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Abstract 

Background 

MicroRNAs (miRNAs) are endogenous short non-coding RNAs involved in the regulation of 

gene expression at the post-transcriptional level typically by promoting destabilization or 

translational repression of target RNAs. Sometimes this regulation is absent or different, which 

likely is the result of interactions with other post-transcriptional factors, particularly RNA-binding 

proteins (RBPs). Despite the importance of the interactions between RBPs and miRNAs, little is 

known about how they affect post-transcriptional regulation in a global scale.  

Results 

In this study, we have analyzed CLIP datasets of 49 RBPs in HEK293 cells with the aim of 

understanding the interplay between RBPs and miRNAs in post-transcriptional regulation. Our 

results show that RBPs bind preferentially in conserved regulatory hotspots that frequently 

contain miRNA target sites. This organization facilitates the competition and cooperation among 

RBPs and the regulation of miRNA target site accessibility. In some cases RBP enrichment on 

target sites correlates with miRNA expression, suggesting coordination between the regulatory 

factors. However, in most cases, competition among factors is the most plausible interpretation 

of our data. Upon AGO2 knockdown, transcripts that contain such hotspots that overlap target 

sites of expressed miRNAs in 3’UTRs are significantly less up-regulated than transcripts without 

them, suggesting that RBP binding limits miRNA accessibility. 

Conclusions 

We show that RBP binding is concentrated in regulatory hotspots in 3’UTRs. The presence of 

these hotspots facilitates the interaction among post-transcriptional regulators, that interact or 

compete with each other under different conditions. These hotspots are enriched in genes with 

regulatory functions such as DNA binding and RNA binding. Taken together, our results suggest 
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that hotspots are important regulatory regions that define an extra layer of auto-regulatory 

control of post-transcriptional regulation. 
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Background 

Post-transcriptional regulation controls gene expression at the RNA level and affects the 

properties and the amount of RNA from it is transcribed until it is translated into proteins. This 

regulation is performed mainly by RNA binding proteins (RBPs) and miRNAs, which primarily 

target the 3’ untranslated region (3’UTR) of transcripts. In animals, miRNAs usually function by 

promoting translational inhibition and decay of mRNAs[1]. In contrast, RBPs have a wider range 

of functions and are often involved in multiple post-transcriptional processes.  

Although some miRNAs are predicted to target thousands of mRNAs[2], not all their predicted 

targets are down-regulated upon miRNA transfection[3], and many seem to be regulated only in 

certain cellular contexts or under stress conditions[4]. In some cases, miRNAs have even been 

found to promote translational activation[5] or increase mRNA levels. All these different complex 

functions suggest that miRNAs and RBPs take part in combinatorial regulation, where the 

combination of factors that bind to an RNA determines its fate. 

In humans, more than 1000 RBPs[6, 7] and ~2500 miRNAs[8] are involved in this complex 

regulation. MiRNAs are known to act cooperatively to down-regulate mRNAs when bound close 

in space[3, 9, 10]. RBPs can compete for binding to AU-rich elements (AREs)[11] or cooperate 

in mRNA regulation[12, 13]. Moreover, they can compete and collaborate with miRNAs, or even 

perform opposite functions in different contexts[14]. For instance, AUF1 has been found to both 

compete with AGO2 for binding to the mRNA and cooperate with it[15]. Similarly, HuR has been 

found to compete with miRNA for binding[16, 17] but also to cooperate with miRNAs both to 

stabilize and degrade target mRNAs[18, 19]. 

Previous studies to understand the interactions between miRNAs and RBPs have been focusing 

either on single genes[20–24] or at the interactions between a single RBP and miRNAs using 

cross-linking immunoprecipitation coupled to high-throughput sequencing (CLIP-seq) data[13, 
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16, 17], and only recently it has started to be explored at a transcriptome-wide scale[25, 26].  In 

this work, we reanalyze a large collection of CLIP experiments from HEK293 cells to shed light 

on the complex interactions between RBPs and miRNAs. We demonstrate that post-

transcriptional regulators bind preferentially in specific regions of 3’UTRs, which we call 

hotspots, where we find enrichment of both RBP and miRNA target sites. These hotspots, rather 

than being experimental artifacts as previously thought[26, 27], share characteristics of other 

regulatory elements: they are more accessible than other 3’UTR regions, more conserved, and 

enriched in AU-rich elements (AREs). Furthermore, in data from AGO2 knockdown (KD), we 

find that changes in the expression level of transcripts that contain free miRNA target sites are 

significantly different from those of transcripts that contain miRNA target sites within hotspots, 

which suggests that the RBPs binding in hotspots efficiently prevent RISC association and thus 

links hotspots directly to function. Interestingly, we observe that RBP hotspots are enriched in 

genes with roles in transcriptional and post-transcriptional regulation.  

Taken together, these results suggest that post-transcriptional regulation is focused in hotspots 

within 3’UTRs that facilitate competition among regulators and modulate the functions of the 

regulatory network both at transcriptional and post-transcriptional level. 

Results 

RBP binding sites colocalize within 3’UTRs 

To investigate the complex interactions between RBPs and miRNAs on a transcriptome-wide 

scale, we reanalyzed previously published CLIP data for 49 RBPs (Table S1) in HEK293 cells, 

which correspond to a total of 110 experiments. All the datasets were analyzed using the same 

pipeline in order to obtain a set of significant RBP binding sites that can be compared across 

experiments (see Methods). An analysis of the functions of these proteins using GO terms 

revealed that many are involved in similar processes, especially in post-transcriptional 
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regulation of gene expression (Fig. 1a; Table S2). This is consistent with the observation that 

many of these RBPs show preferential binding on 3’UTRs, where most of these processes take 

place (Fig. 1b). On average, each mRNA expressed in HEK293 is bound by 14 RBPs in its 

3’UTR, and 20% of them are bound by more than half of the RBPs analyzed. A detailed analysis 

of the distribution of RBP binding sites along 3’UTRs showed that most of them bind 

preferentially towards the 3’UTR edges, where there is also a higher density of miRNA target 

sites (Fig. 1c). 

After mapping the CLIP-seq data, clusters were identified and normalized by RNA-seq data to 

calculate an enrichment value of CLIP reads for each cluster. To understand if the observed 

positional bias indicates that the proteins bind in the same regions and therefore interact or 

compete with each other, we calculated spatial correlations between their cluster enrichments. 

For each pair of proteins, we calculated the Pearson correlation between CLIP enrichment 

values for each distance between -200 and 200 nt in each 3’UTR. The correlations calculated 

for these values were averaged over all 3’UTRs, giving us an average spatial correlation profile 

for the two RBPs. These correlations were then compared to those obtained from shuffling the 

clusters to calculate their z-scores at each position (Fig. 2a). In each row of Fig. 2a, the 401 nt 

windows around binding sites of an RBP are shown for each of the RBPs analyzed (columns). 

The higher the z-score, the more significant the correlation between two RBPs in a particular 

position is. In 746 out of 1084 pairwise combinations of RBPs (excluding pairing of an RBP with 

itself), we observed that the highest positional correlation z-score was in the +/- 9 nt interval. 

This result reflects that for 69% of all RBP pairs, the most significant positional correlation was 

observed when the clusters of the two RBPs overlap in the same 3’UTR (Fig. 2a). If we consider 

only the RBP pairs that include AGO2, this percentage increases to 89% (Fig. 2a,b). 

RBPs preferentially bind on miRNA target sites 
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The previous analyses demonstrated that RBPs exhibit distinctive binding preferences around 

AGO2 binding sites. To further evaluate the correlations between RBPs and AGO2, we 

analyzed the enrichment distribution of their binding sites around predicted target sites of 

miRNAs expressed in HEK293 cells. As expected, the binding of AGO2 and the other AGO 

proteins peaked on top of predicted miRNA target sites, especially on target sites of miRNAs 

highly expressed in HEK293 cells (hisites) (Fig. 3a). Interestingly, a total of 26 out of 47 RBPs 

analyzed showed a significant enrichment around hisites (Fig. 3b and Fig. S1). In some cases, 

the enrichment profile peaked on miRNA target sites. In other cases, the enrichment increased 

across the miRNA target site, e.g. WDR33, or was less dependent on miRNA expression, such 

as in the case of HuR and EWSR1 (Fig. 3a and Fig. S1). Notably, the enrichment distribution 

around hisites in many cases resembles the positional correlation with AGO2 described before 

(Fig. 2b and Fig. 3b).  

To gain insight into why RBPs have a strong positional bias around hisites, we calculated the 

correlation between RBP enrichment on target sites and miRNA expression level, i.e., the sum 

of expressions of all the miRNA targeting them. Our results show a significant correlation 

between RBP enrichment on target sites and miRNA expression not only for AGO proteins 

(AGO1-4), but also for the proteins from the polyadenylation complex CFIm68 and CPSF73 and 

FUS (Fig. 3c and Fig. S2).  

RBPs bind in regulatory hotspots containing miRNA target sites and AREs 

For each RBP we also calculated the percentage of its clusters that overlapped hisites. This 

number ranges from less than 10% to more than 40% (Fig. 3d, bars), and usually is less than 

5% of them (Fig. 3d, dots). Even though the overlap was small, in most cases the association 

between clusters and hisites was significantly higher than expected by chance (permutation test 

p-value < 0.01; colored bars and dots). Interestingly, the combined set of all RBPs overlapped 
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more than 77% of hisites (75% excluding AGO and TNRC6 proteins), which suggests that the 

cumulative effects of all RBPs could have a crucial role in the modulation of miRNA function. 

To evaluate the impact of all RBPs together, we looked at their binding in non-overlapping 50 nt 

windows across 3’UTRs. We observed that the windows with more than 3 RBPs binding were 

more frequent than expected if RBPs would bind independently (Fig. S3). We also observed 

that windows containing more RBPs displayed a stronger positional bias towards 3’UTR edges, 

similar to that of miRNA target sites (Fig. S4).  

We performed several analyses on 3’UTR windows in order to identify the elements that are 

characteristic of these regulatory hotspots. The results from these analyses demonstrate that 

windows containing more RBPs are under stronger purifying selection. They are more 

conserved and have a lower sum of minor allele frequencies, which reflects both a lower 

frequency of SNPs and that the SNPs in the window are less frequent in the population (Fig. 

4a). 

Considering the dependencies among RBP binding sites, we decided to define hotspots in 

3’UTRs as windows containing at least 5 RBPs. Using this definition, approximately 4% of all 

windows are classified as hotspots, whereas 56% of them are not bound by any RBPs (Fig. 4b). 

We noticed that the number of RBPs binding in a window is positively correlated with U-content 

(R= 0.21, p-value < 2.2e-16) and negatively correlated with G-content (R=-0.2; p-value < 2.2e-

16) (Fig. S5). Additionally, windows targeted by several RBPs have much higher sequence 

accessibility, measured as the probability that at least 20 consecutive nt are unpaired (Fig. 4a).  

We used cWords[28] to identify motifs enriched in hotspots. We identified several AREs, 

including UAUUUAU, among the top 20 ranked words enriched both in hotspots and in 

conserved regions (Fig. 4c). The core ARE element AUUUA was enriched in hotspots as well, 
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although its frequency does not increase linearly with hotspot size (Fig. S5). We also noticed 

that the words enriched in hotspots overlapping miRNA target sites are very similar to those 

found in all hotspots (Fig. 4d, Table S3). Notably, we found an almost complete G-depletion in 

the top 100 words enriched in hotspots, which is consisted with the observation that hotspots 

have higher accessibility. 

RBPs compete at RBP hotspots 

We have observed that hotspots are more conserved, more accessible, and enriched by miRNA 

target sites and AREs, including UAUUUAU, which has been associated with stronger miRNA 

effect and a mRNA stabilizing effect[3, 29]. Hence, we set out to assess the effect of RBP 

hotspots on hisites using previously published AGO2 KD microarray data[30]. For each 

transcript, we defined a new set of 50 nt windows centered on hisites and measured the effect 

of the presence of a hotspot (excluding AGO2 when defining the hotspots) overlapping 1, or 2 or 

more hisites in a transcript upon AGO2 KD. As a control, we used two sets of transcripts, one 

where all the hisites were in windows containing 2 or less RBPs and another one in which 

transcripts contained no hisites at all. By calculating the cumulative fractions of fold expression 

changes of transcripts upon AGO2 KD, we found that the presence of a hotspot overlapping 

hisites in a transcript prevents its upregulation upon AGO2 KD (two tailed KS test p-value = 

0.0017 and 6.9e-08 for 1 and 2 or more target sites blocked compared to genes without 

hotspots on hisites respectively) (Fig. 5a). This result cannot be explained by differences in 

3’UTR length or number of hisites in 3’UTRs (Fig. S6). Thus, it suggests that RBP hotspots can 

prevent the binding of RISC on miRNA target sites. 

Additionally, we explored the function of hotspots overlapping the binding sites of other RBPs 

using published KD data. Similarly to the previous analysis, we defined hotspots centered on 

significant HuR clusters identified with CLIP data and measured the effect of the presence of a 
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hotspot (without considering HuR) overlapping 1, or 2 or more HuR binding sites upon HuR 

KD[16]. As a control, we used transcripts where all the HuR binding sites were located in 

windows containing 2 or less RBPs (not counting HuR), or not bound by HuR. As expected, 

upon HuR KD, transcripts containing HuR binding sites were downregulated compared to 

transcripts not bound by HuR (Fig. 5b, two-tailed KS test p-value < 0.001 for transcripts with 1 

and 2 or more HuR sites blocked compared to genes without hotspots on HuR sites). We also 

observed a small but significant difference between transcripts containing hotspots overlapping 

HuR binding sites and those that do not have them (KS test p-value < 0.001 in both cases). In 

this case, transcripts containing HuR sites overlapping hotspots are more downregulated upon 

HuR KD than transcripts containing HuR sites outside hotspots. This result suggests that upon 

HuR KD other RBPs with a negative effect on mRNA stability bind in those locations and thus 

promote mRNA downregulation. Accordingly, we found that 55% of the hotspots overlapping 

HuR sites contained AGO proteins, TNRC6 proteins, AUF1 or TTP, which are all known to be 

involved in promoting mRNA decay. Similar results were observed when analyzing the effect of 

hotspots overlapping AUF1 and TTP binding sites (Fig. S7). Taken together, these results show 

that RBP hotspots facilitate competition among RBPs and miRNAs, which affects post-

transcriptional regulation. 

RBPs hotspots define a post-transcriptional regulatory network 

In order to understand the biological function of RBP hotspots transcriptome-wide, we sought to 

characterize the transcripts containing hotspots. Transcripts with hotspots possess some 

features that suggest that they are under strong post-transcriptional regulation, as they have 

longer 3’UTRs (spearman correlation coefficient rho=0.17; p-value = 1.2 e-60) while keeping 

approximately the same density of miRNA target sites (Fig. S8a,b). Furthermore, we also 

noticed that they are significantly higher expressed than transcripts without hotspots (rho=0.3; 

p-value = 1e-191 Fig. S8c). 
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We used PANTHER[31] to characterize their functions using GO-terms. The most significant 

molecular function terms identified were polyA RNA binding, RNA binding and nucleic acid 

binding (p-value < 0.001; Table S4). Among the genes that contain these terms RNA binding 

proteins, splicing factors and transcription factors stand out (Fig. S9), which suggests that 

hotspots could be central in the regulation of both transcriptional and post-transcriptional 

processes.  

Discussion 

In this work, we have analyzed a large collection of high-throughput experiments in order to 

better understand the complex interactions between RBPs and miRNAs in post-transcriptional 

regulation. Our results show that RBPs and miRNAs often bind in the same regions within 

3’UTRs, which function as regulatory hotspots that facilitate competition between the regulators. 

These hotspots would therefore function in an analogous manner to promoter regions in 

accessible chromatin regions, and the RNA fate would depend on which of the regulators bind 

to the mRNA. In turn, this regulation would depend on external cues or post-translational 

modifications that modulate the competition between the regulatory factors. Interestingly, RBP 

hotspots are enriched in transcripts involved in transcriptional and post-transcriptional 

regulation, such as RNA binding proteins, splicing factors, transcription factors and translation 

factors (Fig. S9), thus suggesting that these regulatory hotspots play a role in an auto-regulatory 

network. This result is in agreement with recent findings that show that RNPs tend to regulate 

the mRNAs of other RNPs and themselves thus creating auto-regulatory networks in 

Drosophila[32]. 

We have used positional correlations to assess the interactions between RBPs assuming that 

RBPs that bind in the same location may interact. Surprisingly, we found that most RBPs (69% 

of all RBP pairs analyzed) tend to have overlapping binding sites (Fig. 2a). We confirmed some 
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known positional correlations, such as those among polyA complex proteins[33], the IMP 

proteins, and the AGO proteins[34]. Moreover, we found correlations that were previously 

unknown. Some of these can be explained by the similarity in binding motifs, such as those 

among IMP proteins, HuR, TTP and AUF1[11, 13, 34]. However, the consistent correlation of all 

the RBPs analyzed with AGO2 had not been not previously described in literature. Additionally, 

the finding that many of these RBPs are also enriched on hisites further supported the positional 

correlations. It has to be noted that these miRNA target site predictions are independent of the 

CLIP data[35], which speaks against these overlaps being an artifact of the CLIP protocol. 

One intriguing question is why the RBPs bind on miRNA target sites. If RISC directly interacts at 

miRNA target sites with a particular RBP, it would be expected that CLIP enrichment covaries 

with the expression of the miRNA that targets it. Yet, in most cases we did not find a clear 

correlation (Fig. S2) and thereby direct interaction is probably not the general mechanism to 

explain RBP enrichment at miRNA target sites. Nevertheless, we found a positive correlation for 

several proteins from the polyadenylation complex although it is only significant for CPSF73 and 

CFIm68 (Fig. 3c). This observation could indicate that miRNAs are involved in polyA-site 

selection. This hypothesis is in agreement with a recent publication that reported a significant 

overlap between AGO2 binding sites and m6A residues[36]. m6A residues have been related to 

the regulation of alternative polyadenylation, and thus, their overlap with AGO2 suggests a 

direct interaction between miRNAs and alternative polyadenylation.  

We have also shown that RBP binding sites cluster in regulatory hotspots in 3’UTRs. These 

hotspots are more frequent than expected if RBPs would bind independently (Fig. S3) and are 

significantly enriched on predicted miRNA target sites (Fig. 4b). Furthermore, they are AU-rich 

(Fig. S5) and contain AREs, which are both conserved and overrepresented (Fig. 4c). AREs 

and AU-rich context of miRNA targets have previously been associated with effective miRNA 
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target sites[3, 29, 37]. Therefore, our analyses suggest that RBP hotspots are functional 

regulatory elements in 3’UTRs.  

Finally, we have shown that RBP hotspots regulate miRNA target site accessibility and favor the 

competition between miRNAs and RBPs in 3’UTRs. Upon AGO2 KD, transcripts containing 

miRNA target sites in hotspots are not significantly upregulated, which suggests that these 

target sites were protected by RBPs binding in the same hotspots (Fig. 5a). Interestingly, the 

opposite effect has been found upon KD of HuR, AUF1 and TTP. Upon KD of these RBPs, 

transcripts containing their binding sites in hotspots are more downregulated than those that 

have their binding sites isolated. A high fraction of those hotspots contain AGO2 or other down 

regulatory RBPs, which suggests that by removing the RBPs, other ones bind and affect mRNA 

stability (Fig. 5b and Fig. S7). These results are in agreement with recently reported findings 

that show that the presence of RBP binding sites of overlapping PUM1/2 or HuR binding sites 

reduce their impact on mRNA stability[26].  

A previous study concluded that many regions found to be targeted by several different RBPs in 

CLIP-seq experiments are artifacts caused by biases in the experimental technique[27]. As a 

result, these regions have been excluded from previous works analyzing the combined effect of 

RBPs and miRNAs in post-transcriptional regulation[26]. However, for several reasons, we find 

that such background signal from CLIP cannot explain our conclusions. Firstly, it was described 

that background reads, i.e. the reads that appear in multiple datasets derived from a CLIP 

experiment of a control protein that does not bind RNA[27], are G-rich. In contrast, our RBP 

hotspots are characterized by a general G-depletion and are AU-rich (Fig. S5). Secondly, some 

of the analyzed RBPs do not show increased binding at the RBP hotspots (Fig. S10), indicating 

that the hotspots are not just a background phenomenon of the experimental method. Thirdly, 

the regulatory hotspots that we identify are experiencing increased selective pressure, as shown 

by the higher PhyloP scores and lower SNP frequencies (Fig. 4a), which support the conclusion 
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that these regions are indeed functional regulatory elements and not background noise. 

Fourthly, we show that hotspots often coincide with predicted miRNA target sites, which are 

independent of CLIP, and it would be highly unlikely to happen if hotspots were artifacts. 

Besides, we see a clear functional effect of hotspots in the regulation of sequence accessibility 

both using KD data from AGO2 and other RBPs (Fig. 5 and Fig. S7). We believe that our 

stringent pipeline for the processing of the datasets, which includes duplicate removal, quality 

score aware mapping of reads, peak calling of clusters in transcripts, and normalization to RNA-

seq, removes most of the reads that were shown to result in background when a less stringent 

data pipeline was used[27]. Accordingly, only 5% of our regulatory hotspots, i.e. windows 

containing 5 or more different RBPs, overlap background sites as previously defined[27]. 

Removal of these windows from our dataset did not alter the results reported in Fig. 4 (data not 

shown), which confirm our observation that RBP hotspots are not CLIP artifacts. 

Many studies have previously investigated the interaction between miRNAs and RBPs using 

both experimental and computational methods[14, 25, 26, 38, 39]. Both competition and 

collaboration between miRNAs and RBPs have been described, but these interactions have 

been often portrayed as isolated events rather than a general mechanism in post-transcriptional 

regulation. In this work, we have shown that the overlap between miRNA target sites and RBPs 

is very extensive, with more than 75% of all hisites targeted by one or more of the RBPs 

analyzed (excluding AGO and TNRC6 proteins), thus suggesting that RBP hotspots play a 

major role in miRNA regulation and post-transcriptional regulation. 

Conclusions 

Post-transcriptional regulation is one of the key processes involved in the regulation of mRNA 

levels and is in part controlled by the interaction between RBPs and miRNAs. With the 

development of high-throughput sequencing techniques, understanding the effects of these 
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interactions and how they affect mRNA expression at a global scale has become possible. In 

this work, we have investigated the interactions in post-transcriptional regulation by integrating 

CLIP, RNA-seq and KD data in HEK293 cells. The results of our analyses show that RBPs and 

miRNAs target the same regions in 3’UTRs, which function as regulatory hotspots of post-

transcriptional regulation. These hotspots are functional regions that coordinate post-

transcriptional regulation. In them, we found not only evidence for competition among RISC and 

regulatory factors but also cooperation between polyadenylation complex proteins and RISC 

around miRNA target sites. Consequently, the outcome of the regulation is determined by the 

relative concentration of the effector factors and miRNAs in the cell, and thus more dependent 

on external cues that can modify the access of RBPs and miRNAs to the target mRNA. 

Taken together, our analyses suggest that post-transcriptional regulation focuses in hotspots 

where trans-acting factors compete and cooperate. This organization would facilitate fast 

changes on mRNA expression induced as a response to environmental changes and facilitate 

cell adaptation to environment changes. 

Methods 

GO-term enrichment analysis 

We obtained the significantly overrepresented biological process GO-terms associated with the 

RBPs included in the analysis using the gene enrichment analysis method performed by 

Panther[40]. The clustering and visualization of enriched GO-terms was done using REVIGO 

(http://revigo.irb.hr/)[41]. 

Mapping and Processing of CLIP and RNA-seq datasets 

115 CLIP (including CLIP-seq and PAR-CLIP) and 3 RNA-seq datasets were downloaded from 

GEO database[42]. The Sequence Read Archive (SRA) accession numbers of all the datasets 

analyzed can be found in Table S5.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 13, 2016. ; https://doi.org/10.1101/042986doi: bioRxiv preprint 

https://doi.org/10.1101/042986


 16 

Reads from all the experiments were preprocessed using custom python scripts. First, reads 

were trimmed to remove low quality scores and 3’ adapter sequences (only CLIP datasets).  

Next, we removed duplicates by collapsing all identical reads. After these steps, all reads longer 

than 19 nucleotides were further analyzed. Reads were mapped to the human genome (hg19) 

using bwa-pssm[43]. Then, all unmapped reads were then mapped to an exon-junction index 

containing all annotated unique exon-junctions from human Ensembl70 transcripts[44]. Only 

reads mapped at any of the steps with a posterior probability > 0.99 were considered for further 

analysis. For PAR-CLIP datasets, we used a custom matrix for scoring T to C mismatches 

assuming a 12.5% T to C conversion rate. 

Datasets for the same proteins, or for different proteins with high correlation, were joined into a 

single dataset and analyzed together. Reads were clustered according to their genomic 

positions, requiring that at least 1nucleotide overlap. Significant clusters were calculated using 

Pyicos[45], using the exons from the longest protein coding transcript for calculating the 

randomizations. Only clusters with a false discovery rate (FDR) < 0.01 were considered for 

further analysis. The RNA-seq datasets were also joined and used together in further 

experiments. The statistics of the mapping and the datasets joined can be found in Table S5. 

Gene expression  

For each 3’UTRs we calculated 𝑚!, the average number of RNA-seq base calls per nucleotide, 

normalized to 𝑀, the total amount of mapped RNA-seq reads in the experiment, as 

𝑚! =
𝑟!

𝑀 · 𝑙!

!!

!!!

 

where 𝑙! is the length of the 3’UTR for gene 𝑘, and  𝑟! is the count of RNA-seq reads in position 

𝑗. 
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CLIP enrichment in 3’UTRs 

For each transcript, we built a single-nucleotide resolution profile of the RBP binding sites, i.e. 

significant clusters with an FDR < 0.01 after peak calling, normalized to RNA-seq. The 

enrichment 𝑒 of CLIP in a position 𝑖 of a particular 3’UTR 𝑘 is calculated as  

𝑒!,! =
𝑚! · 𝑐!
𝑁

 

where 𝑐! is the count of clip reads in position 𝑖, 𝑁 is the total amount of uniquely mapped CLIP, 

and 𝑚!  is the average gene expression as defined above. 

Selection of miRNA target sites 

Good miRNA target site predictions for conserved and non-conserved miRNAs were 

downloaded from miRNA.org (http://www.microRNA.org)[35]. Only target containing at least a 6-

mer seed site were kept. Next, target sites were mapped to Ensembl70 transcripts[44]. Only 

target sites containing at least a 6-mer seed site included in the transcript were used. 

We used small RNA-seq data (GSM1279922)[46] to estimate the expression levels of each 

miRNA. First, we selected from the dataset reads that were 15-27nt long, which corresponds to 

the length range of mature miRNAs. Next, we mapped the RNA-seq to a set of non-redundant 

human miRNA sequences downloaded from miRBase[8] using BWA-PSSM[43]. The expression 

of each miRNA was defined as the number of reads mapping to its mature miRNA sequence. 

We defined as expressed miRNAs only the top 20% of the mature miRNAs (155 miRNAs; 

minimum amount of mapped reads mapped 367). 

We defined a set of non-overlapping target sites for the expressed miRNAs defined before. We 

overlapped the seed sites of their target sites and kept the one targeted by the most highly 

expressed miRNA. If several miRNAs shared the target site, we added their expression. 
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For some of the analyses we divided target sites according to their total expression, i.e. the sum 

of expressions of miRNAs targeting the same site, in three equally sized groups: highly 

expressed (hisites), moderately expressed and lowly expressed. 

Random miRNA target sites 

To measure the significance of our results, we created 100 random sets of miRNA target sites 

containing as many target sites as the original set preserving their distribution along 3’UTRs. 

We divided the set of expressed genes with predicted miRNA target sites into 30 equal size 

groups with similar 3’UTR lengths. Then, for each target site in a particular 3’UTR, we assigned 

it to another of the 3’UTRs in the set. In case that the length of the new 3’UTR was different 

from that of the original 3’UTR, the relative coordinates of the target site were calculated so that 

it would have the same relative position within the 3’UTR in relation to its length. This procedure 

preserved the characteristic positional distribution of miRNA target sites along 3’UTRs. 

Mapping CLIP clusters on 3’UTR 

The significant CLIP clusters for each of the RBPs were overlapped with the genes from 

Ensembl70[44] annotation using fjoin[47]. Only the longest protein-coding transcript for a gene 

was considered.  If a cluster would overlap the CDS and a UTR region, the UTR annotation was 

assigned. 

3’UTR positional data distribution 

We analyzed the positional distribution of data across 3’UTRs of expressed genes (RNA-seq 

coverage >= 50%) and around hisites. Each 3’UTR was divided in 50 equally sized bins. For 

each bin, the mean value per nucleotide was calculated and then averaged across all 

expressed genes. In the case of CLIP data, the position of significant CLIP clusters (FDR < 

0.01) was used to draw the profiles. In the case of hotspots, the position of the 50nt windows 
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containing n (n=1,2…31) RBPs mapped on them was used. For miRNA target sites, the position 

of the target seeds in 3’UTRs was used.  

Positional correlation analysis 

To find the positional correlation between the binding of two different proteins, we calculated the 

Pearson correlation between the enrichment values along a 3’UTR. If the value at position 𝑖 is 

called 𝑥! for one RBP and 𝑦!!! for the other RBP binding a distance 𝑑 from the first, the Pearson 

correlation was calculated with fixed 𝑑 over all positions 𝑖, in the interval from 1 to 𝑙 − 𝑑, where 𝑙 

is the length of the 3’UTR (for negative 𝑑, the interval is from 1 − 𝑑 to 𝑙). This was done for all 

values of 𝑑 from -200 to 200. For each d, the correlation values were averaged over 3’UTRs. 

UTRs shorter than 400 were discarded. 

The fluctuations of the correlation coefficients are heavily dependent on the number of CLIP 

sites. To estimate the background distribution, we shuffled the CLIP data in a way that 

preserved the clustering of tags. Clusters were defined as contiguous regions in which the 

enrichment value was above 10-6. The clusters identified in a sequence were moved to a 

random location in the sequence while ensuring at least one position in between clusters. After 

shuffling all sequences, positional correlations were calculated as above. This was repeated 

100 times and for each 𝑑, the mean and standard deviation of the 100 values obtained in the 

shufflings were calculated. Using these estimates, the z-score was calculated for the unshuffled 

data. In Fig2a, the distribution of all z-scores calculated was considered and divided in 1000 

quantiles. Each quantile was assigned a color from the scale, ranging from dark blue to red as 

shown. In Fig2b, z-scores were row-normalized and assigned a color using the same procedure 

as described above. 

Hotspot identification 
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To identify hotspots we divided the 3’UTRs of expressed genes (at least 50% RNA-seq 

coverage in the 3’UTR of the longest protein-coding transcript) in non-overlapping windows of 

50 nt We overlapped the center of the RBP CLIP significant clusters with them and assigned 

each cluster to a single window. We also uniquely assigned each miRNA target site of 

expressed miRNAs in HEK293 cells to a window if the overlap between the seed site and the 

window was bigger than 5. Otherwise, the miRNA target sites were discarded.  

Simulation of RBP binding site distribution on hotspots  

We simulated 10000 times the distribution of hotspot sizes by randomly sampling the binding 

location of the proteins assuming a uniform distribution of the RBPs in them. We considered the 

total amount of windows in which we observe significant clusters of each RBP and the total 

amount of windows in 3’UTRs (Table S6).  The size distribution of hotspots from simulated and 

real data can be seen in Fig S3. 

Analysis of hotspot conservation 

PhyloP scores[48] calculated from 100 vertebrate genome alignments (including hg19 human 

genome assembly) were downloaded from UCSC genome browser. For each of the 50nt non-

overlapping windows, we calculated the mean phyloP score across the window, discarding 

regions that were not present in any of the other species. 

Motif analysis 

Word enrichment analyses were done using cWords[28]. The input data sets were made using 

the 3’UTR window data described above. For each window, we extracted its sequence and 

associated it to the number of RBPs binding in it. Using this method we defined two datasets: 

one containing all windows and another one containing only those overlapping target sites for 

expressed miRNAs. 
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In the first analysis, windows were ranked using the amount of RBPs binding in them. Thus, the 

resulting words were differentially enriched in windows according to the number of RBPs 

binding in them. In the second analysis, we ranked the windows using their mean phyloP score.  

RNA secondary structure accessibility of 3’UTR windows 

We used RNAplFold[49] to calculated the sequence accessibility of the 3’UTRs. Specifically, we 

predicted the probability that 20 contiguous nucleotides in the sequence are unpaired using the 

parameters -u 20 -L 40 -W 120. The obtained accessibility values were then mapped to the 

3’UTR windows and averaged across windows with the same number of RBPs binding and 

across windows with the same number of RBPs that overlap miRNA target sites. 

Minor allele frequency analysis 

The complete data set of the 1000 genomes project containing all variants mapped to hg19 

assembly[50] was downloaded. Of all the variants, we only used mutations regardless of their 

size and required them to be present in at least two individuals in a population of 5008. We 

calculated the mean of the sum of all minor alleles as 1 - major allele frequency regardless of 

which was the reference allele across windows as described above. 

Knockdown data analysis and processing 

We downloaded the microarray data containing the expression values for AGO2 KD 

(GSM95818, GSM96819, GSM96816 and GSM96817)[30] and HuR KD (GSM738179, 

GSM738180, GSM738181, GSM738182, GSM738183)[16] from GEO database. We calculated 

differential expression upon AGO2 KD using the limma package[51] in R. We also downloaded 

processed data from KD experiments in AUF1[13] and TTP[52]. 

Cumulative fraction plots 
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We defined 50 nt windows around hisites (35 nt upstream of the target site 3’ end, 14 nt 

downstream of the target site 3’end). If the windows extended beyond transcript boundaries, we 

shrank them so that they would fit inside the transcript. In each of these windows, we checked 

the presence or absence of each of the RBPs.  

For each transcript we measured the amount of hisites that would be free, i.e. 2 or less RBPs 

(excluding AGO2) would bind in the window around the hisite, and the amount of hisites that 

would be blocked, i.e. 5 or more RBPs (excluding AGO2) would bind in the window around 

them. We used these measurements to divide the genes according to the amount of free or 

blocked hisites they contained in 3 groups: 0, where all target sites are free; 1, where only 1 

target site was blocked; 2 or more, where 2 or more target sites were blocked. As an additional 

control, we added the rest of genes containing no hisites. 

For cumulative fraction plots centered around RBP binding sites, we defined 50 nt windows 

centered around the binding sites of the RBP of interest. The groups of transcripts used to 

evaluate the rol of hotspots on RBP binding sites were built in an analogous manner to the one 

described above. 
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Figure Captions 

Figure 1. Summary of RBPs included in the analyses. a) Scatter plot summarizing the most 

significant GO-terms associated with the RBPs analyzed. Bubble sizes indicate the frequency of 

the GO-term in the GO database. The color of the bubbles represents how significant the term 

is in the set of RBPs analyzed. b) Distribution of significant clusters (FDR < 0.01) across gene 

regions. The height of the bars represents the amount of significant clusters in 3’UTRs (blue), 

coding region (green) and 5’UTR (orange). c) Heatmap showing the distribution of significant 

clusters across standardized 3’UTRs. The colors range from red (higher frequency) to blue 

(lower frequency).  
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Figure 2. Positional correlation plots. a) Schematic representation of the z-score calculation 

for each RBP pair (top). Pearson correlation coefficients of cluster enrichments are calculated 

for each pair of proteins (purple line) in 401 nt windows and compared against the positional 

correlations obtained from shuffled clusters in the same region (grey lines show the top and 

bottom 5% random distributions). The random clusters are then used to calculate the z-score of 

the Pearson correlation coefficient at each position. The colors represent the z-scores of the 
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correlations and range from blue (lower z-score) to red (higher z-score). All against all positional 

correlations calculated in this way are summarized in the heatmap (bottom). For each RBP in a 

column we show the strength of the positional binding each of the RBPs in the rows around its 

binding sites. b) Zoom on the positional correlations calculated as described before around 

AGO2 binding sites, row-normalized. 

Figure 3. RBP enrichment around miRNA target sites. a) CLIP enrichment around miRNA 

target sites that are highly (red), moderately (green) and lowly (blue) expressed for AGO2, HuR, 

EWSR1 and WDR33 RBPs. The grey and the black lines show the maximum and the minimum 

enrichment values for the 90% confidence intervals around random miRNA target sites. b) 

Heatmap showing the distribution of CLIP enrichment values around hisites. The colors range 
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from red (high enrichment) to blue (low enrichment). c) Scatter plot summarizing the correlation 

values between RBP enrichment on miRNA target sites and miRNA expression (y-axis) and 

their p-values (x-axis). d) Barplot summarizing the fraction of RBPs clusters on miRNA target 

sites (bar) and the fraction of hisites overlapped by RBPs (points). Colored bars (blue) and 

points (yellow) highlight the cases in which the fraction of RBPs or miRNA target sites is higher 

than expected by chance (empirical p-value < 0.01 using 100 random miRNA target site sets). 
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Figure 4. Characteristics of hotspots. a) Relation between accessibility (top), sum of minor 

allele frequencies (middle), and conservation (bottom) with the number of RBPs in a window for 

all windows (blue) and windows containing good predicted miRNA target sites (green). The grey 

dashed lines mark the 2.5% and 97.5% percentiles of the distribution obtained by generating 

100 random miRNA datasets. b) Cumulative distribution function showing the fraction of 

windows (y-axis) bound by a number of RBPs (x-axis) for all windows (blue), windows 

containing miRNA target sites (dashed green line) and random miRNA target sites (grey lines). 

c) Scatter plot showing the correlation between the ranks of the 7-mers identified using 

cWords[28] ordering the windows according to mean PhyloP scores (y-axis) or the number of 

RBPs in a window (x-axis). Highlighted are the words that are in the top-20 in both analyses. 

The identified ARE UAUUUAU is highlighted in red. d) Scatter plot showing the correlation 

between the z-scores of the 7-mers identified ordering the windows according to the number of 

RBPs in all windows (y-axis) or only in windows containing miRNA target sites (x-axis). The 

words with the highest z-scores in both datasets (cut offs 17.5 and 8 for all and miRNA-

containing windows respectively) are highlighted. In red is highlighted the ARE UAUUUAU.

 

Figure 5. Competition within Hotspots. Cumulative fraction plot showing the effect of having 

0, 1 or 2 or more a) hisites b) HuR binding sites overlapping RBP hotspots. As an additional 

a b

log2 FC

control (617) 
0 (573) *
1  (603) **
≥ 2 (1129) ***

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log2 FC

cu
m

m
ul

at
iv

e 
fra

ct
io

n

control (3950) 0 (2070) ***1 (1395) ***≥  2 (573) ***
−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cu
m

m
ul

at
iv

e 
fra

ct
io

n

control (3950) 
0 (2070) ***
1 (1395) ***
≥  2 (573) ***

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 13, 2016. ; https://doi.org/10.1101/042986doi: bioRxiv preprint 

https://doi.org/10.1101/042986


 35 

control genes lacking a) hisites and b) HuR binding sites are shown. The x-axis shows the 

distribution of log2FC upon a) AGO2 or b) HuR KD. The y-axis shows the cumulative fraction of 

transcripts. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 13, 2016. ; https://doi.org/10.1101/042986doi: bioRxiv preprint 

https://doi.org/10.1101/042986

