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Abstract 
 
Next generation DNA sequencing methods have created an unprecedented leap in sequence data 

generation, thus novel computational tools and statistical models are required to optimize and assess the 

resulting data. In this report, we explore underlying causes of error for the Illumina Genome Analyzer 

(IGA) sequencing technology and attempt to quantify their effects using a human bacterial artificial 

chromosome sequenced to 60,000 fold coverage. Seven potential error predictors are considered: Phred 

score, read entropy, tile coordinates, local tile density, base position within read, nucleotide call, and lane. 

With these parameters, logistic regression and log-linear models are constructed and used to show that each 

of the potential predictors contributes to error (P<1x10-4). With this additional information, we apply the 

logistic model and achieve a 3% improvement in both the sensitivity and specificity to detect IGA errors. 

Further, we demonstrate that these modeling approaches can be used as a feedback loop to inform 

laboratory methods and identify specific machine or run bias.  
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Introduction 
 
With the increasing pace of DNA sequencing technology it is crucial to understand the limitations and error 

biases of these technologies to both ensure the quality of what is produced and to expand what is 

reasonably achievable (Olson, 2002). Central to this tenet is the identification of the causes of error and an 

assessment of their quantitative effect. With these parameters characterized, statistical models can be built 

to maximize the accuracy of the resulting DNA sequences and eliminate error’s underlying cause.  

 

Many ‘next-generation’ sequencing technologies have been or will be available shortly (Bentley, 

2006,Braslavsky, et al, 2003,Margulies, et al, 2005,Shendure, et al, 2005). Currently, three of the most 

popular are available from Roche Bioscience, Applied Biosystems, and Illumina, Inc. and will be utilized in 

the upcoming 1000 Genomes Project. For the Roche (454) Genome Sequencer, which uses the 

pyrosequencing method (Ronaghi, et al, 1998), Brockman et al. have sought to calculate accurate Phred 

quality scores (Ewing, et al, 1998) in order to create a common language for all sequencing-by-synthesis 

and Sanger sequencing methods (Brockman, et al, 2008). They rightly note that this is of crucial 

importance to platform analyses and statistical modeling, and that base calling errors cause problems in 

both read alignment and single-nucleotide polymorphism (SNP) calling.  

 

Herein, we empirically assess the causes of error for the Illumina Genome Analyzer (IGA) sequencing 

platform, using a bacterial artificial chromosome (BAC) of human DNA which has been both capillary 

sequenced and run across eight IGA machines to a total depth of 60,000 fold coverage. Exploratory 

analysis techniques are used to identify and characterize the main causes of error. Using these parameters, 

we construct and validate a logistic regression model to optimize error prediction. With the model, we are 

able to substantially improve the quality of IGA reads by accurately identifying specific base errors in each 

read. Furthermore, the model can be tailored to maximize performance on specific IGA machines and 

potentially, given a suitable control sample, individual runs. By using its β coefficients (odds ratios), we 

also demonstrate that the model can act as a guide to minimize machine variation and as a feedback loop 

for laboratory methodologies.  

 
 
Results & Discussion 
 
 
IGA imaging, base calling, and filtering 
 
Sample loading for IGA sequencing occurs on a flowcell which has eight parallel lanes, each containing 

amplified fragments of DNA on approximately 300 imaging areas, or “tiles”. From lane one through eight, 

the flowcell is iteratively scanned as it is put through N cycles of sequencing chemistry, each extending the 

complementing DNA polymer by one base. 
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By default, IGA provides an informatics pipeline to handle the data coming from the tile imaging process. 

This pipeline is made up of three modules: Firecrest, Bustard, and Gerald. See Figure 1 for an overview. 

Briefly, imaging of the tile for each cycle results in four images, one for each specific nucleotide 

fluorophore. Firecrest then performs a background correction and identifies clusters of amplified molecules 

on each tile, after which occurs a crosstalk correction which compensates for the overlapping frequency 

response of the labeled nucleotides (Li, et al, 1999). A phasing estimation is applied that corrects for those 

molecules which do not incorporate a nucleotide successfully or happen to incorporate more than one. 

Bustard implements the phase correction and calculates base calls for each cluster as a function of the 

corrected signal. Gerald identifies and filters overlapping clusters using these signals, and finally outputs 

the base calls and IGA quality scores in the form of fastq files (see Methods). Implementation of SEAM is 

done after Gerald. 

 
 
Exploratory analysis of error predictors 
 
In order to model the IGA sequencing platform, we consider seven potential predictors of error: 

 

1) Read sequence entropy (Vw) 
2) Phred score 
3) Base position within the read 
4) Nucleotide calling bias 
5) Tile coordinates 
6) Tile cluster density 
7) Lane 

 

Typically, the error control of sequencing data, e.g. weighting by Phred score, is entangled with the method 

of alignment, of which many algorithms exist (Li H., et al. 2008,Hillier, et al, 2008,Li R., et al, 2008,Ning, 

et al, 2001,Smith, et al, 2008). However, it is advantageous to have more complex modeling techniques 

exist outside of alignment algorithms so that (a) more alignment algorithms can use them and (b) we can be 

confident that the errors we see are attributable to the technology and not a particular alignment tool.  

 

To achieve both of these aims, it is necessary to address the somewhat circular nature of training the error 

model since there is currently no known way to identify errors other than by alignment. For (a) above, the 

training and validation of the error model using one alignment algorithm (as many sequencing centers use) 

will result in a model which corrects for technology biases but whose coefficients (in this case, the β 

coefficients) also incorporate alignment artifacts. This will be advantageous if one uses an algorithm 

exclusively and is only interested in optimizing data quality with the given technology. For (b), we require 

a more general model which can control for reads which cause alignment artifacts. We can then create a 

feedback loop in which the modeling coefficients of a machine or a run accurately inform laboratory 

methodologies and instrument design in addition to acting as a normalizing factor for data already 

generated. Thus, our approach is to define a metric which can identify regions likely to give discordant 
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alignments for short-read algorithms. We utilize a well-known method, Shannon entropy (Shannon, et al, 

1949,Valdar, 2002), and modify it with a sliding window to give us a measurement of the innate sequence 

complexity of a read (see Methods). We then stratify our analyses to separate areas of homopolymers and 

other repetitiveness, which have been well known to bias alignment results. We also consider entropy as a 

parameter in the error model.  

 

The Phred score as calculated from IGA quality scores (see Methods) is an imperfect measurement of 

accuracy. Figure 2a shows a plot of observed versus predicted Phred score for each of eight machines with 

the best possible fit along the x = y axis (average coefficient of determination, R2, of 0.961). With 

increasing deviation of an observed from an expected Phred score, one can expect a loss of sensitivity or 

specificity. In addition, variability in the performance between machines can cause differential bias if data 

from >1 machines is merged. In our experiment, we observe noticeable variability across eight machines, 

with sample variance of R2 = 0.000128. When taking into account an observed frequency distribution of 

each Phred score, a weighted calculation of R2 gives an average of 0.965 with greater machine variation 

(sample variance = 0.000958). Figure 2a also demonstrates IGA’s tendency to underestimate error 

probability at both low (<11) and high (>33) Phred scores and in some cases actually showing decreasing 

accuracy as quality score increases. In the context of SNP calling, this may result in an inflation of false 

positives. However, it should be noted Phred scores and IGA quality scores are asymptotically related and 

this may not be fully captured by the transformation between the two, thus explaining part of the deviation 

we see. The most elegant solution would be re-evaluating the signal to noise ratios, but error models should 

be able to correct for this as well. 

 

With many sequencing-by-synthesis methods, a base call’s signal to noise ratio varies depending on its 

position within a read, thus causing each read to have a non-uniform quality distribution. As a proxy for the 

signal to noise ratio distribution, we assessed Phred score distribution as a function of base position within 

a read (Figure 2b). Generally, Phred scores decrease as base position within a read increases following a 

somewhat bimodal distribution with scores of 30 and 32 arising with disproportionate (20-25%) frequency. 

Curiously, the first base appears to be of similar quality as a base from about the 15th position, a possible 

artifact of reagent dead volumes, component temperatures, and/or initial laser power.  

 

Since imaging of each tile is largely dependent on the fluorescence of different chemically labeled 

nucleotides, we can hypothesize that each nucleotide is called with a different efficiency and, since 

scanning is an iterative process, the error bias of each nucleotide is dependent on the preceding nucleotide. 

To minimize the alignment bias which homopolymeric and repetitive sequences can introduce, we calculate 

the probability of observing different nucleotide substitutions as a function of read entropy (Figure 2c). We 

observe almost an order of magnitude difference between nucleotide substitution rates for the most 

prevalent entropy range 0.45 – 0.55, highlighting the importance of incorporating nucleotide bias into an 
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error model. In addition, there exists a consistently elevated substitution rate (0.6% overall) of A for C 

(A/C) and an entropic dependence for the T/G substitution (1.2% overall) (Supplementary Fig. E). The 

latter may partially be explained by the presence of Gs in or directly adjacent to many homopolymeric T 

regions in the BAC. To assess the effect of preceding nucleotides further, we plot the above for 

dinucleotides, the second of which is substituted (Supplementary Fig. G). We find that an A/C 

substitution is independent of the preceding base while a TT/TG substitution is the most prevalent. The A/C 

substitution is also overrepresented with regard to Phred score, read position, and lane in both unfiltered 

and filtered (only bases with Phred >20 and reads >40 Maq alignment score are considered) data. However, 

the TT/TG substitution becomes more frequent as lane number increases (lane 8 having the most 

substitutions), potentially due to a relatively greater susceptibility to free radical build up during imaging. 

In our experience, this can be corrected for in the laboratory by using an imaging buffer with greater 

ascorbate protection (data not shown), implying that as light exposure time increases less light-mediated 

radicalization will occur. It should be noted that the wavelengths which fluoresce G and T are emitted from 

the same laser and have overlapping emission/excitation bands (similarly for A and C), thus one will expect 

there will always be some level of T/G and A/C bias.  

 

With GA1 optics, imaging of the tile also exhibits a spatial bias with different areas of the tile experiencing 

different probabilities of error (Figure 2d). In general, the closer a read is to the edge of the tile, the greater 

the likelihood that any base call within the read will be an error. Additionally, spatial patterns of error are 

also lane dependent with the last lane, lane eight, experiencing noticeably worse performance 

(Supplementary Fig. A). In conjunction with our observation that T/G substitutions occur most frequently, 

Supplementary Fig. A also suggests that the increasing lane error, especially in lane eight, is almost 

wholly attributable to these substitutions. Related to this spatial tile dependency is the interference of 

neighboring reads with a focal read (also known as cluster overlap). As the distance between reads on a tile 

decreases, the more difficult it becomes to resolve each base call. IGA’s Gerald module implements a 

cluster overlap correction or “purity” filter, however we further investigate resolution by calculating the 

local read density of every unfiltered read on each individual tile (Supplementary Fig. B). At low and 

medium density, there appears to be no effect on the error rate distribution; at high density, we did observe 

an increasing shift in the error distribution, however this is very unlikely to have a large effect since 

densities of >0.05 reads/coordinates2 occur with a frequency of 3.2x10-7.  

 

Using these seven predictors as parameters, we adopt logistic regression and log-linear frameworks to 

assess the relationship between predictors in the same model and the additional predictive ability of models 

which utilize all potential predictors as compared to models incorporating just Phred or alignment scores. 

 
 
Model design and performance 
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All potential predictors considered individually in the logistic and log-linear models showed evidence of 

being associated with errors (P<1x10-4). When all predictors are included in logistic and log-linear models, 

their effects are homogeneous across machines (Supplementary Tables B & C). For the logistic model, 

the strongest predictors were Phred score and entropy (Vw), with single unit increases leading to reduced 

risks of error. In particular, univariate and multivariate models both showed that an increase in Phred score 

of one reduced the risk of error by ~25% (Table 1); this effect also appears to be approximately linear 

(Figure 3a), although deviations of the predicted Phred from the data cause this relationship to become 

more nonlinear. Similarly, the effect of Vw on the (log) error risk also appears to be linear (Figure 3b), with 

an increase of 0.01 units leading to a reduced risk of ~1%. Logistic models which incorporate the other 

potential predictors and Phred score had consistently greater area (~1.5%) under their Receiver Operating 

Characteristic (ROC) curves and a ~1.1% improvement in calibration, thus reflecting a greater predictive 

ability overall (see Figure 3c for ROC curves of machine 8, which is typical of other runs). In addition, 

after transforming the new predicted probability of an error into Phred form, the average coefficient of 

determination with the observed Phred score was 0.988 across all machines. Simply using the given Phred 

score and filtering those calls with scores <20 to predict error does have reasonable sensitivity and 

specificity (both ~0.90), however there are additional gains in predictive ability from considering Phred 

score as a continuum and using the other predictors with both sensitivity and specificity (both ~0.93), see 

Table 1. Validation of the model on data from machines that were not used to train the model led to 

slightly diminished predictive ability. However, these differences are small due to the homogeneity of 

coefficients across machines.  

 

Implementation of the log-linear model had indicated that Vw , radial distance, density, lane, and alignment 

score (AS) were all strong predictors of the number of errors (Supplementary Table C). However, the 

predictive ability of the model was inferior to the logistic regression approach. The relationship between 

Maq’s AS and logarithm of the expected number of errors is not linear (Supplementary Figure H), but 

overall an increase of one unit of AS leads to a 3% reduction in the risk of an error. It should be noted 

however that this particular modeling approach may, in fact, be more useful to implement in conjunction 

with a particular alignment algorithm since it can incorporate any form of alignment score.  

 

In using the modeling coefficients (odds ratios) as more practical guides, we observe the difference in 

nucleotide calling bias between machines, a potential indicator of suboptimal optics calibration. As can be 

seen from Supplementary Table B, machines 1, 6, and 8 exhibit significantly more bias than machine 2. 

In conjunction with a noticeably greater lane effect, it can be hypothesized that the bias in machine 1 may 

be compounded by either increased laser exposure or problematic imaging buffer. These observations 

provide educated first guesses for the causes of machine variability and can lead the trained sequencer to 

correct or compensate in the laboratory. In addition, with the pooled use of a suitable control sequence, the 
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coefficients can be used at the intra-machine level to monitor and normalize individual runs by training 

SEAM on the control sample and transferring the resulting coefficients to the test sample.  

 
 
Implications and Improvements of SEAM 
 
SEAM’s logistic regression model adds accuracy and reproducibility to IGA base calls and runs, which 

translates to improvements in downstream applications. Besides SNP calling, short read assembly is 

particularly sensitive to sequencing errors; one example being the use of De Bruijn graphs which currently 

attempt to identify errors via topological features of the graph, like the formation of two largely redundant 

paths or “bubbles” (Zerbino, et al, 2008). Unfortunately, this approach cannot as yet make use of the 

features of a particular run or lane which should only reduce the frequency of bubbles. One particularly 

attractive application is quantitative expression profiling via cDNA sequencing (Nagalakshmi, et al, 

2008,Wilhelm, et al, 2008). Since alignment bias will affect quantitative expression patterns, it is essential 

to minimize machine errors and misalignment, however these measurements are still subject to IGA’s 

filtering of overlapping read clusters. With the percentage of reads filtered at approximately 40%, this 

introduces a large amount of uncertainty if not bias, which could potentially arise if overlapping (or non-

overlapping) read clusters are sequence dependent. In the absence of supporting quantitative measures, it is 

therefore crucial that future filters are able to dissect overlapping clusters and laboratory protocols are 

modified to minimize their frequency.  

 
 
SEAM’s use of IGA’s Phred calculation is largely a surrogate for signal to noise ratio, which is currently 

handled by the Bustard module. A far more elegant input parameter would be the signal to noise ratio itself; 

it follows then that SEAM could be integrated into the IGA informatics pipeline around Bustard (instead of 

after the Gerald outputs), thus, with better error detection, some overlapping clusters could be differentiated 

(although assumedly with an elevated proportion of errors which still makes alignment difficult). Leaps in 

the technology and instrumentation may also limit the effectiveness of an error model. These leaps will 

inevitably introduce new parameters which should be taken into account while, ideally, minimizing 

previous parameter(s) propensity for error. However, the more precise error estimates with gains in 

sensitivity and specificity provided by a successful error model can also minimize the divide between old 

and new technology, making data more amenable to combined analyses. Additionally, implementation of 

technology gains is not uniform for all laboratories or sequencing centers, thus it is important to understand 

the differential bias arising from them. Finally, it is possible to implement more complex statistical 

methodologies than presented here. An improvement to the model itself would be to apply a Bayesian 

logistic regression (Clark, et al, 2007), but this would necessarily be more computationally intensive. 

Alternatively, it is possible to implement a machine learning approach, such as that using support vector 

machines that update parameter estimation and predictions with increasing data (Cristianini, et al, 2000). 

Further research is being conducted in this area.   
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Methods 
 
 
IGA sequencing and read alignment 
 
DNA for sequencing came from the human BAC, bCX98J21 (Shizuya, et al, 1992). DNA was prepared by 

Illumina and sequenced at the Wellcome Trust Sanger Institute using the Solexa sequencing technology 

platform (GenomeAnalyzer I or II, Illumina) following standard protocols. Briefly, 5µg of bCX98J21 BAC 

DNA was sheared randomly by nebulisation with compressed nitrogen at 35psi for 6 minutes. Fragmented 

DNA was purified using a QiaQuick spin column and end-repaired using T4 DNA polymerase and Klenow 

polymerase with T4 polynucleotide kinase to generate blunt ended fragments with phosphorylated 5’ 

termini. Following a second column purification, a 3’ A-overhang was created using a 3’–5’ exonuclease-

deficient Klenow fragment. DNA was again purified with a QiaQuick column, and Illumina paired-end 

adapter oligonucleotides were ligated on. The DNA was size-selected by performing agarose gel 

electrophoresis and stabbing a scalpel blade into the gel at 290bp, so as to obtain 200bp inserts. DNA was 

washed from the blade with 10mM Tris-HCl pH8.5 and enriched for fragments with Solexa primers on 

both ends by an 18-cycle PCR reaction.  

 

Following quantification of amplified DNA on an Agilent Bioanalyser 2100, paired-end flowcells were 

prepared for each machine on the supplied cluster station according to the manufacturer’s protocol, using 

DNA at a final concentration of 4pM. Clusters of PCR colonies were then sequenced on each 

GenomeAnalyzer using supplied protocols. Images from the instrument were processed using the 

manufacturer’s software.  

 

Each run was analyzed using the Illumina GA Pipeline version 0.3x, default settings were used, this 

includes “purity” filtering which discards those reads with potentially ambiguous calls. The purity of a read 

is calculated as the minimal p value over the first 12 bases where p is defined as: 

 

 
 

Any read which is not pure (P > 0.60) is discarded. Approximately 40% of reads are removed by this filter; 

cluster summary statistics for the runs used here are shown in Supplementary Table A.  

 

Read alignment to the BAC capillary sequence was performance using the Maq algorithm (Li H., et al. 

2008) and software version 0.6.3, freely available at http://maq.sourceforge.net under a GNU public 

license. Alignment of each run was done using Maq default parameters and follows a standard protocol 

(cite http://maq.sourceforge.net/maq-man.shtml). Read map positions, quality scores, etc. were extracted 
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via Maq’s internal functions, mapview and pileup. For each machine, there was an average of 7,914x 

coverage at each reference base.  

 
 
Refinement of the BAC capillary sequence 
 
With relatively deep coverage, one can make accurate judgments about the base call in a reference 

sequence. This was done via a simple frequentist approach at each base in an alignment using all runs. For 

each strand, the probability of observing the reference base call was calculated and compared to that of the 

other three base calls. If on both +/-strands the probability of observing the reference base is less than any 

of the other bases, then the reference base was deemed a suspect call. This approach clearly identified four 

bases (reference call/IGA call) of >99% mismatch within 30 bp of each other at BAC positions 169520 

(C/T), 169532 (C/A), 169542 (G/A), and 169547 (A/G) as errors in the reference sequence. All further 

analyses of these four bases consider the IGA call to be the true base. Three other base positions (5451, 

5453, and 114642) were deemed suspect calls, however upon inspection these were obvious alignment 

errors due to their position within homopolymeric runs and elevated read coverage.  

 
 
Sequence entropy and inference of machine error 
 
To assess sequence complexity, entropy is a common measure (Valdar, 2002). We introduce a modified 

Shannon entropy (Vw) which utilizes a sliding window of variable size to capture as many sub-states as 

possible of the system, a read sequence. Traditionally, Shannon entropy is defined as 

 

 
 

where pi is the observed frequency of i, and n is the number of possible states of i. Here, the normalized 

entropy of a read is defined as  

 

 
 

where n is 4 (possible nucleotide calls), k is the number of bases in window i, and pi is the observed 

frequency of i. The normalizing term is the maximum possible entropy at a given k, or log2(4k). Since we 

are examining very short reads of <40 bp, we unfortunately have too few measurements to accurately 

determine entropies at large k, thus we restrict our calculations to k = 1, 2. The minimum Vw for a read 

across all k is taken to be its sequence complexity. This captures areas of repetitiveness across the BAC 

(Supplemental Fig. C & D). 
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Phred and Pseudo-Phred scores 
 
For each base call, the Bustard module uses the signal-to-noise ratio to calculate a IGA quality score which 

is asymptotically related to Phred (Ewing, et al, 1998), thus it can be thought of as a pseudo-Phred score. If 

the error probability of a base call is pe and ψ is the IGA quality score, then 

 

 
 

Transformation of ψ into Phred, φ, and its relation to pe are as follows: 

 

, 

 
 

It is φ on which we perform our analyses. To assess the accuracy of φ in predicting the actual error rate, we 

calculated the probability of observing an error at a given φ, converted it to the corresponding Phred score, 

then plotted these observed Phred scores versus the predicted values. These are stratified to show inter-

machine variation (Figure 1a).  

 
 
Effect of intra-read base position 
 
As with other sequencing-by-synthesis methods, IGA experiences a drop in quality as base position within 

a read increases. This is almost exclusively due to a decreasing signal to noise ratio as imaging of the read 

progresses, however alignment algorithms can also have an effect (e.g. by assigning heavier weights to 

earlier bases). In order for an error model to be useful in read alignment, it must concentrate on signal to 

noise ratio therefore we investigated the effect of read position on Phred score (Figure 2b). For each 

position, we calculated the frequency of each observed Phred score and plotted these score distributions as 

a function of their position. 

 
 
Nucleotide bias 
 
To determine the extent to which errors are biased toward nucleotides, we calculated the substitution rates 

for each nucleotide and, being particularly sensitive to alignment, further stratified this by each read’s 

sequence complexity. In observing bias in the T for G and A for C substitutions, it was hypothesized that 

this might be dependent on IGA run lane, read position, and Phred score (Supplementary Fig. F). 
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The possibility of photo-interference or differential fluorescence decay led us to calculate the above for di-

nucleotides as well (Supplemental Fig. G).  

 
 
Effect of tile coordinates and cluster density 
 
The probability of error was calculated as a function of each read’s tile coordinates and was then stratified 

by machine and lane (Supplementary Fig. A). The potential clustering of reads with similar sequence 

complexities (e.g. homopolymeric regions) was also assessed as a possible explanation for tile edge effects, 

none was observed.  

 

Given the potential for imaging biases, the probability of error as a function of local read density on the tile 

was investigated. For each read on each tile, the local read density was calculated as  

 

, 

 

the number of reads within a defined coordinate radius of the focal read divided by the area. To get a 

suitable range of measurements within the smallest radius, we chose the coordinate radius as ten (πr2 = 

314.159 coordinates2). The probability of observing an error given a local read density was then 

determined; since each density has a probability of observing a certain error rate, a heat map was 

constructed to show these probability distributions (Supplementary Fig. B). To avoid elevated error rates 

on tile edges, we excluded all reads within 100 coordinates of a tile edge.  

 
 
Statistical approaches for error modeling 
 
We adopted two statistical modeling strategies: (a) a logistic regression approach to predict the odds of an 

error in a read at a particular base and given a set of other characteristics of the read, and (b) a log-linear 

modeling approach to estimate the number of errors in a read given a set of read characteristics. For method 

(a), the model is  

 

 
 

where logit(p) = p/1-p, Base refers to its location within the read, Call is the IGA call, RadD is the read’s 

radial distance from the center of the tile, Den is the read’s local density on the tile, Phred is the quality 

score, Vw is sequence complexity, and Lane is the read’s lane on the flowcell. The coefficients (log odds) 

were estimated using iteratively re-weighted least squares (IRWLS) (McCullagh, et al, 1989), but it is also 

possible to estimate these with a Bayesian framework (Clark, et al, 2007). Note that we have simplified the 

notation above, as categorical variables (e.g. Lane) are represented by a number of variables (e.g. seven 
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lane variables comparing to a baseline group to represent the eight possible lanes). The predicted 

probability of an error, p.error, is  

 

 
 

where the β hats are estimated as described above.  

 

For method (b), the model is 

 

 
 

where AS is the alignment score and the other variables are defined above, and the coefficients (risk ratios) 

are also estimated using IRWLS. The expected number of errors, e.errors, is  

 

 
 

where the β hats are estimated as described above, and the expression can be used to threshold for one or 

more errors.  

 
 
Model Validation 
 
We assessed the linearity of the relationship between the risk of errors and the continuous predictors 

considered (e.g. Phred score) by fitting splines within a generalized additive model (Harrell, et al, 1996). 

For each machine run we generated 10 datasets consisting of 3,000,000 randomly chosen reads. Validation 

was performed by training both models on single runs, and using the resulting coefficients to predict the 

results for other runs. Two measures of predictive ability were applied: the area under the ROC curve 

(AURC) and the root mean squared error (RMSE) (Hastie, et al, 1990). The ROC curve is a function of the 

sensitivity and specificity, where sensitivity is the proportion of true errors that are correctly identified and 

specificity is the proportion of true negatives that are correctly identified by our approach. An AURC equal 

to 0.5 indicates random predictions and a value of 1.0 corresponds to a perfectly discriminating model. In 

the case of the log-linear model, we estimated the AURC by dichotomizing the number of errors into 

whether there are zero or greater than zero errors. The RMSE indicates whether the predicted error 

probabilities agree with observed error probabilities, and in the case of the log-linear model we compared 

the expected and observed number of errors.  
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Figure Legends 
 
Figure 1: IGA analysis pipeline overview 
After tile images are collected from scanning the flowcell, they enter three analysis modules: Firecrest, 
Bustard, and Gerald. The Firecrest module performs image analysis to identify cluster intensities, correct 
crosstalk for overlapping dye florescence, and estimate phasing corrections to compensate for unsuccessful 
nucleotide incorporation or unblocked read molecules. Bustard implements the phase correction and 
performs base calling using maximum post-correction intensity, while Gerald filters overlapping read 
clusters and reports the base calls and IGA quality scores. Currently, SEAM is implemented after Gerald 
using the resulting fastq files. 
 
 
Figure 2: Predictors of IGA sequencing errors 
In (a), for each Phred score the observed probability of error was calculated. This probability was then 
converted back into an observed Phred score which was then plotted against the predicted. Perfect 
correlation is the dotted line. We also observe variability across machines. The decline of base quality 
within a read is shown in (b). At each base position in a read we calculate the frequency distribution of 
observed Phred score, which we use as a surrogate for the signal to noise ratio. This shows the probability 
of a base calling error increasing as position increases with an apparent inflection point at approximately 30 
bases. Errors are also not uniformly distributed across nucleotides (c). In particular, T for G and A for C 
substitutions are inflated for both unfiltered and filtered data (Phred > 20 and Maq alignment score > 40). 
Part (d) gives an aggregate view of error rate across a tile. For each X,Y coordinate on all tiles from 
machine #1, we calculate the proportion of errors out of the total base calls. These were then mapped out on 
a virtual tile and each proportion colored (the sidebar). An analogy would be stacking all 300 tiles on top of 
one other and “seeing” the average error by looking down the long axis. From our observations, each 
machine had a different pattern of error across the tile, however the tile edges were consistently more error-
prone. 
 
 
Figure 3: Application of SEAM  
For (a) and (b) we present the relationship between the log-odds of an error and Phred and read entropy, 
Vw, respectively. *These were estimated by fitting splines within a generalized additive model. In (c), we 
show ROC curves for four models: a logistic model with Phred only (logistic model 1), a logistic model 
with all predictors (logistic model 2), a log-linear model with sequence alignment score only (log-linear 
model 1), and a log-linear model with all predictors (log-linear model 2). 
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Figures 
 
Figure 1 
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Figure 2a 
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Figure 2b 
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Figure 2c 
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Figure 2d 
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Figure 3a 
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Figure 3b 
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Figure 3c 
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Tables  
 
Table 1: Logistic model performance 
  

Machine 

Model 1 Model 2 
Risk 

estimates* Specificity** Sensitivity** AURC RMSE 
Risk 

estimates* Specificity** Sensitivity** AURC RMSE 
Val 

AURC*** 
Val 

RMSE*** 

1 0.741 0.903 0.883 0.932 0.093 0.737 0.931 0.923 0.948 0.092 0.943 0.102 

2 0.763 0.860 0.892 0.935 0.084 0.764 0.911 0.930 0.952 0.083 0.947 0.094 
6 0.753 0.860 0.908 0.947 0.093 0.752 0.909 0.935 0.952 0.092 0.949 0.099 

8 0.762 0.886 0.908 0.945 0.095 0.760 0.912 0.934 0.955 0.094 0.953 0.104 
 
Model 1 consists of Phred score only, and Model 2 consists of position, call, Vw, lane, density, radial 
distance, and Phred. AURC = area under the ROC curve; P = p-value; Risk estimates are odds ratios; 
RMSE = root mean square error; * all p-values < 1e-100; ** median of best combination of sensitivity and 
specificity, *** median based on predictions from models trained on other machines. 
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