allele frequencies pi. We model each of these frequencies as

pi ∼ Beta

(
pa(1− FST )

FST
,
(1− pa)(1− FST )

FST

)
. (1)

Following an empirical Bayesian setting, we use equation 1 as a prior for the cluster-wide

allele frequency and use the data to guide us in selecting appropriate values for the two

hyperparameters pa and FST . Let p̂i be the average allele count in cluster i. Although p̂i

is an unbiased estimator of pi, it can have a large variance if few individuals reside in the

cluster. From equation 1 we have

pa = E(pi) ≈
1

n

n∑
i=1

p̂i
def
= p̂a, (2)

and

FST =
var(pi)

pa(1− pa)
≈ var(p̂i)

p̂a(1− p̂a)
def
= F̃ST . (3)

This estimator can be improved by taking into account linkage disequilibrium, the tendency

of nearby alleles to descend from the same ancestral chromosome. The FST of nearby alleles

must thus be similar, creating a smooth FST function across the genome. However F̃ST can

exhibit excessive variation which is alleviated by local smoothing through kernel regression
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based on genomic location.

Using equations 1-3 we estimate the prior for pi through

p̂i ∼ Beta

(
p̂a(1− F̂ST )

F̂ST
,
(1− p̂a)(1− F̂ST )

F̂ST

)
. (4)

Assume we observe the genotype vector y for the ni individuals located in cluster i. Then

the posterior distribution of p̂i is

p̂i|y ∼ Beta

(
p̂a(1− F̂ST )

F̂ST
+

ni∑
j=1

yj,
(1− p̂a)(1− F̂ST )

F̂ST
+ 2ni −

ni∑
j=1

yj

)
. (5)

This is the distribution for the cluster-wide allele frequency that we will proceed to use for

local inference.

From equation 5 it follows that the posterior mean of p̂i is

mean(p̂i|y) =

p̂a(1−F̂ST )
2niF̂ST

+
∑ni
j=1 yj

2ni

1−F̂ST
2niF̂ST

+ 1
, (6)

the posterior variance is

var(p̂i|y) =

[
p̂a(1−F̂ST )
2niF̂ST

+
∑ni
j=1 yj

2ni

] [
(1−p̂a)(1−F̂ST )

2niF̂ST
+ 1−

∑ni
j=1 yj

2ni

]
[
1−F̂ST
2niF̂ST

+ 1
]2 [

1

F̂ST
+ 2ni

] , (7)

and the posterior p̂i|y is a consistent estimator of the true minor allele frequency pi.

2.4 Within-cluster Inference

In the second stage, local structure is quantified using models made popular in the geo-

statistics/kriging literature [26]. To describe the model we require the following notation:

Y (x) = minor allele count at location x in the eigenspace; P (x) = minor allele frequency at

location x; S(x) = deviation from cluster-wide average allele frequency at location x (spa-
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tial structure); β = cluster-wide log odds of minor allele frequency; σ2 = variance of the

stationary Gaussian process (SGP); and φ = rate at which the correlation ρ between val-

ues of S at different locations decays with increasing distance u. Kriging methods consider

a stochastic process S = {S(x) : x ∈ Rp}, called the signal, whose realized values are not

directly observed. We do observe Y , the vector of allele counts, which are located in the

eigenspace indexed by x. We assume that the distribution of Y (x) depends on S(x) and

that the allele counts are a noisy version of S for a given set of locations xi, i ∈ 1, ..., n. The

goal is to predict S(x) at new locations where the cases have been sampled. To model local

structure in an ancestry space we assume that deviations from a cluster-wide average follow

a stationary Gaussian process with mean 0 and a covariance structure that will be inferred

from the data. Consider the Bayesian kriging setup:

Y (x)|S(x) ∼ Bin [2, P (x)]

log

[
P (x)

1− P (x)

]
= β + S(x)

S ∼ SGP
[
0, σ2, ρ(u) = e−uφ

]
.

(8)

This model is appropriate because it is flexible enough to accommodate smooth allele fre-

quency fluctuations with varying degrees of spatial correlation. With this two-stage model

we can make use of our hierarchical clustering and at the same time adapt local inference

to the variability present in the data, all in a Bayesian framework. Inferences are performed

via Metropolis-Hastings. Ultimately, the distribution of the MAF is well approximated by a

function that captures the mean and variance of the estimate.

The variance parameters of UNICORN, σ2 and φ, determine how fast allele frequencies

fluctuate over the ancestry space. We can use the available ancestry space to make an in-

formed choice of priors for these parameters. To extract the necessary variability information

from the data we use a well-established method from the kriging literature: the variogram
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[26]. The theoretical variogram γ(x, y) describes the spatial dependence in a random field:

γ(x, y) =
var[Y (x)− Y (y)]

2
. (9)

If the random field is stationary and isotropic, which is assumed here, then the theoretical

variogram can be rewritten as:

γ(u) =
1

2
{var[Y (x+ u)− Y (x)]}

=
1

2
E
{

[Y (x+ u)− Y (x)]2
}
− 1

2
E [Y (x+ u)− Y (x)]2 .

(10)

If E[Y (x+ u)] = E[Y (x)], thus under the assumption that there exists no spatial structure,

the theoretical variogram is routinely estimated via the empirical variogram:

γ̂(u) =
1

2|N(u)|
∑

[Y (xi)− Y (xj)]
2, (11)

where the sum is over N(u) = {(i, j) : xi − xj = u} and |N(u)| is the number of distinct

elements of N(u). But since we expect spatial structure to be present, we cannot compute

the empirical variogram via equation 11 directly. Instead we estimate the spatial structure

in Y first through linear regression in the ancestry space, and then we use the residuals

and equation 11 to compute a residual empirical variogram. The next step uses both the

theoretical and empirical variogram to derive values for the variance parameters. Because

an algebraic expression of the theoretical variogram is complicated, we use simulation to find

appropriate estimates of the variance parameters. Priors for σ2 and φ are then chosen so

that their mean equals the value derived from the variogram analysis.

2.5 Association Test

Each case sample is mapped to a cluster in the hierarchical tree and an ancestry position x

within the cluster. Combining the results from our cluster-wide inference and within-cluster
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inference (Figure 2) we can obtain the MAFD for this case

P (x) =
eβ+S(x)

1 + eβ+S(x)
, (12)

where S(x) is the spatial structure determined via the Gaussian process model (within-cluster

inference) and β is based on the beta-binomial model (cluster-wide inference). Specifically,

this expression determines the mean, E[P (x)], and the variance, var[P (x)], of the MAFD(x)

which is required to perform an association test.

For an association study we sample minor allele counts [Y (x1), . . . , Y (xn)] for a sample

of n cases. Under the null hypothesis (no association) we assume that Y (x) ∼ Bin(2, P (x)).

It follows that E[Y (x)] = E[E[Y (x)|P (x)]] = 2E[P (x)] and

var[Y (x)] = E[var(Y (x)|P (x))] + var[E(Y (x)|P (x))] (13)

= 2E[P (x)(1− P (x))] + 4var[P (x)]. (14)

The null distribution of Ȳ follows from the central limit theorem:

Ȳ ≈ N

[
2

n

n∑
i=1

E[P (xi)],
1

n2

n∑
i=1

2E[P (xi)(1− P (xi))] + 4var[P (xi)]

]
. (15)

Z-scores and subsequently p-values can be computed for association tests based on equation

15. This result shows that if many controls become available for each case (decreasing

var[P (x)]), then the variance of the null distribution will be dominated by the binomial

sampling variance in the cases. In this setting the statistic reduces approximately to a test

comparing the minor allele frequency in cases to a known population quantity and the power

of the test is largely determined by the number of cases sampled. At the other extreme, if

only one matched control is available for each case, then the statistic is equivalent to the usual

2-sample test and has twice the variance attainable by UNICORN with a large sample of

controls. Provided the cases are well matched to a large UNICORN control sample the power
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can be approximated using a genetic power calculator with control:case ratio set suitably

high, say ten.

3 Results

3.1 Analysis of POPRES Data

To illustrate UNICORN we use data from POPRES [15], from which we selected 160,000

high-quality SNPs (MAF > 1% and less than 1% missing genotypes) and 1000 individuals

of European ancestry (each subject must have no more than 1% missing genotypes). The

hierarchical ancestry structure was determined via GemTools, yielding an ancestry map that

approximates the geographic map of Europe [27, 16].

For any particular study we expect the UNICORN repository will include 10-20 times as

many control samples as cases. Moreover it is likely that only a fraction of these controls

will be suitably matched in ancestry to the cases. Thus to mimic the realistic performance of

UNICORN using the POPRES data, we needed to select a small case sample with a particular

regional distribution. Specifically we randomly selected 60 POPRES samples of French and

Swiss ancestry to serve as cases (6% of the total). For this constructed case-control sample,

we simulated causal variants of varying allele frequencies and odds ratios. We first performed

a matched-control association test, where the selected case individuals were matched to

the nearest controls in the ancestry space. We then analyzed the simulated variants via

UNICORN and found that it delivered more powerful results even when compared to a

standard case-control association test comparing 60 cases to 600 ancestry matched controls

(Figure S1).

3.2 Application to IBD Data

The large meta-analysis study of Crohn’s disease (CD), including 5,956 cases and 14,927

controls [28], provides a realistic test of the validity and power of the UNICORN approach.
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This study is perfect for detailed investigation for two reasons: first, it provides a very large

sample of data that include the challenges of genotypes imputed across multiple arrays; and

second, all SNPs with moderately promising signals were genotyped for 75,000 individuals

in a validation study to reveal the true risk status of many SNPs.

To assess the performance of UNICORN we performed two experiments. (1) A direct

comparison between UNICORN and an analysis of the full set of cases and controls. In

this experiment we learn if UNICORN efficiently utilizes all the data in the control sample

by comparing the power of the two tests. We do not expect UNICORN to have greater

power, but we can determine if it loses power compared to a direct analysis of the data.

To determine if UNICORN produces false positives we permute case and control labels and

look for deviations from the expected null distribution. (2) We mimic a realistic application

of UNICORN by focusing on a particular study within the larger sample, complete with

ancestry matched cases and controls. In this experiment we compare performance of a direct

analysis of the matched case-control study to UNICORN applied to the same cases but with

the full unselected sample of controls, excluding the matched controls.

Experiment 1. To obtain a baseline for power in the CD dataset we performed a tra-

ditional logistic regression analysis on the full sample of cases and controls, adjusting for

ancestry using principal components (LRegr). For comparison UNICORN used the full sam-

ple of controls to construct the MAFD for each case, and then performed an association test

using all cases. The results for the two methods were extremely similar (Figure 5a); notably

all SNPs that yielded significant results for LRegr (p < 5 × 10−8) also yielded significant

results for UNICORN. This shows that in spite of the fact that UNICORN only handled the

control data indirectly via the MAFD, it maintains full power to detect associations signals.

Moreover, each of the significant SNPs was also significant in the validation study [28].

To examine the overall validity of the tests we computed the λ1000 genomic control factors

[29, 30] and found both tests performed well: λ = 1.03 for UNICORN and λ = 1.02 for

LRegr. To further evaluate the validity of UNICORN in the absence of polygenic effects we
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permuted the case and control labels to remove association [31]. The distribution of p-values

produced by UNICORN is well calibrated to meet null expectations (Figure 5b) and the

genomic control factor for this distribution is λ = 1.01. In total this experiment shows that

UNICORN makes efficient use of the full data without inducing false positives.

Finally, to illustrate the impact of each level of population structure we analyzed these

data 3 ways: (1) ignoring the effect of ancestry altogether; (2) modeling only the global

structure using the first level of UNICORN; and (3) modeling the global and local structure

with UNICORN. As expected, not account for ancestry leads to a P-P plot with strong

evidence of overdispersion; incorporating the global level of UNICORN leads to a marked

improvement in the distribution of test statistics; and finally modeling additional structure

at the local level leads to even greater reduction of false positives (Figure S2).

Experiment 2. UNICORN is designed to permit analysis of a case-only sample by utilizing

controls drawn from a repository. To evaluate performance in this setting we extracted the

IBD-CD Belgian study for further investigation. This study consists of a sample of 666

CD cases and 978 controls of similar ancestry. A case-only sample applying UNICORN

would have access to all 14,927 controls minus the 978 Belgium controls. For comparison we

contrasted the results of analysis of this well matched study using LRegr with UNICORN

using all non-Belgium controls.

Not surprisingly no SNP is genome-wide significant for this modest sample of cases for

either analysis. To compare the power, we evaluated the behavior of the association tests for

the 163 SNPS that showed genome-wide significance in the validation study [28]. Taking this

as truth, we favor whichever method yields a smaller p-value in the comparison (Figure 5c).

For 70% of these loci the evidence for association from the UNICORN analysis was stronger

than the LRegr analysis, and for the 30% where it was not superior the tests were nearly

identical for both approaches with neither test showing a signal. One surprising result was

that the most highly significant SNP in the validation study exhibited a p-value 6 orders of

magnitude smaller with UNICORN than LRegr (Figure 5c). This SNP has a relatively large

15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 10, 2016. ; https://doi.org/10.1101/043166doi: bioRxiv preprint 

https://doi.org/10.1101/043166


FST .

Based on the P-P plot, UNICORN p-values detect a modest signal for many SNPs. To

assess the validity of the test we permuted the case and control labels to remove association

and found that the overall distribution of the UNICORN test was appropriate (Figure 5d,

red). This experiment supports the great potential of UNICORN to increase power without

incurring false positive findings.

3.3 Detection and Removal of False Positives

One of the major challenges in the analysis of genetic data is controlling for the technical vari-

ability across different SNP arrays, imputation pipelines and genotyping approaches. This

challenge is equally great when applying UNICORN; however careful attention to process

and quality control (QC) can greatly enhance the reliability of the analysis.

Ultimately the UNICORN repository will consist of an assimilation of samples from tens,

if not hundreds, of individual studies. Hence it will certainly include multiple SNP arrays.

To avoid exacerbating study-specific biases, all samples in the repository will be imputed

using a common pipeline. As proof of concept, imputation was performed jointly for the CD

controls used here, which stem from seven different studies and arrays. After first performing

the QC procedures described below, no significant array bias was detected in the study [28].

The IBD study demonstrates that a homogeneous control collection can be assembled from

different sources, provided care is taken with the imputation and QC. Likewise, imputation

on the cases should follow the same pipeline as implemented for UNICORN controls.

Based on our investigation of challenges due to imputation and array-based biases we have

identified a reliable approach that is quite similar to the technical QC and assay evaluation

in use for routine genetic analysis. The objective is to identify SNPs with unusually small

p-values relative to their linkage disequilibrium (LD) neighbors. Such signals are almost

always due to technical artifacts. SNPs with p-values not supported by their LD neighbors

can be identified using either nonparametric regression or a hidden Markov model via DIST

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 10, 2016. ; https://doi.org/10.1101/043166doi: bioRxiv preprint 

https://doi.org/10.1101/043166


[32]. Both procedures successfully flag SNPs with outlier p-values.

To illustrate this approach we used individuals with European ancestry from the HGDP

dataset as cases in comparison with the CD controls as part of a UNICORN association

analysis. Any signal detected by such a test stems from technical artifacts and should be

flagged as such. Prior to QC, UNICORN did indeed return some signals on chromosome

1 (Figure 6a,b). We ran a nonparametric kernel regression with binwidth of 2Mbp across

the series of −log10 p-values and flagged results as noise if the smoothed value differed from

the actual value by more than one order of magnitude. This procedure eliminated all the

isolated signals (Figure 6a,c).

Another precaution can be employed to remove false positives due to differing SNP ar-

rays. A comparison between UNICORN controls and controls measured on the same array

as the cases should reveal SNPs that cannot be reliably compared across these arrays. Any

SNPs exhibiting a signal in these experiments should be removed from further investiga-

tion. Moreover, SNPs identified by internal comparisons across chips in development of the

UNICORN repository will be noted on the UNICORN web site.

In conclusion, we note that similar to any large genetic association study, UNICORN

can yield false positives due to technical artifacts. This challenge arises in part because

UNICORN requires imputation in the control data sets to obtain a common set of SNPs

across arrays for subsequent analyses. When the case sample is genotyped on an array that

is not well represented in the control sample the challenge is greater; however, we have found

that post analysis cleaning can remove false positives that arise.

4 Discussion

An essential feature of a genetic association study is a large control sample, chosen to rep-

resent the case sample in ancestry [33, 34, 35]. Although suitable control samples can

sometimes be obtained from public repositories, it typically requires substantial analytical
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effort to process controls along with the case sample. The goal of UNICORN is to obviate

this need, at least partially, by automatically providing equivalent information from controls

collected previously, for example controls deposited in dbGaP. For each case sample, the

algorithm uses available controls to estimate the allele frequencies matched by ancestry. In

this way UNICORN will facilitates case-control studies, even if the study has characterized

only case samples, and thereby optimize the discovery of risk variants. By providing a control

sample that is ancestrally matched to cases, without requiring resources or effort from the

user, UNICORN provides advantages even for case-control studies for which a set of control

samples has already been collected. In our proposed implementation, the end user would

not experience significant compute time because the MAFD can be pre-computed and easily

queried based on the user’s cases.

Not sampling controls as part of the study design precludes the direct inclusion of covari-

ates in the analysis. In some settings a properly chosen covariate can greatly enhance power,

while in other scenarios covariates can reduce power [36] or bias the analysis [37]. Even in the

former setting when covariates are useful, UNICORN can provide a more powerful analysis

due to the enhanced estimate of the population allele frequency derived from a much larger

sample of controls (Figure S3). Moreover, if covariates are measured in the cases, it is pos-

sible to perform conditional genetic analysis on subsets of the data using UNICORN. Such

an analyses contrasts the SNP allele frequencies in a subset of the cases with the estimated

population allele frequency of ancestry-matched controls.

A population control sample by definition includes some subjects that should be classi-

fied as cases. This will reduce power, but it will not generate an excess of false positives,

and the impact on power increases with the frequency of the disorder under investigation.

When screened controls have not been collected, however, it is common practice to rely on

population controls and UNICORN has no special weaknesses or strengths with regard to

this issue.

The current analysis features samples of European ancestry, but the framework is ap-
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plicable to other ancestries as well. Due to its multiple levels of inference, UNICORN can

accommodate populations of quite complex structure, such as that found from African pop-

ulations [38], as well as the simpler structure of European populations. Our experiments

suggest that UNICORN models ancestry as effectively as PCA, hence, we expect it will per-

form well in other ancestries. Analyses of recently admixed populations are more challenging,

however, and will require new additions to the UNICORN methodology.

In addition to the potential gain in power, UNICORN also has the potential to strengthen

subject privacy. The ability to identify an individual from their anonymous genetic informa-

tion in a public database threatens the principle of subject confidentiality [39]. Knowledge

of an individual’s genotype at relatively few SNPs is sufficient to uniquely identify a person;

indeed this is the basis of DNA forensics. Protected repositories such as dbGap exist so that

genome-wide data may be shared among responsible parties without exposing subjects to

a loss of privacy. But a second level of privacy loss is also of concern. Based on reported

allele frequencies in cases and controls, given a very large number of SNPs, it is possible to

determine with high probability if an individual is a case or control in the study, or not in the

study at all [40, 41, 42]. By restricting the exchange of genetic data to ancestry coordinates,

UNICORN could overcome both of these challenges. Additionally, our grid-based approach,

where we return frequency estimates from the pre-computed grid point closest to the case

instead of the actual case location, provides another layer of security for the control identities

by adding a small degree of randomness to our predictions.

Results from the Exome Aggregation Consortium (ExAC) motivate this work. ExAC

has made substantial progress toward the goal of assembling exome sequencing data from a

variety of large-scale sequencing projects to make summary data widely available, with over

60,000 individuals worth of data available [43]. Currently, ExAC provides allele frequency

information for these samples. Through UNICORN, we aim to enhance this concept by gen-

erating ancestry matched MAFD estimates for additional subjects. Although there are more

technical challenges involved with sequence data than genotyping arrays, the ExAC project
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provides support to the belief that these data can be successfully aggregated and harmo-

nized for use in UNICORN. We are thus currently in the process of extending the UNICORN

framework, which will require further development and refinement for rare variation.

The UNICORN database and web server are in preparation and a limited version focusing

on populations of European descent is slated for release late in 2016. If successful, UNICORN

will dramatically improve access to the control resources stored in repositories such as dbGaP

and can also make use of control samples from the same study as well as from other studies.

We predict that UNICORN will hasten the discovery of genetic variation conferring risk

for disease in three ways: by providing ancestrally-matched allele frequencies; by its careful

integration of data sets; and by making genetic association analysis simpler.

5 Appendix

The covariance between two points of the Gaussian process at distance u is σ2ρ(u) = σ2

euφ
.

Notice that φ is the characteristic length-scale of our process: it determines how far apart

two individuals must be for the allele frequency to change significantly.

Inference in this model is performed via MCMC. Write S = [S(x1), ..., S(xn)] for the

vector of values of S at the observed locations xi and S∗ = [S(x∗1), ..., S(x∗n)] for the vector

of values of S at the target locations x∗i for which predictions are requested. Define P and

P ∗ similarly and let Y be the genotype data at the observed locations.

A cycle of the MCMC algorithm involves first sampling from (σ2, φ)|(Y ,S, β), then from

Si|(S−i,Y , σ2, φ, β) and finally from β|(Y ,S, σ2, φ). Here S−i denotes the vector S without

its ith element. Note that since conditionally on S the random variables Yi are mutually

independent we have:

p(Y |S, β) =
n∏
j=1

f(yj|sj, β). (16)
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Using equation 16 we have:

p((σ2, φ)|Y ,S, β) = p((σ2, φ)|S) ∝ p(S|σ2, φ)p(σ2, φ) (17)

p(Si|S−i,Y , σ2, φ, β) ∝ p(Y |S, β)p(Si|S−i, σ
2, φ) = p(Si|S−i, σ

2, φ)
n∏
j=1

f(yj|sj, β) (18)

p(β|(Y ,S, σ2, φ)) = p(β|(Y ,S)) ∝ p(Y |S, β)p(β) = p(β)
n∏
j=1

f(yj|sj, β). (19)

From the Gaussian process assumption it follows that p(S|σ2, φ) has a multivariate normal

density (mean 0 and covariance matrix σ2e−Uφ where U is the Euclidean distance matrix

for the locations referred to by S) and p(Si|S−i, σ
2, φ) has a univariate normal distribu-

tion. Also, we know that f(yj|sj, β) follows a binomial distribution (with success probability

eβ+sj

1+eβ+sj
) and p(β) and p(σ2, φ) are the priors. Being able to draw from all these distributions

enables us to apply the following component-wise Metropolis-Hastings algorithm.

1. Set initial values of β, σ2 and φ by drawing from their respective priors. Set the starting

value for each Si to 0.

2. Update (σ2, φ)

• choose a new value (σ2
′
, φ
′
) from some appropriate proposal distribution q((σ2

′
, φ
′
)|(σ2, φ))

• using equation 17 accept (σ2
′
, φ
′
) with probability

min

{
1,
p[(σ2

′
, φ
′
)|Y ,S, β] · q[(σ2, φ)|(σ2

′
, φ
′
)]

p[(σ2, φ)|Y ,S, β] · q[(σ2
′
, φ′)|(σ2, φ)]

}
= (20)

min

{
1,
p(S|σ2

′
, φ
′
) · p(σ2

′
, φ
′
) · q[(σ2, φ)|(σ2

′
, φ
′
)]

p(S|σ2, φ) · p(σ2, φ) · q[(σ2′ , φ′)|(σ2, φ)]

}
= (21)

min

{
1,
p(S|σ2

′
, φ
′
) · p(σ2

′
) · p(φ′) · qσ2(σ2|σ2

′
) · qφ(φ|φ′)

p(S|σ2, φ) · p(σ2) · p(φ) · qσ2(σ2
′ |σ2) · qφ(φ′ |φ)

}
, (22)

where the last equality holds if σ2 and φ are independent.
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• the prior distributions for σ2 and φ as well as the jumping distributions qσ2 and

qφ can be gammas.

3. Update S

• choose a new value S
′
i for the ith component of S from the transition probability

function q(S
′
i|Si) = p(S

′
i|S−i, σ

2, φ)

• using equation 18 accept S
′
i with probability

min

{
1,
p(S

′
i|S−i,Y , σ2, φ, β) · q(Si|S

′
i)

p(Si|S−i,Y , σ2, φ, β) · q(S ′i|Si)

}
= (23)

min

1,

[∏i−1
j=1 f(yj|sj, β)

]
· f(yi|s

′
i, β) ·

[∏n
j=i+1 f(yj|sj, β)

]
· p(S ′i|S−i, σ

2, φ) · q(Si|S
′
i)[∏i−1

j=1 f(yj|sj, β)
]
· f(yi|si, β) ·

[∏n
j=i+1 f(yj|sj, β)

]
· p(Si|S−i, σ2, φ) · q(S ′i|Si)

 =

(24)

min

{
1,
f(yi|s

′
i, β)

f(yi|si, β)

}
. (25)

• repeat the previous two steps for all i = 1, ..., n to complete updating S

4. Update β

• choose a new value β
′

from some appropriate proposal distribution q(β
′ |β)

• using equation 19 accept β
′

with probability

min

{
1,
p(β

′ |(Y ,S, σ2, φ)) · q(β|β ′)
p(β|(Y ,S, σ2, φ)) · q(β ′ |β)

}
= (26)

min

{
1,

∏n
j=1 f(yj|sj, β

′
) · p(β ′) · q(β|β ′)∏n

j=1 f(yj|sj, β) · p(β) · q(β ′ |β)

}
. (27)

• the prior distribution of β is determined by the cluster-wide allele frequency in-

ference step, and the jumping distribution q can be a normal distribution

Repeat steps 2-4 (with an optional burn-in period and thinning) to obtain draws from the
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equilibrium distributions. We are now able to draw from the posteriors of σ2, φ, β,S. We

proceed with:

5. Draw a sample from the multivariate Gaussian distribution of S∗|(S,Y , σ2, φ, β) where

the values of S, σ2, φ, β are those generated in steps 2-4. Using the conditional inde-

pendence structure of our model this step reduces to drawing from S∗|(S, σ2, φ). The

Gaussian process assumption implies that:

S∗|(S, σ2, φ) ∼MVN(ΣT
12Σ

−1
11 S,Σ22 − ΣT

12Σ
−1
11 Σ12), (28)

where

Σ11 = var(S) (29)

Σ12 = cov(S,S∗) (30)

Σ22 = var(S∗). (31)

Each of these matrices can be computed based on the variance properties defined by

σ2 and φ.

6. Compute P ∗ based on the current values of S∗ and β:

P (x∗i ) =
eβ+S(x

∗
i )

1 + eβ+S(x
∗
i )
. (32)

Iterating steps 5-6 gives us the predictive distribution P (x∗i ) for all points at which we want

to infer allele frequencies.

6 Supplemental Data

Supplemental Data include one figure and one list of consortia authors.
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8 Web Resources

The R package GemTools together with its documentation can be dowloaded from:

http://wpicr.wpic.pitt.edu/WPICCompgen/GemTools/GemTools.htm
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Figure 1: Overview of the UNICORN model. The UNICORN pipeline starts with a public
base set of controls and constructs the corresponding base control ancestry space. All sub-
sequent cases and controls can be projected independently via GemTools onto this space.
This approach ensures that, having only knowledge of the base set, new individuals can be
compared to existing ancestries. An extended set of controls is then projected onto the base
control ancestry space, which is used to estimate the minor allele frequency distribution
(MAFD) over the ancestry space. To query the repository, researchers project their cases
onto the base control ancestry space and submit the resulting coordinates to the UNICORN
server. Users then receive control allele frequencies as well as the degree of uncertainty as-
sociated with these estimates for all relevant locations, based on the pre-computed MAFD.
Users can then proceed with an association test. Users only need to submit ancestry coordi-
nates and the system only returns frequency inferences for the corresponding locations (red
arrows). No other information is exchanged.
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Figure 2: Overview of the inference levels. The Global step operates on a cluster-wide
resolution, providing estimates for entire clusters based on a beta-binomial model of allele
frequencies. The Local step operates within clusters, providing localized estimates across the
ancestry space spanned by the individuals in each cluster. This step models allele frequencies
as spatial processes operating within clusters. The Global and Local inference modules
complement each other, the former picking up larger fluctuations in allele frequencies, and
the latter generating a fine map that would otherwise have been hidden by the strong signal
at the Global level.
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Figure 3: Clines detected by UNICORN in the POPRES data for two SNPs under strong
selection. Intensity of color displays allele frequency estimates that vary smoothly across the
map. (a) Cline of a SNP within the LCT region (lactase persistence); (b) Cline of a SNP
within the OCA2 region (hair, skin and eye color).

32

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 10, 2016. ; https://doi.org/10.1101/043166doi: bioRxiv preprint 

https://doi.org/10.1101/043166


−0.10 0.00 0.05 0.10

−0
.1
5

−0
.0
5

0.
05

EV1

EV
2

−0.05 0.00 0.05

−0
.0
5

0.
00

0.
05

EV1
EV

2

a b

Figure 4: Importance of the choice of base sample for ancestry maps. When projecting new
samples onto an existing ancestry map it is crucial that the base sample spans the full range
of ancestries present in the new samples. If the projected samples contain unrepresented
ancestries, they will still be mapped onto the ancestry range of the base set, thus distorting
of their true background and leading to strongly heterogenous clusters that do not accurately
reflect the allele frequencies of the new samples. (a) Base = HGDP, projected = POPRES.
In this scenario we get poor resolution of ancestries in the POPRES sample. This set projects
as a clump, since it looks very homogeneous relative to the more diverse HGDP base set. (b)
Base = POPRES, projected = HGDP. In this scenario, the HGDP ancestries not present in
the POPRES base set are still projected within the POPRES ancestry range.
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Figure 5: IBD analysis using UNICORN vs. logistic regression controlling for ancestry
(LRegr). (a) Comparison between UNICORN and LRegr on the full 7-study CD dataset.
All significant SNPs detected by LRegr were also significant in UNICORN, and each of
these SNPs was significant in the validation study as well. (b) UNICORN null distribution
obtained by permuting affection status in the full case-control dataset. The resulting dis-
tribution of p-values produced by UNICORN is well calibrated, indicating a good control
of false positives. (c)-(d) UNICORN applied only to cases from the Belgian study using all
controls excluding that study. (c) Difference in p-value magnitude between UNICORN and
LRegr applied only to Belgian case-controls. Results are shown only for SNPs that were
found significant in the validation study [28]. All SNPs showing a substantial differences
favored UNICORN, particularly the SNP that had the highest signal in [28]. (d) P-P plot
for UNICORN (blue) compared to the null distribution with permuted phenotype labels
(red). The blue P-P plot shows some signal was detected and the red P-P plot shows that
UNICORN yields an appropriate null distribution when there is no signal present.
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Figure 6: Detection and removal of false positives using nonparametric smoothing. We
created a UNICORN study by using individuals selected for European ancestry from the
HGDP dataset and comparing them to the CD controls. Any signals in this comparison are
likely due to technical artifacts. (a) P-P plot of UNICORN results before (black) and after
smoothing (green) to reduce noise. Notice the strong presence of signal in the black P-P plot
despite the expectation of no signal when comparing two control data sets. (b) Manhattan
plot of UNICORN p-values before smoothing exhibits isolated signals without support in
the immediate LD neighborhood. (c) Isolated signals are removed after smoothing.
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