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Abstract	

Gene	body	methylation	(gbM)	is	an	ancestral	and	widespread	feature	in	Eukarya,	yet	its	adaptive	value	and	

evolutionary	implications	remain	unresolved.	The	occurrence	of	gbM	within	protein	coding	sequences	is	

particularly	puzzling,	because	methylation	causes	cytosine	hypermutability	and	hence	is	likely	to	produce	

deleterious	amino	acid	substitutions.	We	investigate	this	enigma	using	an	evolutionarily	basal	group	of	Metazoa,	

the	stony	corals	(order	Scleractinia,	class	Anthozoa,	phylum	Cnidaria).	We	show	that	gbM	correlates	with	

breadth	and	abundance	of	transcription	and	with	slow	sequence	evolution.	We	also	show	a	strong	correlation	

between	gbM	and	codon	bias	due	to	systematic	replacement	of	CpG	bearing	codons.	We	suggest	that	the	

ancestral	function	of	gene	body	methylation	is	tied	to	selective	pressure	for	accurate	and	stable	gene	expression,	

and	that	mutation	caused	by	gbM	may	be	a	previously	unrecognized	driver	of	adaptive	codon	evolution.	

	

Introduction	

DNA	methylation	is	an	evolutionarily	widespread	epigenetic	modification	found	in	plants,	animals	and	fungi.	It	

is	defined	as	the	covalent	addition	of	a	methyl	group	to	the	one	of	the	four	DNA	bases,	predominantly	on	the	

fifth	carbon	of	cytosines	within	CG	dinucleotides	(CpGs),	producing	5-methylcytosine	(5mC).	Unlike	other	

epigenetic	modifications,	DNA	methylation	not	only	alters	chromatin	structure	and	transcription,	it	changes	the	

mutation	rate	of	the	underlying	DNA.	This	is	because	5mC	undergoes	deamination	reactions	more	readily	than	

normal	cytosine	(Shen	et	al.	1994)	and	deamination	produces	thymine	rather	than	uracil,	which	is	less	likely	to	

be	accurately	repaired	(Zemach	&	Zilberman	2010).	Because	of	this	hypermutability,	sequences	that	are	heavily	

methylated	in	the	germ-line	become	deficient	in	CpGs	over	evolutionary	time,	with	corresponding	increases	in	

TpG	and	CpA	dinucleotides	(Sved	&	Bird	1990).	Hence	DNA	methylation	has	evolutionary	consequences	outside	

of	its	direct	physiological	effects.		

Evolutionary	effects	of	5mC	hypermutability	are	apparent	in	both	vertebrate	and	invertebrate	genomes.	

In	mammals,	DNA	methylation	is	ubiquitous,	so	that	nearly	all	genomic	regions	show	lower	than	expected	

frequency	of	CpGs	(Karlin	&	Mrázek	1996;	McGaughey	et	al.	2014).	The	exception	is	regions	of	elevated	CpG	

content	called	CG	islands	that	are	protected	from	DNA	methylation	(Jones	2012).	In	most	invertebrates,	DNA	

methylation	is	not	ubiquitous	but	patchy,	with	preferential	occurrence	on	CpGs	within	gene	bodies	(Suzuki	et	al.	

2007;	Zemach	et	al.	2010).	This	form	of	DNA	methylation,	referred	to	as	gene	body	methylation	(gbM),	is	also	
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found	in	mammals.	Notably,	one	of	the	mammalian	de	novo	DNA	methyltransferases	(DNMT3B1)	recruits	

specifically	to	gene	bodies,	and	binds	preferentially	to	actively	transcribed	genes	(Baubec	et	al.	2015).	As	gbM	

also	occurs	in	plants	(Tran	et	al.	2005;	Zilberman	et	al.	2007)	it	likely	represents	an	ancestral	form	of	DNA	

methylation	for	eukaryotes	(Feng	et	al.	2010).	

Despite	its	widespread	phylogenetic	occurrence	gbM	is	by	no	means	universal.	In	several	groups,	

including	classical	model	organisms	such	as	yeast	(Saccharomyces	cerevisiae),	fruit	fly	(Drosophila	

melanogaster),	and	worm	(Caenorhabditis	elegans),	DNA	methylation	is	extremely	scarce	or	lost	altogether	

(Capuano	et	al.	2014).	It	has	been	proposed	that	the	secondary	loss	of	DNA	methylation	from	these	organisms	

occurred	because	its	mutational	costs	outweighed	its	adaptive	value	(Zemach	et	al.	2010).	Indeed	even	within	

gene	bodies,	methylation	occurs	preferentially	on	exons	(Zemach	et	al.	2010;	Wang	et	al.	2013),	where	

mutations	are	likely	to	have	the	greatest	deleterious	effect.	In	humans,	DNA	methylation	is	a	strong	source	of	

mutation	(Cooper	et	al.	2010;	Xia	et	al.	2012)	and	increases	deleterious	de	novo	mutations	with	paternal	age	

(Francioli	et	al.	2015).	Why,	given	its	apparently	nonessential	and	outright	mutagenic	nature,	has	gbM	persisted	

for	so	long	across	such	a	diversity	of	taxa?	Addressing	this	question	requires	understanding	of	both	the	adaptive	

value	and	evolutionary	consequences	of	gbM	in	its	ancestral	form.	To	this	end,	we	characterized	the	methylome	

of	a	basal	metazoan—the	reef-building	coral	Acropora	millepora.	Methylomic	data	were	analyzed	in	the	context	

of	gene	expression,	substitution	rates,	and	codon	usage	to	elucidate	functional	and	evolutionary	impacts	of	gbM	

at	the	base	of	the	metazoan	tree.	

	

Results	

Using	MBD-seq	to	quantify	gene	body	

methylation	

We	used	Methylation	Binding	Domain	

enrichment	sequencing	(MBD-seq)(Harris	

et	al.	2010)	to	measure	gbM	in	A.	

millepora.	The	strength	of	methylation	for	

24320	coding	regions	was	quantified	as	

the	log2	fold	difference	between	captured	

and	flow-through	fractions	of	MBD	

enrichment	preparations.	We	refer	to	this	

log2	fold	difference	as	the	MBD-score.	

Analysis	of	the	distribution	of	MBD-scores	

(fig.	1A)	showed	that	it	was	best	

described	as	a	mixture	of	two	or	more	

Gaussian	components	(supplementary	fig.	S1).	MBD-score	correlated	with	CpGo/e,	indicating	that	our	measure	

of	gbM	overlapped	closely	with	historical	patterns	of	germ-line	methylation	(fig.	1B).	As	an	MBD-score	of	zero	

	
Figure	1:	Methylation	score	is	bimodally	distributed	and	
correlates	with	CpGo/e.	(A)	Distribution	of	MBD-score	(log2	fold	
difference	between	enriched	and	flow-through	MBD-seq	
libraries).	Higher	values	indicate	stronger	methylation.	(B)	
Scatterplot	of	MBD-score	and	CpGo/e.	Lower	values	for	CpGo/e	
are	expected	with	stronger	methylation.	Asterisks	indicate	
significance	based	on	Spearman’s	rho	(ns	>	0.05;	*	<	0.05;	**	<	
0.01;	***<0.001;	****	<	0.0001).	
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indicated	equal	representation	in	the	captured	and	flow-through	fractions	we	chose	this	value	to	separate	

strongly	and	weakly	methylated	genes.	Genes	with	MBD-scores	greater	than	zero	are	referred	to	as	strongly	

methylated	genes,	those	with	scores	less	than	zero	are	referred	to	as	weakly	methylated.	

	

MBD-score	is	linked	with	gene	function	and	expression	patterns	

MBD-score	correlated	with	gene	function.	Analysis	of	selected	GO	categories	for	biological	processes	revealed	

that	strongly	methylated	genes	tend	toward	biological	functions	that	are	spatially	and	temporally	stable	such	as	

DNA	metabolism,	ribosome	biogenesis,	translation,	RNA	metabolism	and	transcription.	Weakly	methylated	

genes	tended	to	involve	biological	functions	that	are	spatially	and	temporally	regulated,	such	as	cell-cell	

signaling,	response	to	stimulus,	signal	transduction,	cell	adhesion,	defense	response	and	development	

(supplementary	fig.	S2A).	Clustering	of	KOG	categories	for	higher	or	lower	MBD-scores	further	supported	these	

results	(supplementary	fig.	S2B).	

	

To	directly	examine	the	relationship	between	gbM	and	transcriptional	stability	we	correlated	MBD-

score	with	RNA-seq	data	comparing	different	developmental	stages	and	environmental	conditions.	For	

developmental	stage,	log2	fold	differences	in	transcript	abundance	between	A.	millepora	adults	and	larvae	

(described	in	Dixon	et	al.	2015)	negatively	correlated	with	MBD-score	(fig.	2A).	Significantly	differentially	

expressed	genes	(DEGs	at	FDR	<	0.01)	were	1.4	times	more	frequent	among	weakly	methylated	genes	(fig.	2B).	

A	similar	trend	was	found	for	variation	in	expression	due	to	environmental	conditions	(fig.	2C-D).	Here	clonal	

fragments	of	adult	colonies	were	exposed	to	two	environmentally	distinct	regimes	for	three	months	prior	to	

Figure	2:	Gene	body	methylation	predicts	transcriptional	stability	across	developmental	stages	and	
environmental	regimes.	(A)	Scatterplot	of	MBD-score	and	transcriptional	variation	(given	as	log2	fold	
differences)	between	adult	colonies	and	juvenile	offspring.	Red	line	shows	least	squared	regression.	
Asterisks	indicate	significance	based	on	Spearman’s	rho.	(B)	Distribution	of	differentially	expressed	genes	
(DEGs;	FDR	<	0.01)	between	juveniles	and	adults.	All	genes	were	divided	into	20	quantiles	ranked	by	MBD-
score.	The	number	of	differentially	expressed	genes	in	each	quantile	was	plotted	against	the	median	MBD-
score	for	that	quantile.	Enrichment	of	DEGs	among	the	weakly	methylated	genes	(MBD-score	<	0)	compared	
to	strongly	methylated	genes	(MBD-score	>=	0)	is	given	as	the	odds	ratio	(OR)	for	Fisher’s	exact	test.	Red	
line	shows	a	smoothed	trace	of	the	points	fit	with	a	span	of	0.5.		(C-D)	The	same	figures	representing	
transcriptional	variation	between	populations	of	clonal	colony	fragments	transplanted	between	distinct	
habitats	as	described	in	Dixon	et	al.	(2014).	Significance	notation:	ns	>	0.05;	*	<	0.05;	**	<	0.01;	***<0.001;	
****	<	0.0001.	
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sampling	for	RNA-seq	(Dixon	et	al.	2014).	Differential	expression	(FDR	<	0.01)	between	environmental	regimes	

was	2.2	times	more	frequent	among	weakly	methylated	genes.	

MBD-score	also	showed	weak	but	significant	correlation	with	transcript	abundance	(supplementary	fig.	

S3A	and	B,	Supplementary	Material	online).	Highly	expressed	genes	were	on	average	the	most	strongly	

methylated	(supplementary	fig.	S3C	and	D).	The	top	5%	most	strongly	methylated	genes	however,	showed	

lower	average	expression	(supplementary	fig.	S3E).	This	indicates	that	while	gbM	is	generally	associated	with	

elevated	transcription,	extreme	levels	may	be	inhibitory.	This	appears	to	be	particularly	true	for	short	genes,	as	

the	removal	of	coding	sequences	shorter	than	800	bp	mitigated	the	trend	(supplementary	fig.	S3F).	

	

	

	

	
Figure	3:	Relationship	between	MBD-score	and	substitution	rates	across	the	anthozoan	phylogeny.	All	
nodes	in	the	phylogeny	have	100%	bootstrap	support	based	on	1000	replicates.	Line	plots	trace	the	mean	
substitution	rates	for	all	genes	divided	into	ten	quantiles	ranked	by	MBD-score.	Line	color	indicates	which	
species	A.	millepora	was	compared	with	to	estimate	pair-wise	substation	rates.	The	top	row	of	line	plots	
show	comparisons	within	Acropora.	The	middle	row	shows	corals	outside	of	Acropora.	The	third	row	
shows	comparisons	with	anemone	species.	Correlations	were	tested	based	on	all	datapoint	using	
Spearman’s	rho.	Correlation	and	significance	given	for	each	panel	indicate	the	median	values	for	the	
included	species.	Significance	notation:	ns	>	0.05;	*	<	0.05;	**	<	0.01;	***<0.001;	****	<	0.0001.	
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Phylogeny	

We	used	a	conserved	set	of	192	coding	sequences	for	phylogenetic	construction.	These	sequences	had	>75%	

amino	acid	identity	and	80%	representation	among	the	20	species.	Phylogenetic	construction	was	performed	

using	the	GTRGAMMA	model	in	RAxML	(Stamatakis	2014).	All	bipartitions	had	100%	bootstrap	support	based	

on	1000	repetitions.	All	orders,	families,	and	genera	formed	monophyletic	groups	(fig.	4).	Species	from	the	

‘complex’	and	‘robust’	coral	clades	(Romano	&	Palumbi	1996;	Kitahara	et	al.	2010)	also	formed	monophyletic	

groups.	For	the	species	in	which	they	overlapped,	our	tree	agreed	fully	with	that	published	by	Kitchen	et	al.	

(2015).	

	

Strongly	methylated	genes	evolve	slowly	

Pairwise	comparisons	between	orthologs	from	A.	millepora	and	each	of	the	other	species	revealed	that	strongly	

methylated	genes	evolve	slowly.	The	trend	was	strongest	for	nonsynonymous	substitutions	(dN).	When	

orthologs	from	A.	millepora	were	compared	with	other	Acropora	species,	mean	dN	was	between	43%	and	68%	

higher	for	weakly	methylated	genes	than	strongly	methylated	genes	(fig.	3;	supplementary	fig.	S4).	Pairwise	

comparisons	with	all	species	outside	of	the	Acropora	genus	produced	similar	results,	with	mean	dN	between	

17%	and	52%	(mean	=	36	±	SEM	3%)	higher	for	weakly	methylated	genes	(fig.	3;	supplementary	fig.	S5).	

Negative	correlation	between	dN	and	MBD-score	was	significant	for	all	species	comparisons	(p	<<	0.001;	

Spearman’s	Rank	Test).	

The	relationship	between	MBD-score	and	synonymous	substitution	rate	(dS)	was	less	pronounced	than	

for	dN,	and	varied	with	evolutionary	proximity	between	species.	Comparison	of	orthologs	between	A.	millepora	

and	other	Acropora	species	showed	no	relationship	between	MBD-score	and	synonymous	substitution	rate	(fig.	

3).	Comparisons	with	corals	outside	of	Acropora	however,	showed	a	significant	negative	relationship,	with	an	

average	of	17%	higher	mean	dS	for	weakly	methylated	genes	(fig.	3;	supplementary	fig.	S6).	The	correlations	

with	the	three	anemone	species	were	weaker,	although	still	significant.	As	most	of	these	comparisons	were	

saturated	for	synonymous	substitutions	they	should	be	treated	with	caution.	Analysis	of	dN/dS	values	gave	

similar	results	to	dN	for	all	groups	of	species	(fig.	3).	

	

Strongly	methylated	genes	show	greater	codon	bias	

Because	DNA	methylation	alters	mutation	patterns,	we	hypothesized	that	gbM	influences	synonymous	codon	

usage	in	stony	corals.	Specifically	we	predicted	that	strong	gbM	produces	codon	bias	via	mutational	replacement	

of	codons	bearing	CpG	dinucleotides.	To	test	this	we	correlated	MBD-scores	with	three	distinct	indices	of	codon	

bias:	frequency	of	optimal	codons	(Fop)(Ikemura	1981),	codon	adaptation	index	(CAI)(Sharp	&	Li	1987a),	and	

effective	number	of	codons	(Nc)(Wright	1990).	Fop	and	CAI	each	quantify	preference	for	a	set	of	optimal	codons	

in	the	coding	sequence.	Higher	values	for	these	metrics	indicate	stronger	codon	bias.	Nc	quantifies	nonrandom	

synonymous	codon	usage	without	assuming	optimal	codons.	It	is	bounded	between	1	(indicating	complete	bias,	

or	use	of	only	20	codons	for	the	20	amino	acids)	and	64	(indicating	completely	neutral	codon	usage)(Wright	
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1990).	All	three	indices	correlated	significantly	with	MBD-score	(fig.	4).	To	assess	the	extent	to	which	codon	bias	

was	driven	by	CpG	hypermutability	we	recalculated	CAI	estimates	using	the	same	relative	adaptiveness	values	

(W	see	methods)	for	each	codon,	but	excluding	the	five	amino	acids	coded	for	by	CpG	bearing	codons	(Serine,	

Proline,	Threonine,	Alanine	and	Arginine).	This	substantially	weakened	the	correlation	from	0.38	(Spearman’s	

rho;	p	<<	0.0001)	to	0.16	(Spearman’s	rho),	although	it	remained	significant	(p	<<	0.0001).	In	contrast,	

recalculation	of	CAI	based	solely	on	these	five	amino	acids	strengthened	the	correlation	(rho	=	0.42;	

supplementary	fig.	S7),	

indicating	that	

hypermutability	of	CpGs	

due	to	gbM	has	a	strong	

influence	on	codon	usage.	

	

CpG	codons	are	under-

represented	in	highly	

expressed	genes	

To	further	explore	the	

influence	of	5mC	

hypermutability	on	codon	bias,	we	examined	usage	of	CpG	codons	in	highly	expressed	genes.	As	we	did	not	have	

gene	expression	data	for	all	species	we	first	examined	usage	in	annotated	ribosomal	protein	genes	with	the	

assumption	that	these	genes	are	highly	expressed.	For	each	species,	relative	synonymous	codon	usage	(RSCU)	of	

CpG	codons	was	depressed	in	ribosomal	protein	genes	(supplementary	fig.	S8A).	To	ensure	that	this	did	not	

result	from	variation	in	overall	GC	content	we	showed	that	mean	RSCU	of	CpG	codons	was	significantly	lower	

than	that	of	codons	with	GC,	GG,	or	CC	dinucleotides	(t-tests;	p	for	all	species	<	0.01).		

For	A.	millepora,	we	assessed	depression	of	CpG	codons	in	highly	expressed	genes	using	three	additional	

metrics:	ΔRSCU	(the	difference	in	relative	usage	between	the	top	5%	and	bottom	5%	expressed	genes),	rRSCU	

(the	relative	synonymous	codon	usage	calculated	for	a	concatenation	of	all	ribosomal	protein	genes),	and	W	(the	

relative	adaptiveness	of	each	codon;	see	methods).	With	one	exception	that	had	neutral	usage,	all	CpG	codons	

were	underrepresented	for	all	three	metrics	(supplementary	fig.	S8	B-D).	Hence	CpG	bearing	codons	are	

depressed	in	highly	expressed	genes.	

	

Underrepresentation	of	CpG	codons	occurs	through	silent	substitutions	

To	further	illustrate	that	loss	of	CpG	codons	is	due	to	5mC	hypermutability,	we	examined	RSCU	for	the	five	

amino	acids	coded	for	by	CpG	bearing	codons.	Four	of	these,	(Threonine,	Proline,	Alanine	and	Serine),	are	coded	

for	by	NCG	codons,	in	which	the	CpG	occupies	the	second	and	third	positions	of	the	codon.	For	these	codons,	

5mC>T	mutations	on	the	sense	strand	necessarily	produce	amino	acid	changes,	which	are	expected	to	be	rare	

due	to	purifying	selection.	In	contrast,	5mC>T	substitutions	of	the	corresponding	CpG	on	the	antisense	strand	

	
Figure	4:	Correlation	between	MBD-score	and	indices	of	codon	bias.	(A)	
Frequency	of	optimal	codons	(Fop).	(B)	Codon	adaptation	index	(CAI).	(C)	
Effective	number	of	codons	(Nc).	Correlation	significance	is	based	on	
Spearman’s	rho	(r).	Red	lines	trace	least	squared	linear	regression.		
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produce	silent	substitutions	(G>A	within	the	codon)(supplemental	fig.S9A).	For	this	reason,	we	predicted	that	

5mC	hypermutability	would	increase	the	usage	of	NCA	codons	at	the	expense	of	NCG	codons.	Plots	of	RSCU	for	

synonymous	codons	against	MBD-score	illustrated	positive	relationships	for	NCA	codons	(Spearman’s	rho	

between	0.156	and	0.196;	p	<<	0.001)	and	opposing	negative	relationships	for	NCG	codons	(fig.	5).	Correlations	

of	NCA	codon	usage	with	MBD-score	were	significantly	stronger	than	for	other	synonymous	codons	(t-test;	p	<	

0.01).	Moreover,	all	NCA	codons	were	identified	as	optimal	codons	(supplemental	table	S1),	and	their	mean	

relative	adaptiveness	(for	which	the	maximum	is	1)	was	0.99	(supplemental	table	S2).	Together	these	data	

indicate	that	that	NCA	codons	replace	NCG	codons	in	strongly	methylated	genes.	

The	second	group	of	CpG	bearing	codons	is	the	CGN	codons,	which	code	for	arginine.	These	are	expected	

to	evolve	differently	because	5mC>T	substitutions	on	both	the	sense	and	antisense	stands	produce	amino	acid	

changes	(supplemental	fig.S9A).	Although	the	trend	is	weak	(r	=	-0.06;	p	<	0.0001),	arginine	content	is	

negatively	correlated	with	MBD-score	(supplemental	fig.S9B),	suggesting	a	slight	shift	in	mutation-selection	

balance	for	arginine	in	strongly	methylated	genes.	

	

Summarizing	interrelationships	between	gene	characteristics	

To	summarize	the	relationships	between	gbM	and	other	gene	characteristics	we	performed	principal	

component	analysis	(PCA)	on	all	coding	regions	for	which	we	had	MBD-scores	and	substitution	rate	estimates.	

Pair-wise	estimates	of	dN	and	dS	between	A.	millepora	and	Siderastrea	siderea	were	used	because	it	was	the	

species	outside	of	the	genus	Acropora	with	the	greatest	number	of	orthologs.	Substitution	rates	based	on	other	

species	produced	qualitatively	similar	results.	Variation	in	measures	of	gbM	and	codon	bias	was	captured	

largely	by	the	first	principal	component	(34.0%	variance	explained)(fig.	6).	While	the	indices	of	codon	bias	often	

correlated	most	strongly	with	one	another,	the	strongest	alternative	predictor	for	all	three	was	CpGo/e	

(supplemental	table	S3).	Variation	in	transcript	abundance,	gene	length,	and	substitution	rates	was	captured	

largely	by	the	second	principal	component	(14.2%	variance	explained)(fig.	6).	

	
Figure	5:	Depression	of	CpG	bearing	codons	occurs	via	replacement	with	synonymous	NCA	codons.	Lines	
show	smoothed	traces	of	the	relationship	between	Relative	Synonymous	Codon	Usage	(RSCU)	and	MBD-
score	for	the	indicated	codon.	Black	lines	indicate	CpG	bearing	codons.	Green	lines	indicate	NCA	codons.	
Grey	lines	indicate	all	other	codons.	For	NCA	codons,	correlations	were	between	RSCU	and	MBD-score	were	
between	0.156	and	0.196	(Spearman’s	rho;	p	<<	0.001).	Opposing	trends	for	NCA	and	NCG	codons	support	
the	inference	that	NCA	codons	replace	NCG	codons	in	strongly	methylated	genes.	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 9, 2016. ; https://doi.org/10.1101/043026doi: bioRxiv preprint 

https://doi.org/10.1101/043026


Dixon	et	al.	2016	 8	

	

Discussion	

Gene	body	methylation	is	a	signature	of	broad	and	

stable	expression	

We	showed	that	strongly	methylated	genes	tend	to	

have	constitutive	and	ubiquitous	functions	and	are	

less	likely	to	be	differentially	expressed	across	

developmental	stages	and	environmental	regimes.	

These	results	confirm	earlier	findings	from	diverse	

metazoans	including	a	mollusk	(Gavery	&	Roberts	

2010;	Gavery	and	Roberts	2014),	arthropods	

(Elango	et	al.	2009;	Wang	et	al.	2013),	and	

cnidarians	(Sarda	et	al.	2012;	Dimond	&	Roberts	

2015)	as	well	as	Arabidopsis	(Aceituno	et	al.	2008;	

Takuno	&	Gaut	2012).	The	relationship	with	

differential	expression	in	response	to	

environmental	regimes	suggests	the	intriguing	

possibility	that	gbM	could	modulate	gene	

expression	plasticity.	

	

Gene	body	methylation	and	evolutionary	rates	

Using	pair-wise	comparisons	between	A.	millepora	

and	19	other	anthozoan	species	we	show	that	gbM	

negatively	correlates	with	substitution	rates.	This	

finding	is	consistent	with	previous	results	from	

invertebrates	(Park	et	al.	2011;	Sarda	et	al.	2012),	

mammals	(Chuang	and	Chiang	2014)	and	plants	(Takuno	&	Gaut	2012).	Still,	principal	component	analysis	

revealed	that	while	substitution	rates	are	negatively	correlated	with	gbM,	they	correlate	more	strongly	with	

transcript	abundance,	as	has	been	previously	shown	in	bacteria,	plants,	fungi,	and	animals	(Drummond	&	Wilke	

2008;	Yang	&	Gaut	2011).	The	ubiquitous	negative	correlation	between	substitution	rate	and	transcript	

abundance	is	explained	by	stronger	purifying	selection	against	protein	misfolding	in	highly	expressed	genes.	

Because	highly	expressed	proteins	have	a	greater	cumulative	opportunity	for	misfolding,	their	mutations	pose	

greater	fitness	costs	than	those	in	lowly	expressed	genes	(Drummond	et	al.	2005).	Similar	logic	can	be	applied	

to	broadly	expressed	genes,	as	they	are	active	in	a	greater	number	of	cells	and	tissues	(Duret	&	Mouchiroud	

2000)	and	undergo	more	translational	events	at	the	scale	of	the	entire	organism.	Whereas	non-synonymous	

substitutions	affect	the	probability	of	protein	misfolding	through	direct	destabilization,	synonymous	

	
Figure	6:	Principal	component	analysis	of	gene	
features	in	A.	millepora.	The	first	principal	component	
explained	34.0%	of	variation	and	correlated	primarily	
with	measures	of	gbM	and	codon	bias.	The	second	
principal	component	explained	14.2%	of	variation	and	
correlated	primarily	with	gene	length,	transcript	
abundance,	and	substitution	rates.	Variables	included	
in	the	analyses	are:	normalized	CpG	content	(CpGo/e),	
effective	number	of	codons	(Nc),	GC	content	of	coding	
regions	(GC	content),	nonsynonymous	substitution	
rate	(dN),	synonymous	substitution	rate	(dS),	length	
of	coding	region	(length),	transcript	abundance	
(mRNA	level),	Frequency	of	optimal	codons	(Fop),	
log2	fold	difference	between	captured	and	flow-
through	fractions	of	methylation	binding	domain	
enrichment	libraries	(MBD-score),	and	codon	
adaptation	index	(CAI).	Substitution	rates	are	pair-
wise	estimates	between	A.	millepora	and	S.	siderea.	
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substitutions	most	likely	exert	a	similar	but	weaker	effect	by	lowering	translational	accuracy	(Akashi	1994;	

Drummond	and	Wilke	2008).	Hence	both	dN	and	dS	are	expected	to	be	lower	in	highly	and	broadly	expressed	

genes.	We	have	shown	that	in	our	system,	highly	expressed	genes	tend	to	be	strongly	methylated	(supplemental	

fig.	S3),	and	that	strongly	methylated	genes	tend	toward	broad,	constitutive	transcription	(fig	2;	supplemental	

fig.	S2).	We	conclude	that	the	observed	correlation	between	gbM	and	substitution	rates	is	most	parsimoniously	

explained	by	the	occurrence	of	gbM	on	genes	that	are	under	stronger	purifying	selection	because	of	their	

expression	patterns.	

	

Gene	body	methylation	shapes	codon	usage	

Codon	bias	occurs	for	two	reasons.	One	mechanism	is	mutational	bias,	where	differences	in	mutation	rates	

across	species	and	genomic	contexts	produce	non-random	variation	in	synonymous	codon	usage	(Plotkin	&	

Kudla	2011).	The	second	mechanism	is	natural	selection,	which	requires	that	synonymous	mutations	affect	

organismal	fitness	(Behura	&	Severson	2013).	We	found	that	gbM	correlates	strongly	with	three	separate	

indices	of	codon	bias	(fig.	4).	This	appears	to	be	due	largely	to	mutational	patterns.	CpG	codons	were	depressed	

in	highly	expressed	genes	(supplemental	fig.S8),	and	the	strongest	predictor	of	codon	bias	was	historical	

germline	methylation	as	measured	by	CpGo/e	(fig.	6;	supplementary	table	S1).	Analysis	of	RSCU	values	for	NCG	

codons	was	consistent	with	codon	bias	arising	largely	through	silent	5mC>T	substitutions	on	the	antisense	

stand	(fig.	5;	supplemental	fig.S9A).	In	other	words,	gbM	causes	a	shift	in	usage	of	NCG	codons	to	NCA	codons.	

It	should	be	noted	that	CAI	correlated	significantly	with	gbM	even	when	amino	acids	with	CpG	codons	

were	excluded	from	the	analysis,	(supplemental	fig.S7).	This	suggests	that	an	additional	mechanism	to	CpG	

mutation,	potentially	natural	selection,	increases	codon	bias	within	strongly	methylated	genes.	When	assessing	

whether	codon	bias	is	due	to	selection,	researchers	examine	whether	it	occurs	in	genes	for	which	translation	

accuracy	and	efficiency	are	most	important.	Evidence	that	codon	bias	is	due	to	selection	includes:	1)	positive	

correlation	with	expression	level,	2)	positive	correlation	with	breadth	of	expression,	and	3)	negative	correlation	

with	synonymous	substitution	rate	(Sharp	&	Li	1987b;	Duret	2002;	Plotkin	&	Kudla	2011).	As	we	have	shown,	

gbM	in	A.	millepora	covaries	with	each	of	these	factors.	

It	is	interesting	that	gbM	is	not	only	a	potent	source	of	codon	bias,	but	also	occurs	preferentially	on	

genes	for	which	adaptive	codon	usage	is	most	important.	We	propose	that	the	systematic	codon	bias	produced	

by	gbM	could	itself	be	adaptive,	establishing	an	equilibrium	in	which	particular	sets	of	preferred	and	

unpreferred	codons	are	maintained	in	constitutively	active	genes.	Optimal	translation	dynamics	could	then	be	

achieved	through	evolution	of	tRNA	abundances	to	match	these	preferred	codons,	obviating	the	need	for	

selection	of	individual	codons	on	a	site-by-site	basis.	To	put	it	another	way,	selection	coefficients	for	individual	

synonymous	codons	will	be	exceptionally	small	(Bulmer	1987).	In	contrast,	if	a	set	of	preferred	codons	is	

mutationally	established	in	constitutively	expressed	genes,	alleles	that	control	the	abundance	of	appropriate	

tRNAs	would	have	stronger	fitness	effects	more	amenable	to	natural	selection.	To	be	clear,	we	are	not	proposing	

that	gbM	originally	evolved	for	this	purpose.	However,	if	its	original	function	was	linked	with	constitutively	
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active	genes,	as	appears	to	be	the	case	from	studies	of	plants	(Coleman-Derr	and	Zilberman	2012;	Takuno	&	

Gaut	2012),	invertebrates	(This	study)	and	mammals	(Baubec	et	al.	2015),	then	CpG	depression	coupled	with	

coevolution	of	tRNAs	provides	an	efficient	means	of	maintaining	optimal	codon	usage	in	the	genes	where	it	is	

most	beneficial.	This	hypothesis	could	be	tested	through	phylogenetic	comparison	of	tRNA	abundances	between	

clades	that	have	independently	lost	or	retained	gbM.	

An	advantage	of	mutation-driven	codon	bias	is	that	it	could	be	maintained	even	in	the	absence	of	

efficient	selection,	so	that	it	would	be	most	beneficial	for	organisms	with	relatively	small	population	sizes.	If	the	

adaptive	value	of	gbM	is	indeed	related	to	maintenance	of	codon	usage,	it	is	not	surprising	that	organisms	such	

as	yeast,	fly	and	worm	are	able	to	exist	without	it:	due	to	their	large	population	sizes	their	optimal	codon	usage	

can	be	maintained	by	selection	alone.		

	

Conclusions	and	outlook	

Here	we	present	three	primary	findings	on	gene	body	methylation	in	stony	corals:	1)	gbM	is	most	pronounced	

in	genes	with	broad	and	stable	expression	across	time	and	space;	2)	gbM	predicts	slow	sequence	evolution	3)	

hypermutability	due	to	gbM	is	a	principal	driver	of	codon	bias.	What	does	this	tell	us	of	the	ancestral	function	of	

gbM?	Preferential	occurrence	on	broadly	and	actively	expressed	genes	in	plants	(Coleman-Derr	and	Zilberman	

2012;	Takuno	&	Gaut	2012)	and	the	basal	metazoan	examined	here	indicates	an	evolutionarily	ancient	function	

involving	selective	pressure	for	accurate	and	stable	gene	expression.	One	means	of	improving	translation	

fidelity	is	the	use	of	optimal	codons.	If	codon	bias	introduced	by	gbM	corresponds	to	tRNA	abundance,	it	could	

be	a	previously	unrecognized	driver	of	adaptive	codon	evolution.	

	

Materials	and	methods	

Sequence	Data	and	Computational	Tools:	

Transcriptomic	data	from	17	species	of	Scleractinia	(stony	corals)	and	3	species	of	Actiniaria	(anemones)	were	

downloaded	from	the	web	(Supplementary	table	S4;	Schwarz	et	al.	2008;	Sunagawa	et	al.	2009;	Polato	et	al.	

2011;	Shinzato	et	al.	2011;	Moya	et	al.	2012;	Kenkel	et	al.	2013;	Lubinski	&	Granger	2013;	Sun	et	al.	2013;	Maor-

Landaw	et	al.	2014;	Nordberg	et	al.	2014;	Willette	et	al.	2014;	Kitchen	et	al.	2015;	Davies	et	al.	forthcoming).	

Instructions,	scripts,	and	example	output	files	for	computational	methods	used	in	this	study	are	available	on	

GitHub	(https://github.com/grovesdixon/metaTranscriptomes).	Gene	Ontology	and	KOG	annotations	were	

applied	as	described	in	(Dixon	et	al.	2015).	Instructions	and	scripts	for	the	gene	annotation	pipeline	are	

available	on	GitHub	(https://github.com/z0on/annotatingTranscriptomes).	Significance	for	enrichment	of	KOG	

terms	across	MBD-scores	was	tested	using	Mann-Whitney	U	tests	implemented	in	the	R	package	KOGMWU	as	in	

Dixon	et	al.	(2015).	

	

Ortholog	Identification	and	alignment	
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Orthologs	were	identified	based	on	reciprocal	best	Blast	hits	between	extracted	protein	sequences.	First,	

protein	coding	sequences	were	extracted	for	each	transcriptome	based	on	alignments	(e-value	cutoff	=	1e-5)	to	

a	reference	proteome	using	BlastX	(Altschul	et	al.	1997)	and	a	custom	Perl	script	CDS_extractor_v2.pl	

(https://github.com/z0on/annotatingTranscriptomes)	that	identifies	and	corrects	frame	shift	mutations	within	

the	BlastX-aligned	sequences.	The	reference	proteome	was	a	concatenation	of	the	Nematostella	vectensis	

(Nordberg	et	al.	2014)	and	Acropora	digitifera	(Shinzato	et	al.	2011)	reference	proteomes.	The	extracted	coding	

sequences	were	then	translated	to	produce	a	protein	sequences.	The	protein	sequences	for	all	pairs	of	species	

were	reciprocally	blasted	using	BlastP	(Altschul	et	al.	1990).	Because	our	MBD-seq	dataset	was	generated	from	

A.	millepora,	we	used	its	sequences	as	anchors	for	orthologous	groups.	First	an	initial	set	of	candidate	orthologs	

was	compiled	based	on	reciprocal	best	hits	with	A.	millepora.	Only	hits	with	alignment	lengths	>75%	of	the	

subject	sequence	and	an	e-value	<	1e-5	were	retained.	This	initial	set	was	then	refined	to	include	only	sequences	

that	were	reciprocal	best	hits	with	>=	50%	of	other	candidate	orthologs	within	the	group	(supplementary	fig.	

S10).	Orthologous	groups	with	fewer	than	three	(15%)	representative	species	were	excluded.	For	building	the	

species	tree,	a	separate,	highly	conserved	set	of	orthologs	was	assembled	with	amino	acid	identity	>	75%.	These	

were	further	filtered	by	retaining	only	orthologs	with	representative	sequences	from	>	80%	of	species.	As	a	final	

filter,	we	used	cluster	analysis	of	dS	values	to	identify	likely	paralogs	and	spurious	orthologs.	For	each	species	a	

three	component	Gaussian	mixture	model	was	fit	to	the	pairwise	dS	estimates	with	A.	millepora.	The	first	two	

components	were	assumed	to	capture	the	true	orthologs,	the	third	component	was	assumed	to	have	captured	

paralogs	and	false	positive	orthologs	(supplemental	fig.	S11).	Mean	dS	for	the	third	component	was	on	average	

60	times	higher	than	the	second	highest	component.	On	average	10%	of	ortholog	calls	were	flagged	as	false	

positives	and	removed.	Amino	acid	sequences	for	each	ortholog	were	aligned	with	MAFFT	(Katoh	&	Standley	

2013)	using	the	‘localpair’	algorithm.	The	protein	alignments	were	then	reverse	translated	into	codon	

sequences	using	Pal2Nal	(Suyama	et	al.	2006).	

	

Substitution	rate	analyses	

To	estimate	substitution	rates	(dS	and	dN)	we	used	codeml	in	the	PAML	software	package	(Yang	2007).	

Substitution	rates	were	estimated	using	pair-wise	comparisons	between	all	pairs	of	taxa	that	had	representative	

sequences	for	each	ortholog.	Example	codeml	control	files	for	the	pair-wise	comparisons	are	available	on	

GitHub	(https://github.com/grovesdixon/metaTranscriptomes).		

	

Building	species	tree	

Based	on	a	set	of	highly	conserved	ortholog	sequences	we	constructed	a	species	tree	using	RAxML	(Stamatakis	

2014).	The	rapid	bootstrapping	algorithm	was	run	using	the	GTRGAMMA	model	and	1000	iterations.	We	

decided	to	use	putative	orthologs	with	representative	sequences	in	>	80%	of	taxa	through	iterations	of	tree	

building.	The	best	trees	from	ortholog	sets	using	40%,	50%	and	60%	cutoffs	all	gave	the	same	topology.	The	

best	tree	using	the	80%	cutoff	was	chosen	because	it	had	highest	bipartition	bootstrap	values.		
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Library	preparation	for	MBD-seq		

To	quantify	gbM	in	Acropora	millepora	we	used	methyl-CpG	binding	domain	protein-enriched	sequencing	

(MBD-seq).	Enrichment	reactions	were	performed	using	the	MethylCap	kit	(Diagenode	Cat.	No.	C02020010).	

Seven	enrichment	reactions	were	performed.	From	each	reaction	both	the	captured	fraction	(strongly	

methylated)	and	flow-through	(weakly	methylated)	was	retained	for	sequencing.	Adapter	ligation	using	a	

NEBnext	kit	(New	England	Biolabs®),	library	quality	assessment	using	a	Bioanalyzer	(Agilent	Technologies),	

and	sequencing	on	a	HiSeq	2500	platform	(Illumina®)	were	performed	by	the	University	of	Texas	Genome	

Sequencing	and	Analysis	Facility.	Further	details	on	library	preparation	are	given	in	the	supplemental	materials	

(supplemental	methods).	

	

Analysis	of	gene	body	methylation	

Gene	body	methylation	was	quantified	as	the	fold	difference	in	coverage	between	the	MBD-enriched	and	flow-

through	libraries.	Raw	reads	from	the	MBD-sequencing	libraries	were	trimmed	using	cutadapt	(Martin	2011)	

and	quality	filtered	using	Fastx	toolkit	(http://cancan.cshl.edu/labmembers/gordon/fastx_toolkit/).	Reads	were	

then	aligned	to	coding	sequences	extracted	from	the	A.	millepora	reference	transcriptome	(Moya	et	al.	2012)	as	

described	above.	DESeq2	(Love	et	al.	2014)	was	used	to	calculate	the	log2	fold	difference	between	the	MBD-

enriched	and	flow-through	libraries.	We	used	this	log2	fold	difference,	which	we	refer	to	as	MBD-score,	as	our	

quantification	of	the	strength	of	gbM	for	each	gene.	Negative	values	indicate	weak	methylation	and	positive	

values	indicate	strong	methylation.	To	examine	the	distribution	of	MBD-scores	we	used	the	R	package	Mclust	

(Fraley	&	Raftery	2007).	We	first	assessed	the	optimal	mixture	model	and	number	of	components	based	on	

Bayesian	Information	Criterion	(BIC).	The	optimal	number	of	components	was	greater	than	one	with	little	

change	in	BIC	beyond	two	components	(supplemental	fig.	S1).	Based	on	this	result	we	fitted	a	two-component	

mixture	model	to	the	MBD-scores	(supplemental	fig.	S1).		

Because	of	the	hypermutability	of	5mC,	genes	that	are	strongly	methylated	in	the	germline	become	

deficient	in	CpG	dinucleotides	over	evolutionary	time	(Sved	&	Bird	1990).	As	a	result,	normalized	CpG	content	

(CpGo/e)	can	be	used	to	estimate	historical	germline	methylation.	This	metric	has	been	shown	to	correlate	

closely	with	direct	measures	of	gbM	(Zemach	et	al.	2010;	Sarda	et	al.	2012).	To	corroborate	that	our	measure	of	

gbM	also	correlated	with	CpGo/e	we	calculated	it	for	the	A.	millepora	coding	regions	as	described	in	Dixon	et	al.	

(2014).	To	control	for	effects	on	gene	length,	CpGo/e	was	calculated	based	on	the	first	1000	bases	of	each	

sequence.	

	

Gene	expression	Datasets	

To	test	for	correlations	between	MBD-score	and	transcriptional	variation	we	used	gene	expression	data	from	

two	previous	experiments.	Both	datasets	were	generated	using	Tag-based	RNA-seq	(Meyer	et	al.	2011)	from	

samples	of	A.	millepora	taken	from	the	central	Great	Barrier	Reef,	Australia.	The	current	laboratory	and	

bioinformatics	protocols	for	analysis	of	Tag-based	RNA-seq	are	available	on	GitHub	
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(https://github.com/z0on/tag-based_RNAseq).	The	first	dataset,	described	in	(Dixon	et	al.	2015),	included	12	

adult	samples	(six	genotypes	from	Princess	Charlotte	Bay	and	six	from	Orpheus	Island:	Great	Barrier	Reef	

Marine	Park	Authority	permit	G38062.1)	and	30	offspring	larval	samples.	Adults	were	sampled	following	

acclimatization	period	of	5	days	at	28°C	in	a	common	shaded	raceway.	Larvae	were	sampled	five	days	post-

fertilization	(advanced	planula	stage),	reared	at	28°C.	Variation	in	gene	expression	between	adults	and	larvae	

was	analyzed	using	DESeq2	(Love	et	al.	2014).	Comparisons	between	MBD-score	and	transcript	abundance	

were	based	on	counts	from	adult	samples	transformed	to	a	log2	scale	using	the	rlogTransformation	function.	

Mean	expression	levels	from	this	dataset	were	also	used	to	calculate	indices	of	codon	bias	described	below.	The	

second	dataset	described	in	(Dixon	et	al.	2014)	included	56	colony	fragments	reciprocally	transplanted	between	

two	environmentally	distinct	reefs:	Keppel	and	Orpheus	Island	(Keppel:	23°09S	150°54E	and	Orpheus	18°37S	

146°29E:	Great	Barrier	Reef	Marine	Park	Authority	permit	G09/29894.1).	Expression	profiles	from	these	

samples	were	analyzed	with	respect	to	the	transplantation	site	to	examine	variation	in	gene	expression	due	to	

environmental	conditions.	

	

Codon	Bias	

We	tested	for	relationships	between	MBD-score	and	synonymous	codon	usage	using	four	metrics:	relative	

synonymous	codon	usage	(RSCU)(Sharp	et	al.	1986),	frequency	of	optimal	codons	(Fop)(Ikemura	1981;	Behura	

&	Severson	2013),	codon	adaptation	index	(CAI)(Sharp	&	Li	1987a),	and	the	effective	number	of	codons	(Nc)(	

Wright	1990).	Fop	and	Nc	were	estimated	using	the	CodonW	(Peden	1999;	

http://codonw.sourceforge.net//culong.html).	CAI	was	estimated	using	custom	python	scripts.	Further	details	

on	estimation	of	codon	bias	are	given	in	the	supplemental	material	(supplementary	methods).	

	

Statistical	Analyses	

Statistical	analyses	of	the	relationship	between	MBD-score	and	other	gene	characteristics	were	performed	using	

R	(R	Core	Team	2015).	Significance	for	correlations	was	tested	using	Spearman’s	rho.		Significance	tests	for	

differences	in	counts	between	the	strongly	methylated	and	weakly	methylated	classes	were	performed	using	

Fisher’s	exact	tests	(Fisher	1922).	Principal	component	analysis	was	performed	using	prcomp	function	in	R.	
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