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Abstract	

What	mechanisms	support	our	ability	to	estimate	durations	on	the	order	of	minutes?	

Behavioral	studies	in	humans	have	shown	that	changes	in	contextual	features	lead	to	

overestimation	of	past	durations.	Based	on	evidence	that	the	medial	temporal	lobes	and	

prefrontal	cortex	represent	contextual	features,	we	related	the	degree	of	fMRI	pattern	

change	in	these	regions	with	people’s	subsequent	duration	estimates.	After	listening	to	

a	radio	story	in	the	scanner,	participants	were	asked	how	much	time	had	elapsed	

between	pairs	of	clips	from	the	story.	Our	ROI	analysis	found	that	the	neural	pattern	

distance	between	two	clips	at	encoding	was	correlated	with	duration	estimates	in	the	

right	entorhinal	cortex	and	right	pars	orbitalis.	Moreover,	a	whole-brain	searchlight	

analysis	revealed	a	cluster	spanning	the	right	anterior	temporal	lobe.	Our	findings	

provide	convergent	support	for	the	hypothesis	that	retrospective	time	judgments	are	

driven	by	“drift”	in	contextual	representations	supported	by	these	regions.	 	
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Introduction	

Imagine	that	you	are	at	the	bus	stop	when	you	run	into	a	colleague	and	the	two	of	

you	become	engrossed	in	a	conversation	about	memory	research.	After	a	few	minutes,	

you	realize	that	the	bus	still	has	not	arrived.	Before	you	look	at	your	watch,	you	have	

some	intuition	for	how	long	you’ve	been	waiting	at	the	bus	stop.	Where	does	this	

intuition	come	from?		

Estimation	of	durations	lasting	a	few	seconds	has	been	probed	in	the	neuroimaging,	

neuropsychology	and	neuropharmacology	literatures	(see	Wittmann,	2013,	for	a	

review).	On	the	other	hand,	the	neural	mechanisms	underlying	time	perception	on	the	

scale	of	minutes	have	remained	unexplored.	This	is	particularly	true	of	retrospective	

judgments,	where	individuals	experience	an	interval	without	paying	attention	to	time	

and	must	subsequently	estimate	the	interval’s	duration.	In	such	cases,	individuals	must	

rely	on	information	stored	in	memory	to	estimate	duration.	How	is	this	accomplished?			

Memory	scholars	have	long	posited	that	the	same	contextual	cues	that	help	us	to	

retrieve	an	item	from	memory	can	also	help	us	determine	its	recency.	According	to	

extant	theories	of	context	and	memory	(see	Manning,	Kahana,	&	Norman,	2014,	for	a	

review),	mental	context	refers	to	aspects	of	our	mental	state	that	tend	to	persist	over	a	

relatively	long	time	scale;	this	encompasses	our	representation	of	slowly-changing	

aspects	of	the	external	world	(e.g.,	what	room	we	are	in)	as	well	as	other	slowly-

changing	aspects	of	our	internal	mental	state	(e.g.,	our	current	plans).	Crucially,	these	

theories	posit	that	slowly-changing	contextual	features	can	be	episodically	associated	
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with	more	quickly-changing	aspects	of	the	world	(e.g.,	stimuli	that	appear	at	a	particular	

moment	in	time;	Mensink	&	Raaijmakers,	1988;	Howard	&	Kahana,	2002).		

Bower	(1972)	first	proposed	that	we	could	determine	how	long	ago	an	item	

occurred	by	comparing	our	current	context	with	the	context	associated	with	the	

remembered	item.	The	similarity	of	these	two	context	representations	would	reflect	

their	temporal	distance,	with	more	similar	representations	associated	with	events	that	

happened	closer	together	in	time.	Thus,	a	slowly	varying	mental	context	could	serve	as	a	

temporal	tag	(Polyn	&	Kahana,	2008).	In	parallel,	researchers	in	the	domain	of	

retrospective	time	estimation	have	shown	that	the	degree	of	context	change	is	a	better	

predictor	of	duration	judgments	than	alternative	explanations,	such	as	the	number	of	

items	remembered	from	the	interval	(Block	&	Reed,	1978;	Block,	1990,	1992).	Indeed,	

changes	in	task	processing	(Block	&	Reed,	1978;	Sahakyan	&	Smith,	2014),	

environmental	context	(Block,	1982),	and	emotions	(Pollatos,	Laubrock,	&	Wittmann,	

2014),	as	well	as	event	boundaries	(Poynter,	1983;	Zakay,	Tsal,	Moses,	&	Shahar,	1994),	

lead	to	overestimation	of	past	durations.		

In	our	study,	we	set	out	to	obtain	neural	evidence	in	support	of	the	hypothesis	that	

mental	context	change	drives	duration	estimates.	Specifically,	we	hypothesized	that,		

in	brain	regions	representing	mental	context,	the	degree	of	neural	pattern	change	

between	two	events	(operationalized	as	change	in	multi-voxel	patterns	of	fMRI	activity)	

should	predict	participants’	estimates	of	how	much	time	passed	between	those	events.		

Extensive	prior	work	has	implicated	the	medial	temporal	lobe	(MTL)	and	lateral	

prefrontal	cortex	(PFC)	in	representing	contextual	information	(Polyn	&	Kahana,	2008;	
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for	reviews	of	MTL	contributions	to	representing	context,	see	Eichenbaum,	Yonelinas,	&	

Ranganath,	2007,	and	Ritchey	&	Ranganath,	2012;	for	related	computational	modeling	

work,	see	Howard	&	Eichenbaum,	2013).	In	keeping	with	our	hypothesis,	multiple	

studies	have	obtained	evidence	linking	neural	pattern	change	in	these	regions	to	

temporal	memory	judgments.		Manns,	Howard,	&	Eichenbaum	(2007)	recorded	from	rat	

hippocampus	during	an	odor	memory	task;	they	found	that	greater	change	in	

hippocampal	activity	patterns	between	two	stimuli	predicted	better	memory	for	the	

order	in	which	the	stimuli	occurred.	In	the	human	neuroimaging	literature,	Jenkins	&	

Ranganath	(2010)	found	that	the	degree	to	which	activity	patterns	in	rostrolateral	

prefrontal	cortex	changed	during	the	encoding	of	a	stimulus	predicted	better	memory	

for	the	temporal	position	of	that	stimulus	in	the	experiment.	Jenkins	&	Ranganath	

(2016)	also	showed	that	greater	pattern	distance	between	two	stimuli	at	encoding	in	

the	hippocampus,	medial	and	anterior	prefrontal	cortex	predicted	better	order	memory.	

Only	one	study	has	directly	related	neural	pattern	drift	to	judgments	of	elapsed	time	in	

humans:	Ezzyat	&	Davachi	(2014)	found	that	patterns	of	fMRI	activity	in	left	

hippocampus	were	more	similar	for	pairs	of	stimuli	that	were	later	estimated	to	have	

occurred	closer	together	in	time,	despite	equivalent	time	passage	between	all	pairs	(a	

little	less	than	a	minute).			

While	the	Ezzyat	&	Davachi	(2014)	study	provides	support	for	our	hypothesis,	it	has	

some	limitations.	First,	in	Ezzyat	&	Davachi	(2014),	participants	estimated	the	temporal	

distance	of	stimuli	that	were	linked	to	their	contexts	in	an	artificial	way	(by	placing	

pictures	of	objects	or	famous	faces	on	unrelated	scene	backgrounds);	it	is	unclear	
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whether	these	results	will	generalize	to	more	naturalistic	situations	where	events	are	

linked	through	a	narrative.	Second,	since	participants	performed	the	temporal	memory	

test	after	each	encoding	run,	they	were	not	entirely	naïve	to	the	manipulation.	Knowing	

that	they	would	have	to	estimate	durations	between	stimuli	could	have	changed	

participants’	strategy	and	enhanced	their	attention	to	time	(for	evidence	that	estimating	

time	prospectively	engages	different	mechanisms,	see	Hicks,	Miller,	&	Kinsbourne,	1976,	

and	Zakay	&	Block,	2004).	In	the	current	study,	we	sought	to	address	the	above	issues	

by	eliciting	temporal	distance	judgments	for	pairs	of	events	that	had	occurred	several	

minutes	apart	and	that	were	embedded	in	the	context	of	a	rich	naturalistic	story;	

participants	listened	to	the	entire	story	before	being	informed	about	the	temporal	

judgment	task.	

Based	on	the	studies	reviewed	above,	we	predicted	that	neural	pattern	drift	in	

medial	temporal	and	lateral	prefrontal	regions	might	support	duration	estimation.	In	

our	study,	we	examined	these	regions	of	interest	(ROIs),	as	well	as	a	broader	set	of	

regions	that	have	been	implicated	in	fMRI	studies	of	time	estimation,	including	the	

inferior	parietal	cortex,	putamen,	insula	and	frontal	operculum	(see	Box	1	for	a	review).	

In	addition	to	the	ROI	analysis,	which	examined	activity	patterns	in	masks	that	were	

anatomically	defined,	we	performed	a	searchlight	analysis,	which	examined	activity	

patterns	within	small	cubes	over	the	whole	brain.		

Participants	were	scanned	while	they	listened	to	a	25-minute	science	fiction	radio	

story.	Outside	the	scanner,	they	were	surprised	with	a	time	perception	test,	in	which	

they	had	to	estimate	how	much	time	had	passed	between	pairs	of	auditory	clips	from	
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the	story.	Controlling	for	objective	time,	we	found	that	the	degree	of	neural	pattern	

distance	between	two	clips	at	the	time	of	encoding	predicted	how	much	time	an	

individual	would	later	estimate	passed	between	them.	The	effect	was	significant	in	two	

of	our	a	priori	ROIs	–	the	right	entorhinal	cortex	and	the	right	pars	orbitalis.	Extending	

the	anatomical	analysis	to	all	masks	in	cortex	revealed	an	additional	effect	in	the	left	

caudal	anterior	cingulate	cortex	(ACC).	Moreover,	the	whole-brain	searchlight	analysis	

yielded	a	significant	cluster	spanning	the	right	anterior	temporal	lobe.	Our	results	

suggest	that	patterns	of	neural	activity	in	these	regions	may	carry	contextual	

information	that	helps	us	make	retrospective	time	judgments	on	the	order	of	minutes.	
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Box	1.	fMRI	literature	on	prospective	time	estimation		

As	noted	in	the	main	text,	only	one	study	(Ezzyat	&	Davachi,	2014)	has	used	fMRI	

to	study	retrospective	estimation	of	time	intervals	lasting	more	than	a	few	seconds.	

The	vast	majority	of	fMRI	studies	of	time	estimation	have	used	prospective	tasks,	in	

which	participants	are	asked	to	deliberately	track	the	duration	of	a	short	stimulus	or	

compare	the	duration	of	two	stimuli.	Such	studies	have	repeatedly	shown	that	

activity	in	the	putamen,	insula,	inferior	frontal	cortex	(frontal	operculum),	and	

inferior	parietal	cortex	increases	as	participants	pay	more	attention	to	the	duration	

of	stimuli,	as	opposed	to	another	time-varying	attribute	(Coull,	Vidal,	Nazarian,	&	

Macar,	2004;	Coull,	2004;	Livesey,	Wall,	&	Smith,	2007;	Wiener,	Turkeltaub,	&	

Coslett,	2010;	Wittmann,	Simmons,	Aron,	&	Paulus,	2010).	Moreover,	Dirnberger	et	

al.	(2012)	showed	that	greater	activity	in	the	putamen	and	insula	during	encoding	of	

aversive	emotional	pictures	predicted	better	subsequent	memory	for	those	pictures,	

but	only	when	their	duration	was	overestimated	relative	to	neutral	images.	This	

suggests	that	the	putamen	and	insula	might	mediate	the	relationship	between	

enhanced	processing	for	emotional	stimuli	and	subjective	time	dilation.	Given	the	

established	role	of	these	regions	in	time	processing	(albeit	of	a	different	sort)	we	

included	these	regions	in	the	set	of	a	priori	ROIs	for	our	main	fMRI	analysis.	
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Results	

	
Figure	1	Experimental	design	

	
Behavioral	Results	

Figure	1	shows	the	experimental	design,	which	consisted	of	an	fMRI	session,	

followed	immediately	by	a	behavioral	session.	After	listening	to	a	25-minute	radio	story	

in	the	scanner,	participants	were	asked	how	much	time	had	passed	between	43	pairs	of	

clips	from	the	story.	In	actuality,	24	of	the	clip	pairs	had	been	presented	2	minutes	apart	

in	the	story,	while	19	of	the	clip	pairs	had	been	presented	6	minutes	apart	in	the	story	

(participants	were	not	informed	of	this).	Participants	were	able	to	estimate	the	duration	

of	experienced	minutes-long	intervals	far	above	chance,	albeit	with	substantial	intra-	

and	inter-individual	variability.	On	average,	across	participants,	the	6-minute	intervals	

(M=5.70	min,	SD=3.06)	were	judged	to	be	significantly	longer	than	the	2-minute	

intervals	(M=3.69	min,	SD=1.96),	t(17)	=	5.20,	p	=	0.00007	(see	Figure	2	A).		
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As	described	in	the	Methods	(see	Removing	low-confidence	intervals),	participants	

also	provided	confidence	ratings	reflecting	their	certainty	about	each	clip’s	place	in	the	

story.	Based	on	this	measure,	we	grouped	each	participant’s	duration	estimates	into	

high-confidence	and	low-confidence	intervals.	To	verify	that	participants	were	better	at	

distinguishing	6-minute	intervals	from	2-minute	intervals	when	they	were	confident,	we	

calculated	the	difference	between	the	mean	duration	estimates	for	6-minute	intervals	

and	the	mean	duration	estimates	for	2-minute	intervals	for	every	participant.	The	

difference	score	was	significantly	higher	for	high-confidence	intervals	(M=2.43,	SD=1.82)	

than	for	all	intervals	(M=2.01,	SD=1.64),	t(17)=2.33,	p=0.0324.	Thus,	participants	were	

significantly	more	accurate	at	estimating	an	interval’s	duration	when	they	confidently	

remembered	the	temporal	position	of	both	clips	delimiting	that	interval	in	the	story	(see	

Figure	2	B).		
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Figure	2	Mean	duration	estimates	for	all	intervals	(A)	and	confident	intervals	(B)	as	a	function	
of	their	actual	duration.	Each	blue	circle	represents	the	mean	duration	estimate	for	an	
individual	participant	within	a	given	interval	duration	(2	or	6	minutes).	The	blue	bar	heights	
represent	the	global	means	for	2	and	6-minute	intervals	across	intervals	and	participants.		

The	following	figure	supplements	are	available	for	Figure	2:		
Figure	2	–	supplement	1.	Reliability	of	duration	estimates	across	participants.	
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Figure	2	–	Supplement	1:	Reliability	of	duration	estimates	across	participants	

	
Reliability	of	duration	estimates	across	participants.	Between-group	correlations	were	
obtained	by	splitting	the	participants	randomly	into	two	equal	groups	and	averaging	the	
duration	estimates	for	each	interval	(across	participants)	within	a	group.	Each	dot	in	the	
scatterplot	represents	a	particular	temporal	interval;	its	x	and	y	coordinates	indicate	the	mean	
estimated	duration	of	that	interval	for	Group	1	and	Group	2	participants,	respectively.	We	
repeated	this	procedure	1000	times	to	ensure	that	we	sampled	a	variety	of	group	splits.	The	
average	correlation	between	the	two	groups	was	0.64	(SD=0.09)	for	2-minute	intervals	and	0.54	
(SD=0.15)	for	6-minute	intervals.	The	above	plot	shows	the	grouping	that	was	most	
representative	of	the	mean.	This	analysis	suggests	that	features	of	the	story	made	some	
intervals	appear	consistently	shorter	and	other	intervals	appear	consistently	longer	across	
participants.	
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fMRI	Results	

	
Figure	3	Correlating	pattern	distance	with	duration	estimates	within	participants.	For	each	ROI	
in	each	participant,	the	pattern	distance	between	each	pair	of	clips	at	encoding	was	correlated	
with	the	participant’s	retrospective	duration	estimate	(A-B).	The	top	panel	(A)	shows	two	
example	intervals.	The	neural	distance	(1-Pearson’s	r)	between	clips	2	and	4	(second	interval)	is	
greater	than	the	neural	distance	between	clips	1	and	3	(first	interval),	as	is	the	subjective	
duration	estimate.	(B)	shows	the	correlation	between	neural	distance	and	duration	estimates	in	
a	hypothetical	region	and	participant.	(C)	We	used	a	permutation	test	to	generate	10,000	
surrogate	pattern	distance	vectors	(see	Figure	3	-	Supplement	1),	which	we	then	used	to	obtain	
a	distribution	of	null	correlations	between	neural	distances	and	duration	estimates.	For	each	
ROI	in	each	participant,	we	calculated	the	z-scored	correlation	value,	which	reflects	the	strength	
of	the	empirical	correlation	relative	to	the	distribution	of	null	correlations.	For	each	ROI,	we	
performed	a	random	effects	t-test	to	assess	whether	the	z-score	was	reliably	positive	across	
participants.	P-values	from	this	t-test	were	then	subjected	to	multiple	comparisons	correction.	

The	following	figure	supplements	are	available	for	Figure	3:		
Figure	3	–	Supplement	1	Permutation	test	assessing	the	temporal	specificity	of	correlations	
between	pattern	change	and	behavior.	
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Figure	3	–	Supplement	1:	Permutation	test	assessing	the	temporal	specificity	of	
correlations	between	pattern	change	and	behavior	

	
Permutation	test	assessing	the	temporal	specificity	of	correlations	between	pattern	change	
and	behavior.	This	procedure	is	described	in	the	Methods	(see	“Statistical	analysis	of	
correlations	between	pattern	change	and	behavior”).	(A,B)	The	time	course	of	pattern	change	is	
constructed	using	the	distance	(1	-	Pearson’s	r)	between	each	pattern	and	the	pattern	80	TRs	(2	
minutes)	after	it.	As	in	the	main	analysis,	we	averaged	over	the	5	consecutive	TRs	surrounding	
each	pattern	(for	simplicity,	this	is	not	shown	in	the	above	figure).	(C)	10	000	surrogate	pattern	
distance	time	courses	are	generated	by	randomizing	the	phases	of	the	original	time	course,	thus	
conserving	the	amplitude	of	each	frequency	component.	(D)	Surrogate	pattern	distances	are	
correlated	with	time	estimates,	generating	10,000	null	correlations.	A	Z-value	for	each	ROI	/	
searchlight	in	each	participant	is	computed	to	compare	the	strength	of	the	empirical	correlation	
with	the	distribution	of	null	correlations.	The	p-value	for	a	given	ROI	is	obtained	using	a	right-
tailed	t-test	on	the	Z-values	across	participants.	
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Anatomical	ROIs		

We	first	tested	whether	pattern	change	in	regions	suggested	by	the	literature	to	be	

important	for	representing	temporal	context	(see	ROI	Selection)	correlated	with	

retrospective	duration	estimates.	The	analysis	procedure	is	outlined	in	Figure	3.	As	

noted	in	the	Methods,	this	analysis	(as	well	as	the	searchlight	analysis)	was	conducted	

only	on	high-confidence	2-minute	intervals.	6-minute	intervals	were	excluded	from	the	

fMRI	analysis,	since	we	could	not	successfully	dissociate	neural	pattern	change	at	this	

time	scale	from	low-frequency	scanner	noise	(see	Methodological	challenges	with	

analyzing	pattern	distance	over	long	time	scales	in	the	Methods).		

Anatomical	ROIs	were	derived	from	FreeSurfer	cortical	parcellation	(Desikan	et	al.,	

2006)	and	from	a	probabilistic	MTL	atlas	(Hindy	&	Turk-Browne,	2015).	After	calculating	

the	empirical	correlation	between	neural	pattern	distance	and	duration	estimates	in	

these	ROIs	(Figure	3	A),	we	used	a	phase	randomization	procedure	(described	in	

Methods)	to	obtain	10	000	null	correlations	for	each	ROI	in	every	participant.	This	

enabled	us	to	calculate	a	Z-value	for	every	ROI	in	every	participant,	which	reflects	the	

strength	of	the	actual	correlation	between	pattern	distance	and	duration	estimates	

relative	to	the	distribution	of	null	correlations	(Figure	3	C).	Here	we	report	the	regions	

whose	Z-values	were	consistently	positive	across	participants,	corrected	for	multiple	

comparisons	using	False	Discovery	Rate.		

Out	of	the	regions	selected	a	priori,	the	right	entorhinal	cortex	and	right	pars	

orbitalis	showed	a	significant	positive	correlation	between	pattern	change	and	duration	

estimates	for	high-confidence	2-minute	intervals	(q<0.05).	Figure	4	shows	the	mean	Z-
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values	across	participants	for	all	a	priori	ROIs	(16	in	each	hemisphere),	including	lateral	

prefrontal	regions	(top	panel	A),	medial	temporal	lobe	regions,	insula,	putamen,	and	

inferior	parietal	cortex	(bottom	panel	B).	While	a	large	number	of	these	regions	had	Z-

values	that	were	positive	across	participants	(e.g.,	left	hippocampus,	left	entorhinal	

cortex,	right	perirhinal	cortex,	right	amygdala,	bilateral	insula,	and	right	caudal	middle	

frontal	cortex,	p<0.05	uncorrected),	we	report	only	those	that	survived	FDR	correction.		

As	part	of	an	exploratory	search,	we	also	performed	this	analysis	on	the	other	brain	

regions	derived	from	FreeSurfer	cortical	parcellation.	This	included	the	16	ROIs	

mentioned	above,	in	addition	to	regions	in	the	occipital	lobe,	parietal	lobe,	medial	

prefrontal	cortex,	lateral	temporal	lobe,	basal	ganglia,	thalamus	and	brainstem	(the	

complete	list	of	regions	can	be	found	in	Figure	4	–	Supplement	1).	Out	of	the	84	regions	

tested	(42	in	each	hemisphere),	the	right	entorhinal	cortex,	right	pars	orbitalis,	and	left	

caudal	anterior	cingulate	cortex	(ACC)	showed	significant	positive	correlations	between	

pattern	change	and	duration	estimates	(q<0.1).	This	suggests	that	the	right	entorhinal	

cortex	and	right	pars	orbitalis,	which	were	part	of	our	list	of	a	priori	ROIs,	contained	

effects	that	were	apparent	even	after	whole-brain	correction,	and	reveals	an	additional	

effect	in	the	left	caudal	ACC	that	we	had	not	anticipated.	Figure	4	–	Supplement	2	

displays	the	locations	of	these	three	regions	in	MNI	space.	
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Figure	4	Mean	Z-values	(across	all	18	participants)	of	correlations	between	pattern	distance	
and	duration	estimates	for	the	16	a	priori	ROIs.	Z-values	were	obtained	from	the	phase	
randomization	procedure	and	reflect	the	strength	of	the	empirical	correlation	relative	to	the	
distribution	of	null	correlations.	Error	bars	represent	standard	errors	of	the	mean.	The	blue	dots	
over	the	right	entorhinal	cortex	and	right	pars	orbitalis	indicate	that	these	ROIs	survived	FDR	
correction	at	q<0.05.		

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2016. ; https://doi.org/10.1101/043075doi: bioRxiv preprint 

https://doi.org/10.1101/043075
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 18	

The	following	figure	supplements	are	available	for	Figure	4:		
Figure	4	-	supplement	1.	Whole-brain	results	for	all	grey	matter	regions	derived	from	FreeSurfer	
segmentation	and	the	probabilistic	MTL	atlas.		
Figure	4	-	supplement	2.	Anatomical	ROIs	that	showed	a	significant	correlation	between	pattern	
change	and	duration	estimates	within	participants,	after	whole-brain	FDR	correction.	
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Figure	4	–	Supplement	1	

	
Whole-brain	results	for	all	grey	matter	regions	derived	from	FreeSurfer	segmentation	and	the	
probabilistic	MTL	atlas.	T-values	were	obtained	from	a	t-test	verifying	whether	the	Z-values	for	
a	region	were	reliably	positive	across	participants	(i.e.,	whether	the	empirical	correlation	
between	pattern	distance	and	duration	estimates	was	high	relative	to	the	distribution	of	null	
correlations).	The	three	regions	in	bold	survived	whole-brain	FDR	correction	at	q<0.1.	

Frontal Lobe Regions T (df = 17) Temporal Lobe Regions T (df = 17)
Left Medial orbitofrontal cortex 0.52 Left Superior temporal cortex 0.57
Right Medial orbitofrontal cortex 0.49 Right Superior temporal cortex 1.86
Left Lateral orbitofrontal cortex 0.57 Left Banks of the Superior temporal sulcus 0.56
Right Lateral orbitofrontal cortex 1.22 Right Banks of the Superior temporal sulcus -0.03
Left Pars orbitalis 1.40 Left Transverse temporal cortex 1.93
Right Pars orbitalis 3.41 Right Transverse temporal cortex 1.28
Left Pars triangularis 0.92 Left Middle temporal cortex -0.50
Right Pars triangularis -0.20 Right Middle temporal cortex 1.28
Left Pars opercularis 1.51 Left Inferior temporal cortex -0.11
Right Pars opercularis 1.17 Right Inferior temporal cortex 1.30
Left Caudal middle frontal cortex 1.09 Left Lingual gyrus 0.49
Right Caudal middle frontal cortex 2.18 Right Lingual gyrus 0.82
Left Rostral middle frontal cortex 0.63 Left Fusiform gyrus -0.45
Right Rostral middle frontal cortex 1.62 Right Fusiform gyrus 1.25
Left Superior frontal cortex 0.82 Left Parahippocampal cortex 0.64
Right Superior frontal cortex 0.71 Right Parahippocampal cortex 0.78
Left Frontal pole 0.81 Left Entorhinal cortex 2.17
Right Frontal pole -0.14 Right Entorhinal cortex 3.33
Left Caudal anterior cingulate cortex 3.77 Left Perirhinal cortex -0.05
Right Caudal anterior cingulate cortex 1.60 Right Perirhinal cortex 2.07
Left Rostral anterior cingulate cortex 0.53 Left Hippocampus 1.75
Right Rostral anterior cingulate cortex -1.22 Right Hippocampus 0.97
Left Paracentral cortex 0.16 Left Amygdala 0.29
Right Paracentral cortex 2.09 Right Amygdala 1.89
Left Precentral gyrus 1.67 Left Temporal pole 0.49
Right Precentral gyrus 1.26 Right Temporal pole 1.73

Parietal Lobe Regions T (df = 17) Other Regions T (df = 17)
Left Precuneus -1.42 Left Insula 1.75
Right Precuneus -2.23 Right Insula 1.94
Left Isthmus of the cingulate -0.80 Left Putamen 0.73
Right Isthmus of the cingulate -1.24 Right Putamen 0.54
Left Posterior cingulate cortex 0.03 Left Caudate 0.76
Right Posterior cingulate cortex 0.11 Right Caudate -0.18
Left Postcentral gyrus 1.65 Left Pallidum -0.01
Right Postcentral gyrus 0.73 Right Pallidum -0.18
Left Superior parietal cortex -0.54 Left Lateral occipital cortex 0.36
Right Superior parietal cortex 1.31 Right Lateral occipital cortex 0.49
Left Supramarginal gyrus 0.23 Left Pericalcarine cortex -0.29
Right Supramarginal gyrus 1.01 Right Pericalcarine cortex -0.13
Left Inferior parietal cortex 0.10 Left Cuneus -0.05
Right Inferior parietal cortex -0.22 Right Cuneus -0.07

Left Thalamus proper 0.25
Right Thalamus proper 0.19
Left Brainstem 0.30
Right Brainstem 0.31
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Figure	4	–	Supplement	2	

	
Anatomical	ROIs	that	showed	a	significant	correlation	between	pattern	change	and	duration	
estimates	within	participants,	after	whole-brain	FDR	correction.	In	red	are	regions	with	q<0.1:	
the	right	entorhinal	cortex,	right	pars	orbitalis	and	left	caudal	ACC.	This	analysis	was	performed	
in	native	space	on	participant-specific	ROIs.	ROIs	were	transformed	from	native	functional	space	
to	MNI	space	for	display	purposes.	
	

Whole-brain	Searchlight	

We	also	ran	a	cubic	searchlight	with	3x3x3	(27)	voxels	(972	mm3)	through	the	entire	

brain,	and	tested	for	a	correlation	between	pattern	change	and	duration	estimates	in	

each	searchlight.	The	same	phase-randomization	procedure	that	was	used	for	the	

anatomical	ROI	analysis	was	also	applied	here;	this	procedure	generates	Z-values	that	

reflect	how	likely	we	are	to	get	this	strong	of	a	correlation	by	chance,	given	the	

frequency	spectrum	of	the	fMRI	data.	When	excluding	low-confidence	intervals,	we	

found	a	significant	cluster	in	the	right	anterior	temporal	lobe	(p=0.034,	FWE-corrected;	
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peak	MNI	coordinates	(x,	y,	z)	in	mm:	45,	-6,	-21;	cluster	size=572	voxels	in	3	mm	MNI	

space).	Small	parts	of	the	cluster	also	extended	to	the	right	posterior	insula	and	right	

putamen	(see	Figure	5).		

	
Figure	5	Results	of	a	whole-brain	27-voxel	cubic	searchlight.	Voxels	in	orange	represent	centers	
of	searchlights	that	exhibited	significant	correlations	between	pattern	change	and	duration	
estimates	(p<0.05,	FWE).	The	significant	cluster	had	peak	MNI	coordinates	(in	mm):	x=45,	y=	-6,	
z	=	-21.	

	

Comparing	Results	from	ROI	and	Searchlight	Analyses	

The	anatomical	ROI	and	searchlight	analyses	revealed	significant	effects	in	

somewhat	different	regions.	For	example,	the	ROI	analysis	yielded	significant	effects	in	

the	right	pars	orbitalis	and	left	caudal	ACC,	while	the	searchlight	did	not;	the	significant	

searchlight	cluster	extended	into	the	lateral	temporal	lobe	and	posterior	insula,	while	

the	whole-brain	ROI	results	did	not.	However,	it	is	important	to	note	that	the	regions	we	

R	
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reported	survived	whole-brain	multiple	comparisons	correction,	and	represent	only	the	

peaks	of	the	effect.	Looking	at	the	unthresholded	results	reveals	that	both	analyses	

converge	in	localizing	the	effect	to	a	set	of	regions	extending	from	the	right	anterior	

temporal	lobe	to	the	right	inferior	frontal	cortex.	Figure	6	allows	a	comparison	of	the	

brain	maps	for	both	analyses	with	a	more	liberal	threshold.	To	generate	the	brain	map	

for	the	ROI	analysis,	we	assigned	the	q-value	of	an	ROI	to	each	voxel	in	that	ROI,	and	

displayed	all	q-values	<	0.3	(FDR).	For	the	searchlight	analysis,	we	displayed	all	clusters	

that	were	assigned	p	<	0.3	(FWE).	This	figure	shows	a	sub-threshold	searchlight	cluster	

in	the	right	inferior	frontal	cortex	(panel	B)	that	overlaps	with	the	right	pars	orbitalis	

mask	that	was	significant	in	the	ROI	analysis	(panel	A).	Moreover,	it	shows	a	sub-

threshold	effect	in	the	insula	and	superior	temporal	cortex	ROIs	(panel	A),	which	overlap	

with	the	significant	searchlight	cluster	(panel	B).		

The	difference	in	which	regions	passed	the	significance	threshold	is	very	likely	due	to	

the	difference	in	shapes	between	the	searchlight	cube	and	the	anatomical	masks.	For	

instance,	the	inferior	and	middle	temporal	cortex	masks	used	in	the	ROI	analysis	

encompass	the	entire	inferior	and	middle	temporal	gyri	and	are	too	large	to	detect	the	

multivariate	effects	in	that	region,	which	are	confined	to	the	anterior	portion	of	the	

lateral	temporal	lobe.	The	small	size	of	the	searchlight	cube	enables	it	to	better	isolate	

this	effect.	On	the	other	hand,	the	shapes	of	the	pars	orbitalis,	entorhinal	cortex	and	

caudal	ACC	do	not	conform	to	a	cubic	searchlight,	and	are	much	better	captured	by	the	

anatomical	masks.	Following	the	anatomy	is	particularly	important	for	small,	elongated	

regions	like	entorhinal	cortex	and	caudal	ACC,	which	are	surrounded	by	white	matter	
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(our	searchlight	cubes	could	contain	voxels	in	both	grey	and	white	matter,	whereas	the	

anatomical	masks	were	limited	to	grey	matter).	Regions	with	such	shapes	are	also	less	

likely	to	be	perfectly	aligned	across	participants.	For	the	searchlight	analysis,	individual	

participant	searchlight	maps	needed	to	be	transformed	to	MNI	space	in	order	to	

aggregate	the	results;	consequently,	imperfections	in	alignment	can	reduce	the	

significance	of	searchlight	results	in	these	regions.	On	the	other	hand,	the	anatomical	

ROI	analysis	was	performed	entirely	within	participants,	making	it	more	suitable	for	

idiosyncratically	shaped	regions.	
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Figure	6	Comparison	of	the	qualitative	pattern	of	results	revealed	by	the	ROI	and	Searchlight	
analyses.	Panel	A	shows	the	q-value	map	for	the	whole-brain	ROI	analysis,	thresholded	at	q<0.3.	
Panel	B	shows	searchlight	clusters	with	p<0.3	(FWE).	Panel	C	shows	the	searchlight	clusters	with	
p<0.3	(in	dark	and	light	blue)	overlaid	on	top	of	the	ROIs	with	q<0.3	(in	red	and	yellow).		 	
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Factors	Driving	the	Correlation	between	Pattern	Change	and	Duration	Estimates	

We	found	that	the	neural	pattern	distance	between	two	clips	at	encoding	was	

correlated	with	participants’	subsequent	temporal	distance	judgments	in	the	right	

entorhinal	cortex,	right	pars	orbitalis,	left	caudal	ACC	and	the	right	anterior	temporal	

lobe.	Our	interpretation	is	that	the	above	regions	represent	slowly	varying	contextual	

information	and	that	duration	estimates	reflect	the	degree	of	mental	context	change	

between	two	clips.	However,	an	alternative	possibility	is	that	participants	judge	the	

temporal	distance	between	two	clips	purely	based	on	the	similarity	between	them	(e.g.	

Are	the	same	characters	speaking?	Is	the	background	music	the	same?	Is	the	topic	of	

conversation	similar?)	If	this	is	the	case,	participants	do	not	need	to	retrieve	the	mental	

context	associated	with	each	clip	and	can	estimate	temporal	distance	based	on	the	

perceptual	and	semantic	distance	of	the	two	clips	at	the	time	of	the	memory	test.	Thus,	

an	alternative	explanation	of	our	neural	findings	is	that	patterns	of	activity	in	regions	

like	the	right	entorhinal	cortex	and	pars	orbitalis	reflect	the	moment-to-moment	

perceptual	and	semantic	content	of	the	story,	but	do	not	necessarily	represent	more	

abstract,	slowly	varying	contextual	features.		

Summary	of	control	analyses	

To	rule	out	this	possibility,	we	conducted	two	control	behavioral	studies.	One	group	

of	participants	indicated	when	event	boundaries	were	occurring	in	the	story.	We	show	

that	the	number	of	event	boundaries	between	two	clips	correlates	with	duration	

estimates	from	our	original	participants,	suggesting	that	their	estimates	were	influenced	

by	the	content	of	the	story	in	between	two	clips	(rather	than	the	similarity	between	the	
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two	clips	alone.)	A	second	group	of	participants	was	asked	to	complete	the	same	time	

perception	test	without	first	listening	to	the	story.	Since	these	“naïve	participants”	had	

no	memory	of	the	story,	they	could	only	base	their	duration	estimates	on	the	similarity	

between	the	two	clips.	We	show	that	duration	estimates	from	these	naïve	participants	

do	not	correlate	with	the	number	of	event	boundaries	between	two	clips,	proving	that	

the	intervening	content	between	clips	does	not	influence	duration	estimates	when	

participants	have	no	memory	of	the	story.		

These	behavioral	controls	provide	evidence	that	our	participants’	duration	estimates	

were	influenced	by	their	memory	of	the	story	content	in	between	two	clips	and	could	

not	be	explained	purely	by	the	perceptual	and	semantic	similarity	between	them.	

However,	it	is	still	possible	that	neural	pattern	change	in	the	regions	we	found	

correlates	with	the	component	of	duration	estimates	that	is	driven	by	perceptual	and	

semantic	content,	rather	than	the	component	that	is	driven	by	slowly	varying	contextual	

information.	To	rule	out	this	concern,	we	performed	a	within-interval	(across	

participants)	version	of	our	main	ROI	analysis.	This	analysis	holds	constant	the	two	clips	

whose	pattern	distance	is	being	measured,	and	verifies	whether	individual	differences	in	

neural	pattern	distance	for	a	given	pair	of	clips	correlate	with	individual	differences	in	

duration	estimates	for	that	interval.	The	within-interval	analysis	yielded	the	same	

constellation	of	regions	in	the	right	anterior	temporal	lobe	and	right	inferior	frontal	

cortex,	including	the	right	entorhinal	cortex	and	right	pars	orbitalis,	in	addition	to	

adjacent	regions	that	had	been	sub-threshold	in	our	main	analysis.	Further,	we	found	

that	the	effect	sizes	in	the	above	two	regions	were	similar	for	both	analyses.	If	the	
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neural	pattern	distance	between	two	clips	were	driven	by	changes	in	clip	content,	we	

would	have	expected	the	effect	to	be	larger	for	the	across-interval,	within-participants	

analysis	(where	story	content	differed	across	intervals)	than	for	the	across-participants,	

within-interval	version	of	the	analysis	(where	story	content	is	held	constant).	The	fact	

that	the	effect	is	similar	in	size	for	the	two	analyses	suggests	that	the	similarity	in	

content	between	clips	is	not	a	major	factor	driving	the	observed	correlation	between	

neural	pattern	change	and	duration	estimates.	

Finally,	we	show	that	patterns	in	the	right	anterior	temporal	lobe	and	right	inferior	

frontal	regions	we	found	change	more	gradually	over	time	than	patterns	in	most	other	

brain	regions,	and	that	they	change	significantly	more	gradually	than	patterns	in	

temporal	lobe	regions	involved	in	auditory	and	language	processing.	Moreover,	pattern	

change	in	the	right	entorhinal	cortex	correlates	highly	with	pattern	change	in	the	right	

pars	orbitalis,	suggesting	that	the	two	regions	may	cooperate	to	represent	different	

facets	of	a	unified,	slowly	changing	context	signal.			

Correlation	between	number	of	event	boundaries	and	duration	estimates	

First,	we	sought	to	replicate	the	finding	that	changes	in	contextual	features	would	

cause	overestimation	of	durations	in	retrospect	(see	Introduction).	We	used	the	number	

of	event	boundaries	between	two	clips	in	the	story	as	a	measure	of	the	number	of	

contextual	changes,	as	event	boundaries	often	encompass	changes	in	scene,	characters	

and	conversation	topic.	A	separate	group	of	participants	(n=9)	listened	to	the	story	and	

was	asked	to	press	a	button	every	time	they	felt	an	event	boundary	was	occurring.	

These	data	were	then	averaged	across	participants	to	obtain	the	mean	number	of	event	
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boundaries	inside	each	two-minute	interval.	We	found	that	the	mean	number	of	

boundaries	in	an	interval	was	significantly	correlated	with	the	mean	duration	estimates	

from	our	original	experiment	(r=0.49,	95%	CI	[0.27,	0.57];	Figure	7).	This	suggests	that	

our	participants’	retrospective	duration	estimates	were	influenced	by	the	number	of	

contextual	changes	that	had	occurred	during	an	interval.	However,	it	is	possible	that	the	

number	of	event	boundaries	between	two	clips	could	influence	the	perceptual	and	

semantic	similarity	of	the	clips	themselves	(e.g.,	clips	from	the	same	scene	might	be	

more	similar	than	clips	from	different	scenes).	In	that	case,	our	participants’	duration	

estimates	could	correlate	with	the	number	of	event	boundaries,	even	if	they	are	basing	

their	estimates	purely	on	the	perceptual	similarity	between	clips.	To	rule	out	this	

possibility,	we	tested	whether	the	number	of	event	boundaries	would	correlate	with	

duration	estimates	from	participants	who	could	only	judge	temporal	distance	based	on	

the	similarity	between	clips,	given	that	they	had	never	heard	the	story.		

Naïve	time	perception	test	

An	additional	group	of	17	participants	who	had	never	heard	the	story	was	

administered	an	identical	time	perception	test	as	our	original	participants.	They	were	

asked	to	try	to	estimate	the	amount	of	time	that	had	elapsed	between	each	pair	of	clips	

during	the	original	telling	of	the	story.	Care	was	taken	to	ensure	that	participants	

understood	the	instructions,	that	they	knew	the	story	was	25	minutes	long	and	that	the	

maximum	distance	between	two	clips	could	not	exceed	that	duration.	During	debriefing,	

participants	reported	making	duration	estimates	based	on	the	perceptual	and	semantic	
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similarity	between	the	two	clips	(e.g.,	which	character	voices	were	present,	which	

background	music	was	playing,	the	topic	of	conversation).		

We	found	that	naïve	participants	estimated	6-minute	intervals	(M=6.21	min,	

SD=1.91)	to	be	longer	than	2-minute	intervals	(M=5.63	min,	SD=1.74;	t(16)=2.62,	

p=0.019),	suggesting	that	the	similarity	between	two	clips	carried	some	information	

about	the	temporal	distance	between	them.	However,	naïve	participants	were	

significantly	less	accurate	at	distinguishing	6-minute	intervals	from	2-minute	intervals	

than	our	original	participants	who	had	heard	the	story.	To	quantify	this,	we	calculated	

the	difference	between	the	mean	duration	estimates	for	6-minute	intervals	and	the	

mean	duration	estimates	for	2-minute	intervals	for	every	participant	(exactly	as	in	the	

Behavioral	Results	section).	The	difference	score	was	significantly	higher	for	our	original	

participants	(M=2.01	min,	SD=1.64	min)	than	for	naïve	participants	(M=0.59	min,	

SD=0.91	min),	t(26.86)=	-3.22,	p<0.005.	

The	inter-subject	correlation	in	duration	estimates	was	as	strong	for	naïve	

participants	(M=0.43,	SD=0.18)	as	for	our	original	participants	(M=0.43,	SD=0.25),	

suggesting	that	they	used	a	consistent	strategy	to	estimate	durations.	However,	when	

we	correlated	duration	estimates	from	our	original	group	of	participants	with	those	of	

our	naïve	participants,	we	found	that	between-group	correlations	(M=0.18,	SD=0.22)	

were	significantly	lower	than	the	within-group	correlations	(p<0.0001,	as	assessed	by	a	

permutation	test	described	in	the	Methods).	This	suggests	that	while	both	groups	used	a	

consistent	strategy	to	estimate	durations,	the	nature	of	the	strategy	differed	across	

groups.		
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Most	importantly,	we	found	that	the	number	of	event	boundaries	in	an	interval	did	

not	significantly	correlate	with	duration	estimates	of	naïve	participants	(r=0.09,	95%	CI	

[-0.05,	0.21];	Figure	7).	The	correlation	between	the	number	of	boundaries	and	duration	

estimates	was	significantly	higher	for	our	original	participants	than	for	naïve	participants	

(𝑟!"##	=	0.40,	95%	CI	[0.15	0.56]).		

These	results	suggest	that	duration	estimates	do	not	correlate	with	the	number	of	

contextual	changes	when	participants	are	judging	temporal	distance	based	purely	on	

the	content	of	the	clips.	Rather,	they	support	the	interpretation	that	our	original	

participants	were	recalling	the	content	of	the	story	in	between	two	clips	to	estimate	

durations,	and	that	contextual	changes	were	a	particularly	strong	driver	of	duration	

estimates.		

	

Figure	7	Mean	duration	estimates	for	2-minute	intervals	as	a	function	of	the	number	of	event	
boundaries	in	each	interval.	The	number	of	event	boundaries	in	an	interval	predicted	
retrospective	duration	estimates	in	our	original	experiment	(left	panel),	but	did	not	predict	
duration	estimates	of	naïve	participants	(right	panel)	who	had	never	heard	the	story.	This	
suggests	that	the	number	of	contextual	changes	between	two	clips	influenced	temporal	
distance	judgments	only	when	the	content	of	the	story	between	the	two	clips	could	be	recalled.	
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However,	it	is	still	possible	that	pattern	distance	in	the	brain	regions	we	found	

correlates	with	the	component	of	duration	estimates	that	is	driven	by	the	perceptual	

and	semantic	similarity	between	clips,	rather	than	by	contextual	changes.	To	rule	out	

this	possibility,	we	performed	a	version	of	our	main	analysis	that	holds	constant	the	

perceptual	and	semantic	similarity	between	two	clips.		

Within-interval	correlation	between	pattern	distance	and	duration	estimates	

Our	main	ROI	analysis	was	performed	within	participants	and	correlated	the	

duration	estimates	for	a	given	participant	with	that	participant’s	pattern	distance	vector	

across	intervals.	Results	were	then	aggregated	across	participants.	On	the	other	hand,	

the	“within-interval	analysis”	correlates	duration	estimates	for	a	given	interval	across	

participants	with	the	pattern	distances	for	that	interval	(results	are	then	aggregated	

across	all	2-minute	intervals).	Rather	than	capturing	variance	within	an	individual	across	

intervals	of	the	story,	this	analysis	captures	variance	across	individuals	for	a	given	

interval	of	the	story.	By	performing	the	correlation	for	a	given	interval,	we	hold	constant	

the	perceptual	and	semantic	content	of	the	two	clips	and	only	leverage	individual	

differences	in	how	long	the	interval	appeared	retrospectively.		

As	described	in	the	Methods,	a	permutation	test	was	used	to	assess	the	statistical	

significance	of	each	correlation.	Duration	estimates	were	scrambled	across	participants	

10,000	times	to	obtain	a	distribution	of	null	correlations,	and	Z-values	were	calculated	

for	each	interval,	reflecting	the	strength	of	the	empirical	correlation	relative	to	the	

distribution	of	null	correlations.	Finally,	a	right-tailed	t-test	was	performed	to	assess	
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whether	the	Z-values	for	a	region	were	reliably	above	0	across	intervals.	The	p-values	

from	this	t-test	were	subjected	to	multiple	comparisons	correction	using	FDR.		

Out	of	the	regions	selected	a	priori,	the	bilateral	entorhinal	cortex,	right	perirhinal	

cortex,	right	amygdala,	right	pars	orbitalis,	right	lateral	orbitofrontal	cortex	and	bilateral	

insula	showed	a	significant	positive	correlation	between	pattern	change	and	duration	

estimates	for	2-minute	intervals	(q<0.05).	Figure	8	shows	the	mean	Z-values	across	

intervals	for	all	a	priori	ROIs	(16	in	each	hemisphere).	

Extending	this	analysis	to	the	whole	brain	(same	anatomical	masks	as	in	Figure	4	–	

Supplement	1)	revealed	the	same	8	ROIs	listed	above	(suggesting	all	the	effects	were	

strong	enough	to	survive	whole-brain	correction),	in	addition	to	the	left	caudal	anterior	

cingulate	cortex,	and	the	right	superior	and	inferior	temporal	cortices	(q<0.1).		

Note	that	the	two	regions	revealed	by	our	within-participant	a	priori	ROI	analysis,	

the	right	entorhinal	cortex	and	right	pars	orbitalis,	exhibited	similar	effect	sizes	in	the	

within-interval	analysis	(Cohen’s	d	=	0.83	and	0.67,	respectively)	as	in	the	within-

participant	analysis	(Cohen’s	d	=	0.77	and	0.78,	respectively).		

If	neural	pattern	distance	in	entorhinal	cortex	and	pars	orbitalis	between	two	clips	

were	driven	by	changes	in	clip	content,	we	would	have	expected	the	correlation	with	

duration	estimates	to	be	larger	for	the	across-interval,	within-participants	analysis	

(where	story	content	differed	across	intervals)	than	for	the	across-participants,	within-

interval	version	of	the	analysis	(where	story	content	is	held	constant).	The	fact	that	the	

effect	sizes	are	similar,	and	that	the	qualitative	pattern	of	brain	regions	matches	that	

observed	in	the	original	analysis	(the	additional	regions	like	perirhinal	cortex,	amygdala	
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and	insula	had	all	been	sub-threshold	in	the	within-participant	analysis)	shows	that	

differences	in	story	content	between	two	clips	are	not	the	main	factor	driving	the	

correlation	between	duration	estimates	and	neural	pattern	change.		
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Figure	8	Mean	Z-values	(across	all	2-minute	intervals)	of	correlations	between	pattern	
distance	and	duration	estimates	for	the	16	a	priori	ROIs.	Error	bars	represent	standard	errors	
of	the	mean.	Correlations	between	pattern	change	and	duration	estimates	were	performed	
across	participants,	separately	for	each	interval.	
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Patterns	of	activity	in	entorhinal	cortex	and	pars	orbitalis	change	slowly	over	time	

To	further	probe	the	idea	that	the	regions	we	found	represent	slowly	changing	

contextual	features,	we	assessed	whether	patterns	of	activity	in	these	regions	change	

more	slowly	over	time	than	patterns	of	activity	in	regions	known	to	be	involved	in	

auditory	and	language	processing.	To	quantify	the	speed	of	pattern	change,	we	

obtained	the	mean	auto-correlation	function	of	the	pattern	in	every	region	(see	

Methods),	and	took	the	full-width	half-maximum	(FWHM)	of	this	function	as	a	measure	

of	how	slowly	the	pattern	moves	away	from	itself	on	average.		

A	right-tailed	Wilcoxon	signed-rank	test	indicated	that	the	FWHMs	in	the	right	

entorhinal	cortex	(M=18.9	TRs,	SD=13.8	TRs)	and	right	pars	orbitalis	(M=14.7	TRs,	

SD=8.0	TRs)	were	significantly	larger	across	participants	than	the	FWHMs	in	the	right	

transverse	temporal	cortex	(M=7.3	TRs,	SD=1.2	TRs;	p<0.00005	for	the	right	entorhinal	

cortex	and	p<0.0005	for	the	right	pars	orbitalis),	which	encompasses	primary	auditory	

cortex	(Destrieux,	Fischl,	Dale,	&	Halgren,	2010;	Shapleske,	Rossell,	Woodruff,	&	David,	

1999).	The	FWHMs	in	the	entorhinal	and	pars	orbitalis	were	also	significantly	larger	than	

those	in	the	right	banks	of	the	superior	temporal	sulcus	(M=9.0	TRs,	SD=2.1	TRs;	

p<0.001	for	the	right	entorhinal	cortex	and	p=0.0001	for	the	right	pars	orbitalis)	and	the	

right	superior	temporal	cortex	(M=11.0	TRs,	SD=3.1	TRs;	p<0.005	for	the	right	entorhinal	

cortex	and	p<0.01	for	the	right	pars	orbitalis),	regions	involved	in	auditory	processing	

and	the	early	cortical	stages	of	speech	perception	(Binder	et	al.,	2000;	Hickok	&	

Poeppel,	2004).	We	also	performed	the	above	tests	for	the	left	caudal	ACC,	the	region	

we	found	in	our	exploratory	whole-brain	analysis.	The	FWHMs	in	the	left	caudal	ACC	
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(M=8.3	TRs,	SD=1.8	TRs)	were	significantly	larger	than	those	in	the	right	transverse	

temporal	cortex	(p<0.01),	but	smaller	than	those	in	the	right	banks	of	the	superior	

temporal	sulcus	(p=0.97)	and	right	superior	temporal	cortex	(p=1.0).		

All	of	the	p-values	reported	as	significant	also	passed	multiple	comparisons	

correction	with	FDR	(q<0.05).		

We	also	ranked	the	mean	FWHM	in	the	regions	we	found	relative	to	all	the	other	

masks	in	the	brain	(84	in	total,	42	in	each	hemisphere).	We	found	that	the	mean	FWHM	

in	the	right	entorhinal	cortex	(M=18.9)	was	the	3rd	largest	in	the	entire	brain,	

superseded	only	by	the	left	temporal	pole	and	the	left	medial	orbitofrontal	cortex.	The	

mean	FWHM	in	the	right	pars	orbitalis	(M=14.7)	ranked	14th	in	the	brain	and	was	

superseded	by	the	following	regions:	bilateral	medial	orbitofrontal	cortex,	bilateral	

temporal	pole,	bilateral	entorhinal	cortex,	bilateral	perirhinal	cortex,	left	pars	orbitalis,	

right	inferior	temporal	cortex,	right	frontal	pole	and	bilateral	lateral	orbitofrontal	cortex.	

These	results	show	that	the	right	entorhinal	cortex	and	right	pars	orbitalis	have	

some	of	the	slowest	pattern	change	in	the	entire	brain,	and	the	other	slowest	regions	

were	adjacent	regions	of	the	orbitofrontal	cortex	and	anterior	temporal	lobe,	which	we	

found	in	our	searchlight	analysis.	On	the	other	hand,	the	left	caudal	ACC	did	not	have	

slower	pattern	change	than	most	other	brain	regions	and	ranked	65th	out	of	84	regions.	

Since	the	masks	used	in	our	analysis	were	anatomically	defined,	they	varied	

substantially	in	size.	To	ensure	that	differences	in	the	speed	of	pattern	change	were	not	

due	to	differences	in	ROI	size	(for	instance,	one	could	envision	that	patterns	in	smaller	

regions	might	change	more	gradually	than	patterns	in	large	regions),	we	also	performed	
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all	the	above	analyses	after	regressing	out	the	vector	of	ROI	sizes	(number	of	voxels)	out	

of	the	vector	of	FWHM	values	for	each	participant.		

Regressing	out	ROI	size	did	not	affect	any	of	the	main	findings	above.	The	FWHMs	in	

the	right	entorhinal	cortex	and	right	pars	orbitalis	were	still	significantly	larger	across	

participants	than	those	in	the	right	transverse	temporal	cortex	(p<0.0005	for	both	

regions)	and	those	in	the	right	banks	of	the	superior	temporal	sulcus	(p<0.001	and	

p<0.0005	respectively).	However,	they	were	no	longer	significantly	larger	than	the	

FWHMs	in	the	right	superior	temporal	cortex	(p=0.06	and	p=0.09	respectively).	Since	the	

superior	temporal	cortex	is	a	much	larger	ROI	than	entorhinal	cortex	or	pars	orbitalis,	it	

is	possible	that	regressing	out	ROI	size	obscures	a	true	effect.	The	univariate	analysis	

below	addresses	this	issue	and	shows	that	individual	voxels	in	superior	temporal	cortex	

exhibit	faster	signal	change	than	voxels	in	entorhinal	cortex	or	pars	orbitalis.	The	

FWHMs	in	the	left	caudal	ACC	were	still	significantly	larger	than	those	in	the	right	

transverse	temporal	cortex	(p<0.005),	but	smaller	than	those	in	the	right	banks	of	the	

superior	temporal	sulcus	(p=0.96)	and	right	superior	temporal	cortex	(p=1.0).	All	p-

values	reported	as	significant	survived	FDR	correction	at	q<0.05.		

Importantly,	the	ranking	of	the	mean	FWHMs	in	the	right	entorhinal	cortex	and	right	

pars	orbitalis	relative	to	the	rest	of	the	brain	was	altered	very	slightly.	The	right	

entorhinal	cortex	now	ranked	4th	in	the	brain,	superseded	only	by	the	left	and	right	

medial	orbitofrontal	cortex	and	left	temporal	pole.	The	right	pars	orbitalis	now	ranked	

10th	in	the	brain	and	was	superseded	only	by	the	bilateral	medial	orbitofrontal	cortex,	

bilateral	temporal	pole,	right	entorhinal	cortex,	right	inferior	temporal	cortex,	bilateral	
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lateral	orbitofrontal	cortex	and	left	perirhinal	cortex.	Again,	the	left	caudal	ACC	did	not	

exhibit	slower	pattern	change	than	most	other	regions	and	ranked	66th	out	of	84	

regions.		

These	results	supported	our	interpretation	that	patterns	in	the	right	entorhinal	

cortex	and	pars	orbitalis	change	more	slowly	than	in	most	other	regions	because	they	

process	abstract	information	that	changes	slowly	over	time	(rather	than	an	artifact	of	

ROI	size).	However,	it	was	still	possible	that	regressing	out	ROI	size	would	only	remove	a	

linear	relationship	between	ROI	size	and	the	speed	of	pattern	change	but	could	not	rule	

out	a	non-linear	relationship.	To	address	this	concern	more	thoroughly,	we	performed	

the	above	analysis	for	every	voxel	individually.	Rather	than	calculating	the	mean	auto-

correlation	function	of	the	pattern	in	every	region,	we	calculated	the	auto-correlation	

function	of	every	voxel’s	time	course	and	averaged	the	auto-correlation	functions	across	

all	the	voxels	in	a	given	region.	The	FWHM	was	then	computed	for	this	mean	auto-

correlation	derived	from	individual	voxel	time	courses.		

This	univariate	analysis	yielded	very	similar	results	qualitatively.	The	FWHMs	in	the	

right	entorhinal	cortex	(M=23	TRs,	SD=15.6	TRs)	and	right	pars	orbitalis	(M=17.1	TRs,	

SD=7.7	TRs)	were	significantly	larger	across	participants	than	those	in	the	right	

transverse	temporal	cortex	(M=7.9	TRs,	SD=1.2	TRs;	p<0.00005	and	p<0.0005	

respectively),	the	right	banks	of	the	superior	temporal	sulcus	(M=8.8	TRs,	SD=1.7	TRs;	

p<0.0005	and	p<0.00005	respectively)	and	the	right	superior	temporal	cortex	(M=10.3	

TRs,	SD=2.4	TRs;	p<0.0005	and	p<0.0001	respectively).	However,	the	FWHMs	in	the	left	

caudal	ACC	(M=9.22	TRs;	SD=3.8	TRs)	were	no	longer	significantly	larger	than	those	in	
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the	right	transverse	temporal	cortex	(p=0.059),	the	right	banks	of	the	superior	temporal	

sulcus	(p=0.42)	or	the	right	superior	temporal	cortex	(p=0.98).	In	terms	of	ranking,	the	

right	entorhinal	cortex	now	ranked	1st,	displaying	the	largest	mean	FWHM	value	in	the	

entire	brain.	The	right	pars	orbitalis	now	ranked	11th	and	was	superseded	by	the	same	

regions	listed	above,	including	the	bilateral	entorhinal	cortex,	bilateral	frontal	pole,	

bilateral	temporal	pole,	bilateral	perirhinal	cortex,	bilateral	medial	orbitofrontal	cortex	

and	the	left	pars	orbitalis.	On	the	other	hand,	the	left	caudal	ACC	ranked	45th	out	of	84	

brain	regions,	suggesting	that	its	patterns	did	not	change	more	slowly	than	most	other	

regions.		

Taken	together,	all	three	variants	of	the	analysis	show	that	the	right	entorhinal	and	

right	pars	orbitalis,	along	with	neighboring	regions	of	the	anterior	and	medial	temporal	

lobe,	orbitofrontal	cortex	and	frontal	pole,	have	the	slowest	pattern	change	in	the	brain.	

These	results	do	not	seem	to	be	due	to	differences	in	the	sizes	of	the	anatomical	masks	

and	suggest	that	the	regions	found	in	our	ROI	analysis	process	information	that	changes	

slowly	over	time.	Our	findings	are	consistent	with	those	of	Stephens,	Honey,	&	Hasson		

(2013),	who	showed	that	auditory	cortex	regions	processing	momentary	stimulus	

features	had	intrinsically	faster	dynamics	than	higher-order	regions	that	integrated	

information	over	longer	time	scales	(see	also	Lerner,	Honey,	Silbert,	&	Hasson,	2011).		

Pattern	distances	in	the	right	entorhinal	cortex	and	right	pars	orbitalis	are	correlated	

While	we	did	not	predict	that	all	regions	whose	pattern	distance	predicted	duration	

estimates	should	represent	the	same	contextual	information,	we	hypothesized	that	

these	regions	would	have	correlated	pattern	change	if	they	are	part	of	a	network	that	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2016. ; https://doi.org/10.1101/043075doi: bioRxiv preprint 

https://doi.org/10.1101/043075
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 40	

integrates	the	various	features	comprising	mental	context.	To	explore	this,	we	first	

averaged	the	pattern	distance	values	across	participants	for	each	of	the	24	pairs	of	clips	

(which	were	2	minutes	apart).	This	step	was	performed	based	on	findings	that	averaging	

across	participants	helps	to	reduce	correlations	within	brains	that	are	driven	by	

respiration,	heart	rate	and	head	motion,	and	helps	to	isolate	the	correlations	across	

regions	that	are	driven	by	neural	processing	of	the	story	(Simony	et	al.,	in	press).	The	

correlation	between	the	mean	pattern	distance	vectors	in	the	right	entorhinal	cortex	

and	right	pars	orbitalis	was	r	=	0.73.	In	order	to	interpret	the	magnitude	of	this	

correlation,	we	also	calculated	the	correlation	between	every	possible	pair	of	mean	

pattern	distance	vectors	(for	all	84	anatomical	masks).	This	resulted	in	a	distribution	of	

3486	correlations	–	one	for	every	possible	pair	of	regions.	Out	of	3486	pairs	of	regions,	

only	242	exhibited	a	correlation	that	was	higher	than	the	one	observed	between	the	

right	entorhinal	and	right	pars	orbitalis.	Thus,	the	correlation	between	the	pattern	

distances	in	these	two	regions	is	higher	than	for	93%	of	region	pairs.		

To	ascertain	that	the	correlation	between	these	regions	was	not	spuriously	high	

because	of	the	auto-correlation	in	the	pattern	distance	signal,	we	performed	a	phase	

randomization	procedure	(see	Methods)	to	assess	the	likelihood	of	this	correlation	

magnitude,	given	the	frequency	spectra	of	the	pattern	distance	vectors.	We	generated	

1000	surrogate	pattern	distance	vectors	for	each	region,	and	correlated	each	surrogate	

entorhinal	vector	with	each	surrogate	pars	orbitalis	vector,	resulting	in	a	distribution	of	

1,000,000	null	correlations.	The	likelihood	of	obtaining	a	correlation	of	r=0.73	or	higher	

by	chance	was	p=0.0011.		
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We	also	verified	whether	the	pattern	dissimilarity	values	in	the	right	entorhinal	

cortex	and	right	pars	orbitalis	were	correlated	with	those	in	the	left	caudal	anterior	

cingulate	cortex	(ACC),	the	region	yielded	by	extending	our	anatomical	ROI	analysis	to	

the	whole	brain.	The	pattern	change	in	the	left	caudal	ACC	was	substantially	less	

correlated	with	pattern	change	in	the	right	entorhinal	cortex	(r=0.23,	higher	than	only	

14.7%	of	region	pairs;	p=0.19	based	on	the	phase	randomization	procedure)	and	the	

right	pars	orbitalis	(r=0.44,	higher	than	41.1%	of	region	pairs;	p=0.051	based	on	the	

phase	randomization	procedure).	

Together	with	the	finding	that	patterns	in	the	left	caudal	ACC	change	more	rapidly	

than	those	in	the	entorhinal	cortex	or	pars	orbitalis,	this	suggests	that	pattern	change	in	

the	ACC	captures	a	qualitatively	different	signal	than	the	one	represented	in	the	

entorhinal	cortex	and	pars	orbitalis.		

Story	position	effects	can	not	explain	the	correlation	between	duration	estimates	and	

neural	pattern	change	

We	found	that	duration	estimates	systematically	decreased	as	a	function	of	position	

in	the	story,	with	earlier	intervals	being	estimated	as	longer	than	later	intervals	(Figure	

9A).	The	correlation	between	the	estimated	duration	of	an	interval	and	its	time	in	the	

story	was	consistently	negative	across	participants	(M=	-0.40,	SD=	0.22;	t(16)=	-7.59,	

p<0.00001;	we	defined	the	time	of	the	interval	in	the	story	as	the	middle	time	point	of	

each	2-minute	interval,	half-way	between	the	two	clips	delimiting	it).	If	neural	pattern	

change	also	decreased	as	a	function	of	position	in	the	story,	it	might	be	possible	to	
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explain	the	observed	correlation	between	duration	estimates	and	pattern	change	in	

terms	of	both	measures	being	correlated	with	story	position.		

Importantly,	the	pattern	dissimilarity	values	in	right	entorhinal	cortex	and	right	pars	

orbitalis	did	not	exhibit	the	same	overall	decrease	across	time.	In	fact,	there	was	no	

consistent	correlation	between	pattern	change	during	an	interval	and	its	time	in	the	

story	for	the	right	entorhinal	cortex	(M=0.03,	SD=0.21;	t(16)=	0.65;	p=0.53)	or	the	right	

pars	orbitalis	(M=-0.10,	SD=0.22;	t(16)=	-1.83,	p=0.09).	This	correlation	was	also	not	

reliable	for	the	left	caudal	ACC	(M=-0.05,	SD=0.18;	t(16)=-1.15,	p=0.27),	the	region	

found	in	our	exploratory	whole-brain	anatomical	analysis.	These	results	suggest	that	the	

relationship	between	duration	estimates	and	pattern	dissimilarity	in	these	regions	was	

not	driven	by	a	shared	effect	of	story	position.	Rather,	it	seems	that	pattern	dissimilarity	

in	these	regions	correlated	with	more	fine-grained	variations	in	the	estimated	durations	

of	nearby	intervals	(Figure	9B).		
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Figure	9	Mean	duration	estimates	and	pattern	distances	(across	participants)	for	all	2-minute	
intervals	as	a	function	of	the	interval’s	position	in	the	story.	The	middle	time	point	of	each	2-
minute	interval	(half-way	between	the	two	clips	delimiting	it)	was	chosen	as	the	x-coordinate.		
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Discussion	

While	human	and	animal	time	perception	has	been	a	subject	of	intense	empirical	

investigation	(see	Wittmann,	2013),	most	neuroimaging	studies	have	tested	its	

mechanisms	on	the	scale	of	milliseconds	to	seconds	and	neglected	paradigms	in	which	

long-term	memory	plays	an	important	role.	Such	studies	have	typically	employed	

prospective	paradigms,	in	which	participants	must	deliberately	attend	to	the	duration	of	

a	stimulus.	However,	behavioral	studies	in	humans	have	consistently	demonstrated	that	

retrospective	paradigms,	in	which	participants	are	asked	to	estimate	the	duration	of	an	

elapsed	interval	from	memory,	tap	into	different	cognitive	mechanisms	from	

prospective	ones	(Hicks	et	al.,	1976;	Zakay	&	Block,	2004;	Block	&	Zakay,	2008).	In	

retrospective	paradigms,	changes	in	spatial,	emotional	and	cognitive	context	tend	to	

modulate	estimates	of	elapsed	time	(Block	&	Reed,	1978;	Block,	1992;	Sahakyan	&	

Smith,	2014;	Pollatos	et	al.,	2014).		

In	the	present	study,	we	used	changes	in	patterns	of	BOLD	activity	as	a	proxy	for	

mental	context	change.	We	sought	to	extend	previous	neuroimaging	work	by	testing	

whether	neural	pattern	change	predicts	duration	estimates	on	the	scale	of	several	

minutes	and	in	a	more	naturalistic	setting,	where	spatial	location,	situational	inference,	

characters,	and	emotional	elements	can	all	drive	contextual	change.	

Participants	were	scanned	while	they	listened	to	a	25-minute	radio	story	and	were	

subsequently	asked	how	much	time	(in	minutes	and	seconds)	had	elapsed	between	

pairs	of	clips	from	the	story	(all	pairs	were	in	fact	two	minutes	apart).	Using	this	

approach,	we	were	able	to	probe	retrospective	duration	memory	repeatedly	within	
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participants	without	needing	to	interrupt	the	encoding	of	the	story.	This	allowed	us	to	

leverage	within-participant	variability	in	neural	pattern	change	and	relate	it	to	a	

participant’s	retrospective	duration	estimates.		

Using	a	within-participant	anatomical	ROI	analysis	(encompassing	16	regions	

selected	a	priori),	we	found	that	neural	pattern	distance	in	the	right	entorhinal	cortex	

and	right	pars	orbitalis	at	the	time	of	encoding	was	correlated	with	subsequent	duration	

estimates.	Extending	this	analysis	to	all	anatomical	ROIs	in	cortex	revealed	an	additional	

effect	in	the	left	caudal	anterior	cingulate	cortex	(ACC).	These	results	converged	

qualitatively	with	the	results	of	our	whole-brain	searchlight	analysis,	which	revealed	a	

significant	cluster	spanning	the	right	anterior	temporal	lobe	and	extended	to	a	sub-

threshold	cluster	in	the	right	inferior	frontal	cortex.		

To	test	our	interpretation	that	both	duration	estimates	and	neural	pattern	distance	

were	driven	by	contextual	change,	we	asked	a	separate	group	of	participants	to	identify	

event	boundaries	in	the	story.	We	found	that	the	number	of	event	boundaries	between	

two	clips	was	very	highly	correlated	with	participants’	subsequent	duration	estimates.	

Importantly,	the	number	of	event	boundaries	did	not	predict	duration	estimates	for	a	

separate	group	of	“naïve“	participants,	who	had	been	asked	to	estimate	the	elapsed	

time	between	clips	without	first	hearing	the	story.	This	showed	that	simply	hearing	the	

content	of	the	two	clips	was	not	sufficient	to	infer	the	number	of	contextual	boundaries	

between	them.	These	behavioral	experiments	provide	evidence	that	retrospective	

duration	estimates	were	indeed	influenced	by	memory	for	intervening	contextual	

changes	between	clips.		
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In	addition,	we	sought	to	rule	out	the	possibility	that	neural	pattern	distance	

between	two	clips	reflected	only	the	perceptual	or	semantic	similarity	between	them,	

rather	than	the	degree	of	mental	context	change.	We	performed	a	within-interval	

anatomical	ROI	analysis,	in	which	pattern	distances	for	the	same	pair	of	clips	were	

correlated	with	duration	estimates	across	participants.	This	analysis	yielded	effects	of	

the	same	size	in	the	right	entorhinal	cortex,	right	pars	orbitalis	and	left	caudal	ACC,	as	

well	as	an	additional	set	of	regions	like	the	right	lateral	orbitofrontal	cortex,	left	

entorhinal,	right	perirhinal	cortex,	right	amygdala	and	bilateral	insula.	In	other	words,	

pattern	distance	in	the	regions	we	found	predicted	variability	in	duration	estimates	even	

when	the	perceptual	and	semantic	distance	of	the	clips	was	controlled	as	much	as	

possible,	suggesting	that	their	signal	may	capture	idiosyncratic	differences	in	mental	

context	that	cannot	be	predicted	from	the	stimulus	alone.		

Finally,	measuring	the	speed	of	neural	pattern	change	in	all	anatomical	ROIs	

revealed	that	the	right	entorhinal	cortex,	right	pars	orbitalis,	as	well	as	adjacent	regions	

of	the	MTL,	temporal	pole	and	orbitofrontal	cortex,	had	some	of	the	slowest	changing	

patterns	in	the	entire	brain.	This	is	in	line	with	findings	that	brain	regions	at	the	top	of	

the	processing	hierarchy	(furthest	from	the	primary	perceptual	areas)	integrate	

information	over	longer	time	scales	and	are	therefore	best	suited	for	representing	

abstract	information	extracted	from	multiple	streams	of	sensory	observations	

(Stephens,	Honey,	&	Hasson,	2013;	Lerner	et	al.,	2011).	We	also	found	that	the	right	

pars	orbitalis	and	right	entorhinal	cortex	had	some	of	the	most	correlated	pattern	

change	out	of	any	pair	of	brain	regions,	making	them	strong	candidates	for	integrating	
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various	features	that	comprise	mental	context	into	a	unified	representation	that	

changes	slowly	over	time.		

Below,	we	discuss	how	the	medial	temporal,	lateral	prefrontal	and	anterior	cingulate	

regions	we	found	most	consistently	throughout	all	our	analyses	relate	to	previous	

findings	in	the	literature.	

Multiple	lines	of	evidence	have	suggested	an	important	role	for	the	entorhinal	

cortex	in	representing	relationships	between	the	spatial	environment,	task	and	

incoming	stimuli.	Lesions	of	the	lateral	entorhinal	cortex	in	rodents	have	shown	that	this	

region	is	necessary	for	discriminating	between	novel	and	familiar	associations	of	object	

and	place,	object	and	non-spatial	context,	or	place	and	context,	while	leaving	non-

associative	forms	of	memory	unaffected	(Buckmaster,	Eichenbaum,	Amaral,	Suzuki,	&	

Rapp,	2004;	Wilson,	Watanabe,	Milner,	&	Ainge,	2013;	Wilson,	Langston,	et	al.,	2013).	

Moreover,	electrophysiological	recordings	in	rats	performing	a	spatial	memory	task	

showed	that	neurons	in	the	medial	entorhinal	cortex	exhibited	greater	context	

sensitivity	and	greater	modulation	by	task-relevant	mnemonic	information	than	

hippocampal	neurons,	while	hippocampal	neurons	carried	more	specific	spatial	

information	(Lipton,	White,	&	Eichenbaum,	2007).	Medial	entorhinal	neurons	also	

exhibited	longer	firing	periods,	which	led	the	authors	to	propose	that	they	could	bind	a	

series	of	hippocampal	representations	of	distinct	events	(Lipton	&	Eichenbaum,	2008).	

Thus,	changes	in	distributed	entorhinal	activity	patterns	on	the	scale	of	minutes	might	

represent	changes	in	contextual	elements	that	are	later	retrieved	to	make	duration	
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judgments	(for	theoretical	discussion	of	the	role	of	entorhinal	cortex	in	contextual	

representation,	see	Howard,	Fotedar,	Datey,	&	Hasselmo,	2005).		

While	the	right	entorhinal	cortex	was	the	only	medial	temporal	lobe	region	that	

survived	FDR	correction	in	both	our	within-participant	and	within-interval	ROI	analyses,	

our	whole-brain	searchlight	found	a	significant	relationship	between	pattern	change	and	

duration	estimates	in	an	extensive	cluster	that	overlapped	with	a	few	voxels	in	the	right	

hippocampus,	the	right	perirhinal	cortex,	and	right	temporal	pole.	Moreover,	our	

within-interval	ROI	analysis	yielded	significant	effects	in	the	bilateral	entorhinal	cortex,	

right	perirhinal	and	right	amygdala.	

Two	previous	studies,	Noulhiane	et	al.	(2007)	and	Ezzyat	and	Davachi	(2014),	have	

directly	implicated	the	MTL	in	retrospective	time	estimation	in	humans.	Ezzyat	and	

Davachi	(2014)	scanned	participants	while	they	were	presented	with	trial-unique	faces	

and	objects	on	a	scene	background,	which	changed	every	four	trials.	After	each	run,	

participants	were	asked	whether	pairs	of	stimuli	had	occurred	close	together	or	far	

apart	in	time	(all	pairs	were	about	50	seconds	apart).	They	found	that	neural	pattern	

distance	in	the	left	hippocampus	at	the	time	of	encoding	was	greater	for	pairs	of	stimuli	

later	rated	as	“far	apart”,	though	only	when	the	stimuli	were	separated	by	a	scene	

change.	Noulhiane	et	al.	(2007)	used	a	retrospective	behavioral	paradigm	similar	to	ours	

in	patients	with	unilateral	MTL	lesions.	In	that	study,	participants	were	asked	to	

estimate	the	temporal	distance	between	object	pictures	that	had	been	randomly	

inserted	into	a	silent	documentary	film.	They	found	that	the	degree	of	left	entorhinal,	

left	perirhinal	and	left	temporopolar	cortex	damage	correlated	with	the	degree	to	which	
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patients	overestimated	minutes-long	intervals	in	retrospect.	(For	related	evidence	from	

the	animal	literature,	see	Jacobs,	Allen,	Nguyen,	&	Fortin,	2013,	who	showed	that	

bilateral	inactivation	of	the	hippocampus	impaired	rats’	ability	to	discriminate	between	

similarly	long	durations,	like	8	and	12	minutes,	but	not	between	less	similar	intervals,	

like	3	and	12	minutes.)	

Our	ROI	and	searchlight	results	are	in	line	with	the	above	set	of	findings,	and	suggest	

that	patients	with	anterior	MTL	lesions	might	be	impaired	in	retrospective	time	

estimation	because	patterns	of	activity	in	entorhinal,	perirhinal,	and	temporopolar	

cortex	encode	contextual	changes	on	the	scale	of	minutes.	The	set	of	regions	we	found	

is	more	extensive	than	those	in	Ezzyat	&	Davachi	(2014)	and	mostly	right-lateralized.	It	is	

possible	that	the	difference	in	the	extent	of	our	effects	could	be	explained	by	the	

difference	in	paradigm.	In	both	the	Noulhiane	(2007)	and	Ezzyat	&	Davachi	(2014)	

studies,	the	links	between	objects	and	their	context	had	to	be	deliberately	constructed.	

In	our	study,	the	clips	whose	temporal	distance	participants	estimated	were	excerpts	

from	a	story,	and	therefore	strongly	linked	with	a	situational,	spatial,	and	emotional	

context.	Thus,	it	is	possible	that	activity	patterns	in	a	more	extensive	cluster	tracked	

temporal	distance	estimates	because	our	auditory	story	caused	changes	in	a	broader	set	

of	contextual	features.		

Beyond	the	medial	temporal	lobe,	our	ROI	analysis	revealed	a	relationship	between	

pattern	distance	and	duration	estimates	in	the	right	pars	orbitalis	(BA	47).	This	region	

overlaps	with	the	lateral	part	of	the	orbitofrontal	cortex	(OFC)	(Mackey	&	Petrides,	

2010;	Öngür,	Ferry,	&	Price,	2003;	Uylings	et	al.,	2010)	and	anterior	part	of	the	
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ventrolateral	prefrontal	cortex	(VLPFC),	which	have	been	implicated	in	a	wide	range	of	

learning	and	decision-making	behaviors,	including	the	learning,	maintenance	and	

shifting	of	higher-order	rules	(Brass	&	von	Cramon,	2004;	Hampshire	&	Owen,	2006;	

Rushworth	et	al.,	2005;	Wallis,	Anderson,	&	Miller,	2001;	Wallis,	Dias,	Robbins,	&	

Roberts,	2001),	reversal	learning	(Kim	&	Ragozzino,	2005),	extinction	learning	(Butter,	

Mishkin,	&	Rosvold,	1963),	and	value-based	decision-making	(see	Wallis,	2011,	for	a	

review).	Recently,	Wilson,	Takahashi,	Schoenbaum,	&	Niv	(2014)	have	proposed	that	

many	of	these	functions	could	be	unified	under	a	model	in	which	the	orbitofrontal	

cortex	(particularly	lateral	OFC)	computes	an	animal’s	location	in	a	cognitive	map	of	task	

space,	akin	to	a	state	representation	for	reinforcement	learning.	Such	representations	

are	particularly	important	when	abstract	information	in	working	memory	is	necessary	to	

distinguish	between	perceptually	similar,	but	conceptually	different,	task	states.	Thus,	it	

is	possible	that	pattern	change	in	the	right	pars	orbitalis	reflects	changes	in	task	context,	

which	are	difficult	to	infer	from	the	physical	environmental	alone.	Although	our	

participants	were	not	instructed	to	perform	any	task	while	encoding	the	story,	

understanding	the	narrative	requires	inferring	the	goals	and	situation	of	the	characters,	

which	is	similar	to	navigating	a	complex	task	space.	This	interpretation	is	supported	by	

studies	showing	that	people	understand	stories	by	simulating	the	characters’	actions	

and	that	such	simulation	engages	the	same	circuits	involved	in	performing	those	actions	

in	the	real	world	(Speer,	Reynolds,	Swallow,	&	Zacks,	2009).	

Extending	our	anatomical	ROI	analysis	to	the	entire	brain	showed	that,	in	addition	to	

the	right	entorhinal	and	pars	orbtalis,	pattern	change	in	the	left	caudal	anterior	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2016. ; https://doi.org/10.1101/043075doi: bioRxiv preprint 

https://doi.org/10.1101/043075
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 51	

cingulate	cortex	(ACC)	predicted	subsequent	duration	estimates.	However,	caudal	ACC	

exhibited	more	rapid	pattern	change	than	the	entorhinal	and	orbitofrontal	cortex,	and	

pattern	change	in	this	region	did	not	correlate	with	the	other	two	regions	nearly	as	

strongly	as	they	did	with	each	other,	suggesting	that	it	may	represent	a	qualitatively	

different,	faster-changing	signal.	Caudal	ACC	activity	has	been	shown	to	increase	in	

response	to	shifts	in	task	contingencies	(see	Shenhav,	Botvinick,	&	Cohen,	2013,	for	a	

review)	and	there	is	converging	evidence	that	ACC	responses	are	important	for	adjusting	

behavior	to	unexpected	changes	by	increasing	attention	and	learning	rate	(Bryden,	

Johnson,	Tobia,	Kashtelyan,	&	Roesch,	2011;	Behrens,	Woolrich,	Walton,	&	Rushworth,	

2007;	McGuire,	Nassar,	Gold,	&	Kable,	2014).	Furthermore,	O’Reilly	et	al.	(2013)	have	

provided	evidence	that	the	ACC	only	responds	to	surprising	outcomes	when	they	

necessitate	updating	beliefs	about	the	current	state	of	the	world.	Although	the	present	

study	was	not	designed	to	test	such	accounts,	our	findings	are	consistent	with	a	role	for	

ACC	in	updating	predictive	models.	Events	in	the	story	that	prompt	participants	to	

update	their	beliefs	about	the	characters’	situation	are	also	likely	to	cause	changes	in	

cognitive	context	and	therefore	overestimation	of	duration.	However,	future	studies	are	

needed	to	test	this	interpretation,	for	instance	by	manipulating	belief	updating	

independently	of	surprise	and	measuring	its	effect	on	retrospective	duration	estimates.	

In	addition	to	the	anatomical	ROI	analysis,	we	performed	a	whole-brain	searchlight	

that	yielded	an	extensive	cluster	covering	the	right	anterior	temporal	lobe,	extending	

from	the	medial	temporal	regions	described	above	to	the	middle	temporal	gyrus	and	

temporal	pole.	Prior	work	has	suggested	that	the	middle	temporal	gyrus	and	temporal	
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pole	are	involved	in	narrative	comprehension	(Ferstl,	Neumann,	Bogler,	&	Von	Cramon,	

2008;	Mar,	2004)	and	narrative	item	memory	(Hasson,	Nusbaum,	&	Small,	2007;	

Maguire,	Frith,	&	Morris,	1999).	Moreover,	Ezzyat	and	Davachi	(2011)	found	a	similarly	

located	cluster	(extending	from	the	right	perirhinal	cortex	to	the	right	middle	temporal	

gyrus)	to	be	involved	in	integrating	information	within	narrative	events.	In	particular,	

they	showed	that	activity	within	these	regions	gradually	increases	within	events	and	

that	this	increase	predicts	the	degree	to	which	memories	become	clustered	within	

events.	Retrospective	time	judgments	have	been	shown	to	increase	with	the	number	of	

events	an	interval	contains	(Poynter,	1983;	Zakay	et	al.,	1994),	suggesting	that	brain	

regions	involved	in	clustering	memories	by	events	may	carry	important	information	for	

estimating	durations.	 	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2016. ; https://doi.org/10.1101/043075doi: bioRxiv preprint 

https://doi.org/10.1101/043075
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 53	

Conclusion	

After	probing	human	participants’	time	perception	for	intervals	from	an	auditory	

story	they	had	just	heard,	we	found	substantial	variability	in	subjective	estimates	of	the	

passage	of	time.	This	variability	was	significantly	correlated	with	changes	in	BOLD	

activity	patterns	in	the	right	entorhinal	cortex,	right	pars	orbitalis,	left	caudal	ACC,	and	

the	right	anterior	temporal	lobe,	between	the	start	and	end	of	each	interval.	Control	

experiments	demonstrated	that	duration	estimates	were	strongly	driven	by	contextual	

boundaries	and	that	the	relationship	between	neural	distance	and	behavior	could	not	

be	explained	by	lower-level	changes	in	story	content.	Our	findings	suggest	that	patterns	

of	activity	in	these	regions	might	encode	contextual	information	that	participants	can	

later	retrieve	to	infer	the	durations	of	intervals	on	the	scale	of	minutes.	Additional	work	

is	needed	to	assess	how	these	regions	contribute	to	representing	particular	contextual	

features	(such	as	physical	environment,	abstract	task	states,	and	emotional	states)	and	

whether	changes	in	each	of	these	features	affect	retrospective	duration	estimates	

differently.	
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Methods	

Participants		

18	participants	(13	female)	took	part	in	the	study.	All	participants	were	recruited	

from	the	Princeton	undergraduate	and	graduate	student	population	and	were	between	

18	and	31	years	of	age	(mean	=	22	years).	All	participants	were	screened	to	ensure	no	

neurological	or	psychiatric	disorders.	Written	informed	consent	was	obtained	for	all	

participants	in	accordance	with	the	Princeton	Institutional	Review	Board	regulations.	

Participants	were	compensated	$20/hour	for	the	scanning	session,	and	$12/hour	for	the	

behavioral	session.	

	

Experimental	Design	and	Stimuli	

The	experiment	consisted	of	two	parts:	an	approximately	40-minute	session	in	the	MRI	

scanner,	during	which	participants	listened	to	the	auditory	story,	followed	immediately	

by	a	1-hour	behavioral	session,	during	which	participants	completed	a	time	perception	

test	on	the	story	they	had	just	heard.	Figure	1	illustrates	the	experimental	procedure.	

fMRI	session	

Prior	to	the	fMRI	session,	participants	were	instructed	to	listen	carefully	to	the	

auditory	story	while	in	the	scanner,	because	they	might	be	asked	questions	about	it	

later.	The	nature	of	the	follow-up	questions	was	unknown	to	the	participants.	While	in	

the	scanner,	participants	listened	to	a	25-minute-long	radio	adaptation	of	a	science	

fiction	story	called	“Tunnel	Under	the	World”	(written	by	Frederik	Pohl),	originally	aired	

on	the	radio	drama	series,	“X	Minus	One”,	in	1956.	
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Time	perception	test	

After	leaving	the	scanner,	participants	were	surprised	with	a	time	perception	test,	

presented	on	a	laptop	with	the	Psychophysics	toolbox	for	Matlab	(Brainard,	1997;	Pelli,	

1997).	For	each	of	43	questions,	participants	listened	to	a	10	s	clip	from	the	story,	

followed	by	another	10	s	clip,	and	were	asked	to	estimate	how	much	time	had	passed	

between	the	first	and	second	clips	when	they	initially	heard	the	story.	Participants	were	

specifically	asked	to	estimate	how	much	time	had	passed	in	their	own	lives,	rather	than	

how	much	narrative	time	had	passed	in	the	story.	They	were	also	asked	to	make	the	

judgments	as	intuitively	as	possible,	without	resorting	to	deductive	reasoning	about	the	

sequence	of	events	that	unfolded	in	between	the	two	excerpts.		

Participants	had	complete	control	over	the	pacing	of	the	test.	On	each	question,	

they	initiated	the	playing	of	the	clips,	and	were	able	to	replay	the	clips	if	they	missed	

them	the	first	time.	They	could	take	as	long	as	they	wished	to	enter	their	duration	

estimates	(in	minutes	and	seconds),	using	the	keyboard.	Clip	pairs	were	identical	across	

participants,	but	the	order	in	which	the	pairs	were	presented	was	randomized.	

To	control	for	the	objective	passage	of	time,	we	ensured	that	24	of	the	clip	pairs	

were	2	minutes	apart	and	19	of	the	pairs	were	6	minutes	apart.	Debriefing	showed	that	

participants	were	unaware	of	this	manipulation,	and	the	high	variability	of	duration	

estimates	for	both	the	2	and	6-minute	intervals	further	confirmed	that	they	were	

unaware	of	the	fixed	interval	durations.		

After	participants	had	provided	duration	estimates	for	all	43	intervals,	the	86	clips	

that	had	delimited	those	intervals	were	replayed	in	a	random	order	(unpaired),	and	
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participants	were	asked	to	place	each	clip	on	the	timeline	of	the	story.	For	each	of	the	

86	questions,	a	white	line	appeared	on	a	black	background,	representing	the	full	length	

of	the	story.	Participants	could	place	their	cursor	at	any	point	on	that	line,	followed	by	

the	Enter	key.	After	each	placement,	they	were	asked	to	provide	a	confidence	rating	on	

a	scale	of	1	to	5,	reflecting	their	confidence	about	that	clip’s	place	in	the	story.	

Participants	were	instructed	to	base	the	confidence	rating	on	their	certainty	of	when	

that	clip	occurred	in	the	story,	rather	than	on	the	vividness	of	the	memory	for	that	clip.	

While	the	exact	placement	of	each	clip	on	the	timeline	was	not	used	in	the	fMRI	

analysis,	confidence	ratings	were	used	to	exclude	clips	whose	temporal	context	

participants	had	forgotten.		

Please	note:	the	first	of	our	18	participants	completed	a	version	of	the	time	

perception	test	that	differed	only	in	the	following	way:	the	specific	intervals	in	the	story	

whose	duration	was	asked	about	were	different.	In	all	other	respects	(half	of	the	

intervals	were	2	minutes	while	the	other	half	were	6	minutes	apart),	the	behavioral	test	

was	identical	to	the	subsequent	17	participants.	For	this	reason,	however,	any	analyses	

where	duration	estimates	are	compared	across	participants	were	performed	on	17	

rather	than	18	participants.	Any	within-participant	analyses	were	performed	on	all	18	

data	sets.		

Naïve	time	perception	test	

To	address	the	concern	that	participants	were	estimating	temporal	distance	between	

two	clips	based	purely	on	the	content	of	the	clips	(rather	than	their	memory	of	when	

the	clips	had	occurred	in	the	story),	we	administered	an	identical	time	perception	test	to	
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a	separate	group	of	17	participants	who	had	never	heard	the	story.	Since	these	

participants	had	no	memory	of	the	story,	they	could	only	base	their	temporal	distance	

estimates	on	the	content	of	the	clips.	Participants	were	only	told	the	length	of	the	story	

(25	minutes,	33	seconds)	and	informed	that	the	distance	between	two	clips	could	not	be	

greater	than	this	length.			

Event	boundary	test	

A	separate	group	of	9	participants	were	asked	to	listen	to	the	same	story	and	to	press	

the	space	bar	every	time	they	thought	an	event	had	ended	and	a	new	event	was	

beginning.	This	test	was	purely	behavioral	and	fMRI	data	were	not	collected	for	these	

participants.		

	

MRI	Acquisition	

Participants	were	scanned	in	a	3T	full-body	MRI	scanner	(Skyra,	Siemens)	with	a	20-

channel	head	coil.	Functional	images	were	acquired	using	a	T2*-weighted	echo	planer	

imaging	(EPI)	pulse	sequence	(repetition	time	[TR],	1500	ms;	echo	time	[TE],	28	ms;	flip	

angle,	64°),	each	volume	comprising	27	slices	of	4	mm	thickness.	In-plane	resolution	was	

3×3	mm2	(field	of	view	[FOV],	192×192	mm2).	Slice	acquisition	order	was	interleaved.	

Anatomical	images	were	acquired	using	a	T1-weighted	magnetization-prepared	rapid-

acquisition	gradient	echo	(MPRAGE)	pulse	sequence	(TR,	2300	ms;	TE,	3.08	ms;	flip	

angle	9°;	0.89	mm3	resolution;	FOV,	256	mm2).	Participants’	heads	were	stabilized	with	

foam	padding	to	minimize	head	movement.	Auditory	stimuli	were	presented	using	the	

Psychophysics	toolbox	(Brainard,	1997;	Pelli,	1997).	Participants	were	provided	with	MRI	
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compatible	in-ear	mono	earbuds	(Sensimetrics	Model	S14),	which	provided	the	same	

audio	input	to	each	ear.	MRI-safe	passive	noise-canceling	headphones	were	placed	over	

the	earbuds	for	additional	protection	against	noise.		

	

fMRI	Data	Preprocessing	

FMRI	data	processing	was	carried	out	using	FEAT	(FMRI	Expert	Analysis	Tool)	Version	

5.98,	part	of	FSL	(FMRIB's	Software	Library,	www.fmrib.ox.ac.uk/fsl).	The	following	

procedure	was	applied:	motion	correction	using	MCFLIRT	(Jenkinson,	Bannister,	Brady,	

&	Smith,	2002);	slice-timing	correction	using	Fourier-space	time-series	phase-shifting;	

non-brain	removal	using	BET	(Smith,	2002);	spatial	smoothing	using	a	Gaussian	kernel	of	

FWHM	6.0	mm;	grand-mean	intensity	normalization	of	the	entire	4D	dataset	by	a	single	

multiplicative	factor;	and	high-pass	temporal	filtering	(Gaussian-weighted	least-squares	

straight	line	fitting,	with	sigma=240.0	s).	The	procedure	for	selecting	the	high-pass	filter	

is	described	below.	Preprocessed	data	were	kept	in	the	native	functional	space	for	all	

analyses.	

	

Procedure	for	obtaining	anatomical	masks:	FreeSurfer	and	MTL	segmentation		

Segmentation	was	performed	in	a	semi-automated	fashion	using	the	FreeSurfer	

image	analysis	suite,	which	is	documented	and	available	online	(version	

5.1;	http://surfer.nmr.mgh.harvard.edu)	with	details	described	previously	(e.g.	Fischl	et	

al.,	2004;	Poppenk	&	Norman,	2014).	Briefly,	this	processing	includes	removal	of	non-

brain	tissue	using	a	hybrid	watershed/surface	deformation	procedure	(Ségonne	et	al.,	
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2004),	automated	Talairach	transformation,	intensity	normalization	(Sled,	Zijdenbos,	&	

Evans,	1998),	tessellation	of	the	grey	matter	/	white	matter	boundary,	automated	

topology	correction	(Fischl,	Liu,	&	Dale,	2001;	Segonne,	Pacheco,	&	Fischl,	2007),	surface	

deformation	following	intensity	gradients	(Fischl	&	Dale,	2000),	parcellation	of	cortex	

into	units	based	on	gyral	and	sulcal	structure	(Desikan	et	al.,	2006;	Fischl	et	al.,	2004),	

and	creation	of	a	variety	of	surface-based	data,	including	maps	of	curvature	and	sulcal	

depth.		

We	resampled	and	aligned	FreeSurfer	segmentations	of	all	grey	matter,	white	

matter,	and	cerebrospinal	fluid	(CSF)	regions	to	native	functional	image	space	for	use	as	

anatomical	masks.	Anatomical	regions	were	segmented	according	to	the	Desikan-

Killiany	Atlas	(Desikan	et	al.,	2006).		

It	is	important	to	note	that	the	medial	temporal	lobe	(MTL)	masks	in	the	Desikan-

Killiany	Atlas	do	not	match	the	canonical	anatomical	distinctions	in	the	literature.	For	

example,	the	parahippocampal	gyrus	mask	comprises	the	medial	part	of	the	

parahippocampal	cortex	and	the	posterior	part	of	the	entorhinal	cortex.	Therefore,	

instead	of	the	FreeSurfer	MTL	masks,	we	used	a	probabilistic	MTL	atlas	developed	by	

Hindy	&	Turk-Browne	(2015).	MTL	regions,	including	perirhinal	cortex,	entorhinal	cortex	

and	parahippocampal	cortex	were	defined	probabilistically	in	MNI	space,	based	on	a	

database	of	manual	MTL	segmentations	from	a	separate	set	of	24	participants. Manual	

segmentations	were	created	on	T2-weighted	turbo	spin-echo	images	using	anatomical	

landmarks	(Duvernoy,	2005;	Carr,	Rissman,	&	Wagner,	2010;	Schapiro,	Kustner,	&	Turk-

Browne,	2012),	and	then	registered	to	an	MNI	template.	Finally,	nonlinear	registration	
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(FNIRT;	Andersson,	Jenkinson,	&	Smith,	2007)	was	used	to	register	the	masks	from	MNI	

space	to	each	participant's	native	space.	After	registration,	voxels	with	a	probability	

greater	than	0.3	of	being	in	a	region	were	assigned	to	that	ROI.		

	

Residualization	of	non-neuronal	signal	sources	

Slow	changes	of	respiration	over	time	(RV)	have	been	shown	to	induce	robust	

changes	in	the	BOLD	signal	(Chang,	Cunningham,	&	Glover,	2009)	in	many	areas	around	

the	cerebral	midline.	To	minimize	signal	change	unrelated	to	neural	activity,	we	used	

multiple	linear	regression	to	project	out	3	nuisance	variables	from	the	BOLD	data	

(Behzadi,	Restom,	Liau,	&	Liu,	2007;	Silbert,	Honey,	Simony,	Poeppel,	&	Hasson,	2014).	

Nuisance	regressors	were:		

1)	the	average	time	course	of	high	standard	deviation	voxels	(voxels	with	the	top	1%	

largest	standard	deviation),	as	these	voxels	tend	to	have	the	highest	fractional	variance	

of	physiological	noise	(e.g.,	cardiac	and	respiratory	components)	and	are	likely	near	

blood	vessels	(Behzadi	et	al.,	2007),		

2)	the	average	BOLD	signal	measured	in	CSF,		

3)	the	average	white	matter	signal.		

All	masks	(grey	matter,	white	matter	and	CSF)	were	obtained	from	the	FreeSurfer	

segmentation	procedure	described	above.	The	beneficial	effects	of	this	residualization	

procedure	on	the	signal-to-noise	ratio	are	shown	in	Figure	10.	Note	that	this	procedure	

was	always	applied	after	removal	of	low-frequency	components	using	the	high-pass	

filter	(see	below.)	
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Methodological	challenges	with	analyzing	pattern	distance	over	long	time	scales:	

Selection	of	temporal	high-pass	filter	cut-off	

Because	we	were	interested	in	the	aspect	of	neural	activity	that	changes	slowly	over	

time	(reflecting	gradual	changes	in	context),	we	could	not	use	a	standard	high-pass	filter	

(with	a	cut-off	period	on	the	order	of	120	s),	as	it	would	remove	components	of	the	

signal	that	evolve	on	the	scale	of	minutes.	Thus,	we	were	faced	with	the	challenge	of	

preserving	slower	components	of	the	BOLD	signal	that	reflect	neural	activity,	while	

removing	low-frequency	components	attributable	to	non-neuronal	noise,	including	

scanner	drift	and	physiological	noise	(such	as	low-frequency	respiratory	variation	and	

heart	rate	variation).	Physiological	noise	(and	a	substantial	component	of	scanner	noise)	

was	factored	out	using	the	residualization	procedure	described	above.	This	enabled	us	

to	select	a	gentler	high-pass	filter	than	is	generally	used	in	the	literature.		

We	then	performed	a	separate	analysis	to	determine	the	optimal	high-pass	filter	

cut-off	period,	i.e.	the	lowest	frequency	cut-off	that	still	enabled	us	to	remove	most	of	

the	non-neuronal	noise.	This	analysis	relies	on	the	idea	that,	when	participants	listen	to	

the	same	story	or	watch	the	same	film,	the	signal	in	brain	regions	processing	the	story	is	

highly	correlated	across	participants	(Hasson,	Nir,	Levy,	Fuhrmann,	&	Malach,	2004).	

While	such	correlations	should	not	be	present	in	CSF	or	white	matter,	spurious	inter-

subject	correlations	in	these	regions	can	arise	due	to	low-frequency	noise.	In	addition,	

listening	to	the	same	story	could	induce	correlated	motion	across	participants,	but	these	

correlations	would	also	be	present	in	CSF	and	white	matter.	Thus,	we	searched	for	a	
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high-pass	filter	that	could	remove	nonspecific	correlations	in	CSF	and	white	matter,	

while	preserving	correlations	in	brain	regions	known	to	be	important	for	processing	the	

stimulus.	For	each	participant,	the	inter-subject	correlation	(ISC)	of	a	brain	region	was	

defined	as	the	correlation	between	that	participant’s	ROI	time	course	(averaged	over	

voxels	in	that	region)	with	the	average	time	course	of	all	the	other	participants	(Hasson,	

Yang,	Vallines,	Heeger,	&	Rubin,	2008;	Lerner	et	al.,	2011).	

Since	the	functional	scan	length	was	1560	s	(26	minutes),	high-pass	filter	cut-off	

periods	of	140	s,	240	s,	300	s,	400	s,	480	s,	600	s	and	720	s	were	attempted.	The	minimal	

cut-off	attempted,	140	s,	was	the	cut-off	used	in	several	previous	studies	with	

naturalistic	stimuli	(e.g.	Lerner	et	al.,	2011),	while	720	s	represented	approximately	half	

of	the	scan	duration	and	was	the	longest	cut-off	that	could	reasonably	make	a	

difference	to	data	quality.		

Given	that	roughly	half	the	clip	pairs	in	our	time	perception	test	were	2	minutes	

apart	and	the	other	half	were	6	minutes	apart,	we	hoped	to	find	a	filter	that	would	

allow	us	to	measure	pattern	distances	at	both	of	these	time	scales.	However,	we	were	

unable	to	find	a	high-pass	filter	that	would	allow	us	to	examine	activity	patterns	that	

were	6	minutes	(360	s)	apart.	In	order	to	meaningfully	measure	distances	between	

neural	patterns	that	are	360	s	apart,	the	Nyquist	theorem	suggests	we	would	need	a	

high-pass	filter	cut-off	of	720	s	or	larger.	However,	plotting	ISC	as	a	function	of	high-pass	

filter	(Figure	10)	showed	that	a	cut-off	like	720	s	was	not	able	to	remove	inter-subject	

correlations	in	the	CSF,	which	remained	of	the	same	magnitude	as	those	in	some	grey	

matter	regions.	We	concluded	that	pattern	distances	at	the	6-minute	time	scale	are	too	
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confounded	with	low-frequency	noise	(as	reflected	in	spurious	correlations	in	the	CSF),	

and	therefore	restricted	our	analysis	to	intervals	that	were	2	minutes	long.	

According	to	the	Nyquist	theorem,	we	need	a	filter	cut-off	of	4	minutes	(240	s)	or	

longer	in	order	to	measure	distances	between	patterns	that	are	2	minutes	apart	(120	s).	

Out	of	the	filters	tested	(240	s	–	720	s),	a	cut-off	of	480	s	was	selected	to	be	the	gentlest	

(i.e.	the	longest)	filter	that	reduced	the	magnitude	of	inter-subject	correlations	in	

ventricles	and	CSF,	such	that	they	were	significantly	below	the	correlations	in	most	grey	

matter	regions.		

Figure	10	illustrates	that,	even	for	regions	like	the	hippocampus	–	with	relatively	low	

inter-subject	correlations	–	the	480	s	filter	cut-off,	combined	with	the	residualization	

procedure,	succeeded	at	raising	the	grey	matter	ISCs	significantly	above	those	of	the	

white	matter	and	CSF.		 	
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Figure	10	Mean	inter-subject	correlations	(ISCs)	for	6	representative	brain	regions	as	a	
function	of	the	high-pass	filter	cut-off.	Shaded	error	bars	represent	standard	errors	of	the	mean	
(across	participants).	Top	panel	A	shows	the	mean	ISCs	after	the	residualization	procedure	has	
been	applied	(see	“Residualization	of	non-neuronal	signal	sources”).	The	480	s	cut-off	was	the	
gentlest	filter	for	which	all	of	the	grey	matter	regions	listed	above	showed	ISC	values	
significantly	above	those	in	the	CSF.	Bottom	panel	B	shows	the	mean	ISCs	prior	to	the	
residualization	procedure.	Without	residualization,	the	ISCs	of	some	grey	matter	regions	never	
rise	significantly	above	those	in	the	white	matter	and	CSF.	Note	that	without	high-pass	filtering	
(“none”)	or	residualization,	all	brain	regions	displayed	spuriously	high	ISCs.	
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fMRI	Data	Analysis	

Within-participant	correlation	between	pattern	change	and	duration	estimates	

Our	primary	hypothesis	was	that	greater	pattern	dissimilarity	between	two	clips	(at	

the	time	of	encoding)	would	correlate	with	greater	subsequent	duration	estimates.	For	

each	pair	of	clips	from	the	time	perception	test,	we	located	the	TRs	(volumes)	

corresponding	to	when	the	participant	first	heard	those	clips	and	extracted	the	activity	

patterns	for	each	ROI	at	those	time	points.	Since	the	auditory	clips	were	between	5	s	

and	10	s	in	duration	(corresponding	to	about	5	volumes),	we	averaged	the	patterns	over	

5	consecutive	TRs	for	every	clip,	with	the	5-TR	window	centered	on	the	middle	of	each	

clip.		

We	then	related	the	pattern	distance	between	the	two	clips	at	encoding	to	how	

much	time	the	participant	thought	passed	between	them.	Specifically,	we	calculated	the	

dissimilarity	(1	–	Pearson	correlation)	between	the	two	averaged	activity	patterns.	The	

pattern	dissimilarity	scores	for	a	given	region	were	then	correlated	with	that	

participant’s	subsequent	duration	estimates.	This	was	performed	separately	for	every	

ROI	and	searchlight	(Figure	3).		We	thus	obtained	a	Pearson	correlation	score	for	every	

ROI	in	every	participant.	To	assess	the	reliability	of	the	correlation	across	participants	

for	a	given	ROI,	we	ran	a	phase-randomization	procedure,	which	is	described	in	detail	

below.	The	results	of	the	phase-randomization	procedure	were	then	subjected	to	

multiple	comparisons	correction.	
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Removing	low-confidence	intervals		

If	a	participant	could	not	remember	when	in	the	story	a	particular	clip	had	occurred,	

it	would	be	difficult	for	them	to	estimate	the	temporal	distance	between	that	clip	and	

another	clip.	It	is	possible	that	participants	would	invoke	different	retrieval	strategies	in	

such	cases	(for	instance,	they	might	base	their	duration	estimates	purely	on	the	content	

of	the	clips,	without	recollecting	their	context).	It	is	also	possible	that	such	estimates	

could	be	random	guesses.	To	filter	out	guesses,	we	used	the	confidence	ratings	

collected	after	the	time	perception	test,	in	which	participants	rated	how	well	they	could	

remember	when	in	the	story	each	individual	clip	had	occurred.	Specifically,	we	located	

the	participant’s	confidence	for	the	two	clips	delimiting	each	temporal	interval,	and	took	

the	smaller	of	the	two	ratings	as	the	confidence	for	that	interval.	We	performed	the	

main	analysis	relating	neural	drift	to	time	estimation	(described	below)	only	on	high-

confidence	intervals,	removing	pairs	of	clips	with	the	lowest	confidence.		Since	

participants	calibrated	their	confidence	ratings	differently	(some	were	more	prone	to	

rate	their	confidence	as	4/5,	while	others	were	more	prone	to	rate	it	as	2/5),	we	picked	

the	confidence	threshold	for	each	participant	that	removed	at	least	33%	of	the	intervals	

with	the	lowest	confidence,	while	preserving	at	least	33%	of	the	intervals	with	the	

highest	confidence.	Our	behavioral	analysis	(see	Results)	shows	that	participants’	

duration	estimates	were	significantly	more	accurate	for	high-confidence	intervals	than	

when	all	intervals	were	included.	
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Statistical	analysis	of	correlations	between	pattern	change	and	behavior	

Because	of	the	presence	of	long-range	temporal	autocorrelation	in	the	BOLD	signal	

(Zarahn	et	al.,	1997),	the	statistical	likelihood	of	each	observed	correlation	(between	

neural	distance	and	duration	estimates)	was	assessed	using	a	permutation	procedure	

based	on	surrogate	data.	The	surrogate	data	were	generated	using	phase	randomization	

(Theiler	et	al.,	1992).	Phase-randomized	surrogates	have	the	same	autocorrelation	as	

the	original	signal.	

Since	our	analysis	measures	pattern	change	over	multiple	voxels,	rather	than	the	

time	course	of	a	single	voxel,	we	generated	surrogate	time	courses	of	pattern	change	

(Figure	3	–	Supplement	1	shows	how	that	time	course	was	obtained).	Having	extracted	

the	time	course	of	pattern	change	for	each	ROI,	we	applied	a	Fourier	transform	to	that	

signal.	To	randomize	its	phases,	we	multiplied	each	complex	amplitude	by	 ,	where	 	

is	independently	chosen	for	each	frequency	from	the	interval	[0,	2π].	In	order	for	the	

inverse	Fourier	transform	to	be	real	(no	imaginary	components),	we	symmetrized	the	

phases,	so	that	 .	Finally,	we	took	the	inverse	Fourier	transform	to	

produce	the	surrogate	time	courses.			

Each	surrogate	dataset	was	analyzed	in	the	same	manner	as	the	empirical	data:	

pattern	dissimilarity	between	each	pair	of	clips	was	correlated	with	duration	estimates.	

Thus,	we	generated	a	distribution	of	10,000	null	correlations	for	every	ROI	in	every	

participant	(see	Figure	3	–	Supplement	1).	For	every	ROI,	we	were	then	able	to	compare	

the	empirical	Pearson	correlation	with	the	distribution	of	null	correlations.	We	

calculated	a	Z-value	for	every	participant:	

je φ φ

( ) ( )f fφ φ= − −
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𝒁− 𝒗𝒂𝒍𝒖𝒆 =  
𝒆𝒎𝒑𝒊𝒓𝒊𝒄𝒂𝒍 𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏 –  𝒎𝒆𝒂𝒏(𝒏𝒖𝒍𝒍 𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔) 

𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏(𝒏𝒖𝒍𝒍 𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔)    

A	large	positive	Z-value	implies	that	the	empirical	correlation	is	large	relative	to	the	

distribution	of	null	correlations.	To	assess	whether	the	Z-values	for	a	given	ROI	were	

reliably	positive	across	participants,	we	performed	a	right-tailed	t-test	against	0.	The	p-

values	from	the	above	t-test	were	then	subjected	to	multiple	comparisons	correction.	

For	anatomical	ROIs	(derived	from	the	FreeSurfer	and	MTL	atlases),	we	used	False	

Discovery	Rate	(FDR)	to	correct	for	multiple	comparisons.	This	procedure	returns	q-

values	(FDR	adjusted	p-values)	using	the	linear-step	up	(LSU)	procedure	introduced	by	

Benjamini	&	Hochberg	(1995).	For	the	searchlight	analysis,	we	controlled	the	family-

wise	error	(FWE)	rate,	as	described	below.	

	

ROI	selection	

The	literature	reviewed	above	suggested	that	the	MTL,	lateral	prefrontal	cortex,	

insula,	putamen	and	inferior	parietal	cortex	might	all	process	information	important	for	

inferring	the	duration	of	past	events.	We	therefore	performed	an	ROI	analysis	on	the	

following	regions,	derived	from	both	the	FreeSurfer	and	MTL	atlases:	hippocampus,	

parahippocampal	cortex,	entorhinal	cortex,	perirhinal	cortex,	amygdala,	superior	frontal	

cortex,	caudal	and	rostral	middle	frontal	gyrus	(dorsolateral	prefrontal	cortex),	pars	

opercularis	(frontal	operculum),	pars	triangularis,	pars	orbitalis,	lateral	orbitofrontal	

cortex,	frontal	pole,	insula,	putamen	and	inferior	parietal	cortex.	This	resulted	in	an	

analysis	on	16	regions	of	interest	(in	each	hemisphere)	motivated	by	the	literature.	ROIs	

with	q-values	<	0.05	(FDR)	are	reported	as	significant.	
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As	part	of	an	exploratory,	whole-brain	search,	we	also	ran	the	same	analysis	on	all	

grey	matter	regions	in	the	Desikan-Killiany	Atlas,	which	contained	42	regions	in	each	

hemisphere,	including	the	ones	mentioned	above	(see	FreeSurfer	Segmentation	and	

MTL	Segmentation).	The	complete	list	of	regions	can	be	found	in	Figure	4	–	Supplement	

1.	For	the	exploratory	analysis,	we	report	regions	with	q-values	<	0.1	(FDR).	

	

Whole-brain	searchlight	

In	addition	to	using	anatomical	ROIs,	we	ran	a	cubic	searchlight	with	3x3x3	(27)	

voxels	throughout	the	entire	brain.	The	same	analysis	as	described	above	was	

performed	for	every	searchlight,	and	the	Z-value	for	each	searchlight	was	assigned	to	

the	center	voxel.	Each	participant’s	Z-value	map	was	then	transformed	to	standard	MNI	

space	and	down-sampled	to	3mm	to	reflect	the	resolution	of	the	original	data.	Family-

wise	error	rate	was	controlled	using	FSL’s	randomise	function	(version	5.0.4,	Winkler,	

Ridgway,	Webster,	Smith,	&	Nichols,	2014).	An	uncorrected	p-value	image	was	first	

generated,	reflecting	voxel-wise	(searchlight)	reliability	across	participants.	The	

significance	of	supra-threshold	clusters	(defined	by	the	cluster-forming	threshold,	

p<0.01)	was	then	assessed	by	cluster	mass.	Specifically,	a	corrected	p-value	was	

assigned	to	each	cluster	by	assessing	its	cluster	mass	with	respect	to	the	null	

distribution	of	the	maximum	cluster	mass	during	10,000	permutation	simulations	

(Hayasaka	&	Nichols,	2003;	Nichols	&	Holmes,	2002).	Cluster	coordinates	are	reported	in	

MNI	space,	and	cluster	size	reflects	the	number	of	voxels	in	3x3x3mm	MNI	space.	
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Within-interval	correlation	between	pattern	change	and	duration	estimates	

Our	main	analysis	verified	whether	the	pattern	distance	between	two	clips	was	

correlated	with	duration	estimates	in	a	given	participant	and	then	aggregated	the	

results	across	participants.	To	address	the	concern	that	pattern	distance	between	two	

clips	might	reflect	only	the	difference	in	story	content	between	those	clips	(rather	than	

change	in	abstract	factors	like	mental	context),	we	performed	the	same	analysis	for	a	

given	interval	across	participants	and	aggregated	the	results	across	intervals.	Since	this	

analysis	is	performed	within	intervals,	it	ensures	that	story	content	is	held	constant	

across	participants,	such	that	differences	in	pattern	distances	and	duration	estimates	

are	due	to	individual	differences	only.	To	ensure	that	pattern	distances	and	duration	

estimates	were	comparable	across	participants,	all	vectors	were	z-scored	within	

participant.	The	Pearson	correlation	between	pattern	distances	and	duration	estimates	

across	participants	was	then	calculated	for	every	2-minute	interval	in	every	ROI.		

As	for	the	main	analysis,	this	analysis	was	performed	on	high-confidence	intervals.	

For	each	interval,	we	only	included	participants	who	had	confidently	recollected	the	

temporal	position	of	the	two	clips	delimiting	that	particular	interval.		

The	significance	of	each	correlation	score	was	assessed	using	a	permutation	test:	10	

000	null	correlations	were	obtained	by	scrambling	the	duration	estimates	across	

participants,	such	that	a	given	participant’s	duration	estimate	was	matched	with	a	

different	participant’s	pattern	distance.	Since	this	analysis	was	performed	across	

participants,	it	was	not	necessary	to	generate	phase-randomized	pattern	distance	time	
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courses	–	the	auto-correlation	in	the	BOLD	signal	for	a	given	participant	only	plays	a	role	

for	the	within-participant	analysis.		

As	above,	a	Z-value	was	obtained	for	every	interval,	reflecting	the	degree	to	which	

the	empirical	correlation	was	higher	than	the	distribution	of	null	correlations.	Finally,	a	

right-tailed	t-test	was	performed	to	assess	whether	a	given	ROI’s	Z-values	were	reliably	

positive	across	intervals.	The	p-values	from	this	t-test	were	subjected	to	multiple	

comparisons	correction	using	FDR.	

To	compare	effect	sizes	between	the	within-interval	and	within-participants	

analyses,	we	calculated	Cohen’s	d	for	a	region	as:	

𝐶𝑜ℎ𝑒𝑛!𝑠 𝑑 =
𝑀𝑒𝑎𝑛 𝜌 (𝑎𝑐𝑟𝑜𝑠𝑠 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝜌  	

where	𝜌	is	the	Pearson’s	correlation	between	pattern	distance	and	duration	estimates.	

(Using	the	Z-values	derived	from	the	permutation	procedures,	rather	than	the	raw	

correlation	scores,	yielded	practically	identical	results.)	

Comparing	speed	of	pattern	change	across	brain	regions	

If	the	brain	regions	found	significant	in	our	main	analysis	represent	mental	context,	

then	the	pattern	of	activity	in	these	regions	should	change	more	slowly	over	time	than	

the	patterns	in	regions	representing	sensory	information.	To	quantify	the	speed	of	

pattern	change	in	a	given	ROI,	we	obtained	the	correlation	of	the	pattern	at	every	time	

point	(TR)	with	itself	at	every	other	time	point.	(As	for	our	main	analysis,	the	BOLD	time	

course	of	every	voxel	was	smoothed	using	a	moving	average	filter	of	5	TRs.	This	

temporal	smoothing	was	used	as	a	de-noising	technique	and	did	not	affect	the	results.)	

We	then	averaged	the	auto-correlation	curves	across	TRs	to	obtain	a	mean	auto-
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correlation	function	for	every	region	in	every	participant.	The	more	rapidly	a	pattern	

changes	over	time,	the	more	sharply	the	auto-correlation	should	decrease	as	we	move	

away	from	0.	To	quantify	this,	we	defined	the	Full-Width	Half-Maximum	(FWHM)	of	the	

auto-correlation	curve	as	the	number	of	time	points	(TRs)	for	which	the	auto-correlation	

was	equal	to	or	greater	than	half	its	maximum	value	(the	maximum	was	always	1.)		

To	compare	the	speed	of	pattern	change	in	the	regions	we	found	(pars	orbitalis,	

right	entorhinal	cortex	and	left	caudal	ACC)	with	regions	involved	in	auditory	and	

language	processing	(right	transverse	temporal	cortex,	which	contains	primary	auditory	

cortex,	as	well	as	the	right	superior	temporal	cortex	and	right	banks	of	the	superior	

temporal	sulcus),	we	performed	a	paired	Wilcoxon	signed	rank	test	on	the	FWHM	values	

across	participants.	The	p-values	from	this	test	were	subjected	to	multiple	comparisons	

correction	using	FDR.		

Since	the	anatomical	masks	we	used	varied	substantially	in	size,	we	sought	to	ensure	

that	differences	in	the	speed	of	pattern	change	were	not	due	to	differences	in	ROI	size.	

For	this	purpose,	we	performed	the	same	analysis	after	regressing	the	vector	of	ROI	

sizes	out	of	the	vector	of	FWHM	values	for	every	participant.		

Since	the	above	regression	would	only	account	for	a	linear	effect	of	ROI	size	on	the	

speed	of	pattern	change,	we	additionally	performed	a	univariate	analysis	that	calculated	

the	auto-correlation	function	for	each	voxel	individually.	The	auto-correlation	curve	was	

obtained	by	correlating	the	BOLD	time	course	of	every	voxel	with	itself	at	all	possible	

lags.	The	mean	auto-correlation	for	an	ROI	was	obtained	by	averaging	the	auto-
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correlation	curves	across	all	the	voxels	in	that	ROI.	The	FWHM	values	were	then	

calculated	in	the	same	manner	as	above	for	every	ROI	in	every	participant.			

	

Behavioral	Data	Analysis	

Significance	of	correlation	between	duration	estimates	and	event	boundaries	

To	assess	whether	the	number	of	event	boundaries	in	an	interval	predicted	duration	

estimates	for	that	interval,	we	related	our	original	participants’	duration	estimates	with	

event	boundary	data	collected	from	a	separate	group	of	9	participants.	For	each	2-

minute	interval	from	the	time	perception	test,	we	counted	the	number	of	event	

boundaries	that	a	participant	had	indicated	during	that	interval	and	averaged	that	

number	across	the	9	participants.	This	resulted	in	a	mean	number	of	event	boundaries	

per	interval,	which	was	then	correlated	with	the	mean	estimated	duration	of	that	

interval	from	our	original	participants.		

To	assess	the	statistical	significance	of	this	correlation,	we	performed	a	

bootstrapping	procedure	on	the	duration	estimates.	We	obtained	1000	bootstrap	

samples,	each	time	selecting	with	replacement	a	different	subset	of	n	individuals	from	

our	pool	of	n	participants.	The	duration	estimates	for	each	subset	were	averaged	across	

participants	and	correlated	with	the	mean	number	of	event	boundaries.	The	upper	

limit	(ul)	for	an	x%	confidence	interval	was	set	to	the	value	of	the	Pearson	correlation	in	

percentile	x%	of	the	bootstrap	distribution;	the	lower	limit	(ll)	for	the	confidence	

interval	was	set	to	the	value	of	the	beta	score	in	percentile	100-x	of	this	distribution.	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2016. ; https://doi.org/10.1101/043075doi: bioRxiv preprint 

https://doi.org/10.1101/043075
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 74	

Confidence	intervals	that	did	not	encompass	zero	were	considered	reliable	at	the	given	

level	of	confidence.	

	

Significance	of	difference	in	correlations	with	event	boundaries	between	original	

duration	estimates	and	naïve	duration	estimates	

We	hypothesized	that	duration	estimates	from	our	original	participants	(who	had	

actually	heard	the	story)	would	be	significantly	more	correlated	with	the	number	of	

event	boundaries	between	two	clips	than	duration	estimates	from	our	naïve	

participants,	who	had	never	heard	the	story.	To	assess	the	significance	of	the	difference	

in	correlations,	we	computed	the	𝑟!"##	(empirical	difference),	as	well	as	the	upper	

confidence	limits	(𝑢𝑙!"##)	and	lower	confidence	limits	(𝑙𝑙!"##)	for	the	difference	between	

the	two	correlations.	We	used	the	following	formulae	(Zou,	2007;	Poppenk	&	Norman,	

2012)	for	two	bootstrapped	correlation	confidence	intervals:	

𝑟!"## = 𝑟! −  𝑟!		

𝑙𝑙!"## = 𝑟! −  𝑟! −  𝑟! − 𝑙𝑙! ! + 𝑢𝑙! − 𝑟! !	

𝑢𝑙!"## = 𝑟! −  𝑟! +  𝑢𝑙! − 𝑟! ! + 𝑟! − 𝑙𝑙! !	

The	upper	(𝑢𝑙!,𝑢𝑙!)	and	lower	limits	(𝑙𝑙!, 𝑙𝑙!)	for	a	95%	confidence	interval	of	each	

group’s	correlation	were	calculated	as	described	above.	

	

Reliability	of	duration	estimates	across	participants	within	and	between	groups	

We	hypothesized	that	both	our	original	participants	and	the	naïve	participants	(who	

had	never	heard	the	story)	would	use	consistent	strategies	to	estimate	the	temporal	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2016. ; https://doi.org/10.1101/043075doi: bioRxiv preprint 

https://doi.org/10.1101/043075
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 75	

distance	between	two	clips,	but	that	these	strategies	would	differ	across	groups.	If	this	

is	the	case,	duration	estimates	should	be	more	reliable	across	participants	within	groups	

than	across	participants	between	groups.			

To	assess	within-group	reliability,	we	correlated	each	participant’s	duration	

estimates	with	the	mean	of	the	other	participants’	estimates.	These	correlations	were	

then	averaged	across	participants	within	a	group	to	obtain	a	mean	within-group	ISC	

(inter-subject	correlation).	The	between-group	reliability	was	calculated	by	correlating	

each	participant’s	duration	estimates	from	one	group	(e.g.,	the	original	participants)	

with	the	mean	duration	estimates	from	the	other	group	(e.g.,	the	naïve	participants).	

These	correlations	were	then	also	averaged	across	participants	to	obtain	a	mean	

between-group	ISC.		

To	assess	the	significance	of	the	difference	between	the	mean	within-group	ISC	and	

the	mean	between-group	ISC,	we	compared	the	empirical	difference	with	a	null	

distribution	of	differences.	Group	labels	(naïve	participants	vs.	original	participants)	

were	scrambled	10,000	times,	such	that	each	participant’s	duration	estimates	were	

randomly	assigned	to	either	the	naïve	group	or	to	the	original	group.	The	difference	

between	the	mean	within-group	ISC	and	the	mean	between-group	ISC	was	then	

computed	for	these	two	random	groups.	Using	this	null	distribution	of	ISC	differences,	

we	calculated	a	p-value	based	on	the	number	of	permutations	that	yielded	a	greater	

difference	than	the	empirical	difference.		

Please	note	that	the	within-group	and	between-group	correlations	could	be	

compared	only	because	the	group	sizes	were	identical	(17	participants	in	each)	and	
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because	the	within-group	correlations	were	equally	strong	for	the	original	and	naïve	

groups	(M=0.43,	SD=0.25	vs.	M=0.39,	SD=0.24;	t(32)=0.50,	p=0.62).	Since	the	within-

group	ISCs	are	comparable,	we	can	infer	that	the	significant	difference	between	the	

within-group	and	between-group	reliability	reflects	a	difference	in	the	signals	

(strategies)	underlying	the	two	groups	of	duration	estimates	(Chow,	Chen,	&	Hasson,	

2015),	rather	than	a	difference	in	within-group	reliability.	
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