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Abstract 
 
Background: Autism spectrum disorders (ASD) are etiologically heterogeneous and 
complex. Functional genomics work has begun to identify a diverse array of 
dysregulated transcriptomic programs (e.g., synaptic, immune, cell cycle, DNA 
damage, WNT signaling, cortical patterning and differentiation) potentially involved 
in ASD brain abnormalities during childhood and adulthood. However, it remains 
unclear whether such diverse dysregulated pathways are independent of each other or 
instead reflect coordinated hierarchical systems-level pathology.  
 
Methods: Two ASD cortical transcriptome datasets were re-analyzed using consensus 
weighted gene co-expression network analysis (WGCNA) to identify common co-
expression modules across datasets. Linear mixed-effect models and Bayesian 
replication statistics were used to identify replicable differentially expressed modules. 
Eigengene network analysis was then utilized to identify between-group differences 
in how co-expression modules interact and cluster into hierarchical meta-modular 
organization. Protein-protein interaction analyses were also used to determine 
whether dysregulated co-expression modules show enhanced interactions. 
  
Results: We find replicable evidence for 10 gene co-expression modules that are 
differentially expressed in ASD cortex. Rather than being independent non-interacting 
sources of pathology, these dysregulated co-expression modules work in synergy and 
physically interact at the protein level. These systems-level transcriptional signals are 
characterized by downregulation of synaptic processes coordinated with upregulation 
of immune/inflammation, response to other organism, catabolism, viral processes, 
translation, protein targeting and localization, cell proliferation, and vasculature 
development. Hierarchical organization of meta-modules (clusters of highly 
correlated modules) is also highly affected in ASD.  
 
Conclusions: These findings highlight that dysregulation of the ASD cortical 
transcriptome is characterized by the dysregulation of multiple coordinated 
transcriptional programs producing synergistic systems-level effects that cannot be 
fully appreciated by studying the individual component biological processes in 
isolation. 
 

Keywords:  autism / immune / synapse / transcriptome / translation / systems biology 
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The pathophysiology behind atypical brain development in autism spectrum 

disorders (ASD) is highly complex. Elegant biological studies are continually 
unveiling an ever more diverse array of etiological factors and neurodevelopmental 
processes associated with ASD (e.g., [1-17]). With such diversity, key questions arise 
as to what are the consistent and robust mechanisms involved and whether such 
mechanisms point to many independent disrupted pathways or some convergence on a 
few common pathways affecting large-scale biological systems and/or interactions 
between such systems [18, 19]. One way to test this question is to examine 
pathophysiology at a level above genetics and non-genetic perturbations, such as the 
transcriptome, and examine whether the diversity of disrupted transcriptomic signals 
converge onto many independent or interacting systems. 

 
Seminal work examining cortical transcriptome dysregulation in ASD has 

highlighted the dysregulation of multiple transcriptional programs. These programs 
include cell cycle/DNA damage, WNT signaling, cortical patterning and 
differentiation, and immune/inflammation at young ASD ages [5] and apoptosis, 
repair and remodeling, synaptic and immune/inflammation functions at older ages [8, 
20, 21]. However, it remains unclear if such pathways are independently dysregulated 
or whether there is synergy between multiple dysregulated pathways. For example, 
prior work has shown downregulated synaptic and upregulated immune/inflammation 
signals in ASD cortical tissue [8, 20, 21]. Pointing towards the idea that such 
dysregulated signals may not be independent, strong correlations are found between 
these dysregulated modules when collapsing data across both groups [8, 20]. While 
this observation is important for generally suggesting statistical dependency between 
modules, more evidence is needed to suggest that such potentially synergistic effects 
among interacting modules are dysregulated in ASD. To test the hypothesis that 
transcriptome dysregulation in ASD extends beyond the level of single dysregulated 
co-expression modules and involves dysregulation spanning interactions between 
larger systems-level processes, differences in between-module correlations need to be 
investigated. Furthermore, tests should also go beyond observations of statistical 
dependency in co-expression and test whether there are enhanced direct physical 
interactions between the protein products of such dysregulated modules compared to 
unaffected modules. An enhancement of direct physical protein interactions amongst 
dysregulated versus non-dysregulated modules would further suggest plausibility for 
synergistic interactions across disparate biological processes conferred by each 
individual co-expression module. 

 
We examined this topic via re-analysis of two existing datasets that 

investigated multiple cortical regions. We tested the hypothesis that diverse molecular 
mechanisms are hierarchically disrupted in the cortical transcriptome of ASD and 
reflect interacting systems-level pathology rather than multiple independent types of 
molecular pathology. By ‘hierarchical disruption’, we refer specifically to evidence of 
dysregulation of individual co-expression modules as well as higher-level disruptions 
in how such modules interact. Our approach is substantially different from previous 
work in leveraging the identification of consensus modules that robustly exist across 
datasets. We also account for known methodological differences intrinsic to the 
existing studies (e.g. age, gender, brain areas). Our approach also utilizes identical 
parameters to identify consensus networks across datasets, as these parameters vary 
across different studies in the literature (e.g., network type - signed vs unsigned, soft-
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power thresholds, deepSplit parameter for cutting dendrograms). These parameters 
can affect how modules are identified (i.e. clustering and cutting dendrograms) as 
well as affect the content (i.e. genes, module eigengene variability) composing 
different discovered modules, thus making direct cross-study comparisons across the 
literature somewhat difficult. Such a viewpoint of integrating information from 
multiple datasets currently does not exist in the literature, and we specifically 
implement this type of analysis in order to be best-positioned to make inferences that 
are applicable across datasets.  

 
Here, we also directly address ‘replication’ as it pertains to ASD gene 

expression studies. While some existing studies we have re-analyzed here [20, 21] 
constitute ‘conceptual’ replications (i.e. studies that differ in numerous ways, yet 
show roughly similar findings, such as similar gene ontology enrichment results) and 
are definitely important in their own right, more exact attempts at replication holding 
constant a variety of analysis issues may also prove insightful. For example, several 
independent studies may not detect certain dysregulated signals due to analytic or 
other methodological variance across studies. Repeated detection of such 
dysregulated signals across multiple studies under more uniform conditions of 
analysis may likely pull out such prominent signals that otherwise go undetected. 
Also of importance is how to formally quantify evidence for or against replication. 
Such formal quantification is missing in the ASD gene expression literature. In this 
study we tackle these issues head on by analyzing multiple datasets under uniform 
analysis conditions (e.g., extracting consensus co-expression networks that exist in 
multiple datasets) and utilize new Bayesian methods developed directly from 
replication debates ongoing in other fields like psychology, that more formally 
quantify the strength of evidence for or against replication.  

 
This work also represents the first study to specifically aim at examining 

hierarchical disruption of the cortical transcriptome in ASD. That is, we go beyond 
examination of dysregulation at the level of single gene co-expression modules and 
also examine whether dysregulation is present in higher-level interactions between 
modules. We provide the first look at the full organization of correlations between 
gene modules across the transcriptome (i.e. eigengene networks) and examine how 
such connections manifest differently both at the level of inter-modular connectivity 
(i.e. connections between specific modules) as well as connectivity relevant to 
organization of clusters of highly correlated modules (i.e. meta-modules) [22-24]. 
Localized subtle/specific changes in eigengene network organization or larger global 
patterns of network reorganization are both plausible predictions regarding how 
eigengene networks are organized differently in ASD. Both scenarios would lead to 
the prediction that the composition of meta-modules as well as connectivity within 
and outside of normative meta-module boundaries would differ in ASD. 

 
 
Materials and Methods 
 
Datasets 

We re-analyzed two existing datasets probing cortical gene expression in 
ASD. The first dataset utilized microarrays on frontal (BA9; n =16 ASD; n = 16 
Controls) and temporal cortex (BA 41/42; n = 13 ASD; n= 13 Controls) tissue and 
was first described by Voineagu and colleagues (Gene Expression Omnibus (GEO) 
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Accession ID: GSE28521) [21].  The second dataset utilized RNAseq on frontal 
(BA10, n = 6 ASD, n = 8 Controls; BA44, n = 16, n = 11 Controls) and occipital 
cortex (BA19, n = 24 ASD, n = 38 Controls) tissue and was first described by Gupta 
and colleagues (http://www.arkinglab.org/resources/) [20]. Across both datasets there 
was a total n=162 samples (Voineagu n samples = 58; Gupta n samples = 104). The 
total number of unique individuals across both datasets was n=86 (Voineagu n=32; 
Gupta n = 54).  Of the total n=73 unique individuals within the Gupta dataset, n=19 
individuals overlapped with Voineagu dataset. n=26 samples of the total n=104 (25% 
of samples) from the Gupta dataset came from these overlapping individuals, while 
the remaining n=76 samples come from new individuals. 

 
For each dataset we utilized the already pre-processed and quality controlled 

datasets publicly available in order to be as congruent as possible with prior published 
work. For genes with multiple probes in the Voineagu dataset we selected the probe 
with the highest mean expression value across the full dataset using the collapseRows 
function in R [25]. Within the Gupta dataset, missing values were present for some 
genes in some subjects and these missing values were imputed using the impute.knn 
function within the impute R library. This procedure was done in order to maximize 
the total number of genes possible for inclusion into further WGCNA analysis. All 
further analyses utilize a subset of the 8,075 genes that were common across both 
datasets. 
 
Weighted Gene Co-Expression Network Analysis (WGCNA) 

Co-expression analysis was implemented with the WGCNA package in R 
[26].   A consensus WGCNA analysis was implemented in order to detect consensus 
modules for cross-dataset comparisons (implemented with the 
blockwiseConsensusModules function) [22]. Consensus WGCNA analysis consisted 
of construction of correlation matrices, which were then converted into adjacency 
matrices that retain information about the sign of the correlation (i.e. signed networks 
use a transformation of 0.5*(r+1)).  Adjacency matrices were raised to a soft power 
threshold selected based on an analysis across various soft power thresholds and 
choosing the soft power threshold based on a measure of R2 scale-free topology 
model fit that maximized and plateaued well above 0.8 (i.e. soft power = 14 for both 
datasets; see Fig S1).  Soft power thresholded adjacency matrices were then converted 
into a topological overlap matrix (TOM) and a TOM dissimilarity matrix (i.e. 1-
TOM). The TOM dissimilarity matrix was then input into agglomerative hierarchical 
clustering using the average linkage method.  Gene modules were defined from the 
resulting clustering tree and branches were cut using a hybrid dynamic tree cutting 
algorithm (the deepSplit parameter was left at the default value of 2) [27]. Modules 
were merged at a cut height of 0.2 and the minimum module size was set to 30. For 
each gene module, a summary measure called the module eigengene (ME) was 
computed as the first principal component of the scaled (standardized) module 
expression profiles.  Genes that cannot be clustered into any specific module are left 
within the M0 module, and this module is not considered in any further analyses.  
 

To test for differential expression at the level of ME variation we used linear 
mixed effect models implemented with the lme function in the nlme R library. These 
models included diagnosis as the fixed effect of interest and additionally included age, 
sex, RIN, PMI, brain region, and median 5’ to 3’ prime bias (specific to Gupta 
dataset) as fixed effect covariates. Subject ID was modeled as the within-subject 
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random effect modeled with random intercepts. To identify MEs with replicable 
differential expression across both datasets, we utilized t-statistics from the linear 
mixed models to compute replication Bayes Factor (repBF) statistics [28] that 
quantify evidence for or against replication (see here for R code: 
http://bit.ly/1GHiPRe). Replication Bayes Factors greater than 10 are generally 
considered as strong evidence for replication. To identify replicable modules we first 
considered modules that possessed a significant effect passing FDR [29] q<0.05 
within the Voineagu dataset and then also required these modules possess significant 
effects in the Gupta dataset (FDR q<0.05) and that this evidence quantitatively 
produces evidence for replication with a replication Bayes Factor statistic > 10. 
 
Gene-Level Differential Expression Analyses 

Differential expression analyses at the level of individual genes were 
performed in R. The same linear mixed-effect models used for analysis of 
dysregulation of ME variation were also used for these analysis (e.g., lme function 
from nlme R library, same fixed and random effects). Genes passing FDR q<0.05 
were considered differentially expressed genes. To identify common differentially 
expressed genes across datasets, we ran gene set overlap analyses implemented using 
the sum(dhyper()) function in R.  The background pool total was set to the total 
number of genes common to both datasets (8,075). 
 
Process Level Gene Set Enrichment Analyses 

To characterize specific biological processes for all modules, we performed 
process level (i.e. Process Networks) enrichment analyses within the MetaCore 
GeneGO software platform. To identify emergent processes from collections of 
highly correlated dysregulated modules we used GO biological processes enrichment 
analysis (AmiGO 2; http://amigo.geneontology.org/) in order to leverage GO’s 
relatively broader hierarchical structure (compared to MetaCore GeneGO). For these 
enrichment analyses we used a custom background of 7,872 genes which represented 
all genes analyzed minus the 203 genes within the M0 module. REVIGO [30] was 
then utilized on the top 50 GO terms ranked by fold enrichment in order to assist in 
reducing the large number of GO terms into semantically similar clusters of terms.  
We manually edited the REVIGO output by inserting custom descriptive terms for 
each cluster and to correct for obvious errors in semantic clustering (e.g., a term like 
‘synaptic organization’ occurring outside of the synaptic cluster). 

 
Cell Type/Cellular Compartment Enrichment Analyses 

To characterize differentially expressed modules by enrichments in specific 
cell types (neuron, astrocyte, oligodendrocyte, M1 and M2 microglia states), and 
cellular compartments (synapse, postsynaptic density, ribosomal subunits), we 
utilized lists of markers previously used by Gupta and colleagues [20]. The exception 
to this was lists of ribosomal subunit markers. These were obtained from lists 
contained in GO. Enrichment tests were hypergeometric tests (i.e. sum(dhyper()) in 
R) using the total 7,872 genes as the background pool.  

 
Eigengene Network Analysis 
 Eigengene network analysis proceeded by constructing robust ME partial 
correlation matrices separately for each group. These matrices were computed in 
MATLAB using robust regression to be insensitive to outliers [31] and the robust 
regression models incorporated the removal of variation from nuisance covariates (i.e. 
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age, sex, RIN, PMI, median 5’ to 3’ bias, brain region).  Partial correlation matrices 
were then converted into adjacency matrices that retain information about the sign of 
the correlation. ME adjacency matrices were converted into topological overlap 
dissimilarity matrices (1-TOM) and then were inserted into agglomerative 
hierarchical clustering using the ward.D linkage method. The resulting cluster tree 
was then cleaved into meta-modules using the same dynamic hybrid tree cutting 
algorithm utilized in WGCNA. We used a deepSplit parameter of 3 since this 
selection was optimal over and above other options for being able to accurately 
capture the major branch divisions that are apparent upon visual inspection of the 
dendrograms. 
 
 To visualize eigengene network topology we utilized the qgraph library in R 
[32] to construct weighted graphs of the ME adjacency matrices for each group. 
These graphs are depicted using a spring embedded layout algorithm [33] whereby 
highly connected nodes are attracted to each other and less highly connected nodes 
are repulsed away from each other. Because these plots are constructed from the 
adjacency matrices, distance is furthest apart when the correlation is r = -1 and closest 
when r = 1.  
 
 All hypothesis tests on connectivity strength between replicable differentially 
expressed modules, within and outside meta-module connectivity, and specific inter-
modular (i.e. between-module) connectivity were implemented with permutation tests 
(10,000 iterations). The test statistic in each case was the difference in connectivity 
strength between ASD and Controls. On each iteration we randomized group labels 
and recomputed the test statistic. FDR [29] q<0.05 was used as the threshold for 
multiple comparisons correction. Statistically significant results from this analysis are 
indicated by stars within Figs 7C and 8C and as green outlines around cells within 
Figs 7D and 8D.   
 
Protein-Protein Interaction Analysis Between Dysregulated Co-Expression 
Modules 
 To further underscore that statistical dependencies in highly correlated co-
expression modules indicate direct protein interactions between modules, we 
implemented a protein-protein interaction analysis. Specifically, if there is 
hierarchical molecular pathology above single-dysregulated modules indicated by 
highly interacting dysregulated modules, we should also expect that the degree of 
such protein interactions would be much higher compared to non-dysregulated and 
dysregulated module pairings. To test this hypothesis we used Java-based command 
line tools for GeneMANIA [34] to query the latest protein-protein interaction 
database (Data Set ID: 2014-08-12; Database Version: 1 June 2014). For each of the 
27 modules used as seed modules, we quantified the number of protein-protein 
interactions between these seed modules and other genes within specific dysregulated 
module categories (i.e. number of connections between the seed module and 
downregulated or upregulated modules respectively). If the seed module was itself a 
dysregulated module, we did not count self-connections (i.e. connections between 
genes within the same module) in order to guard against results showing higher 
number of connections simply due to high connectivity within the seed co-expression 
module. Because co-expression modules differ in size (e.g., the largest module, M1, 
contains 1568 genes, while the smallest module, M27, contains only 39 genes), we 
plotted the number of connections for each module as a function of module size. We 
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expect that if dysregulated seed modules are indeed more highly enriched in 
connections with other dysregulated modules, that the number of connections would 
be much higher than other non-dysregulated modules of similar size. 
 
Results 
 
Replicable Dysregulation of Specific Gene Modules in ASD 

Consensus WGCNA on the 8,075 genes common to both the Voineagu and 
Gupta datasets identified 27 co-expression modules. Information regarding the 
enrichments for each of these modules can be found in Table S1. Module membership 
(i.e. the correlation between a gene and its module eigengene) and the top 10 hub 
genes based on module membership for each module are reported in Table S2. Ten of 
the 27 modules were identified as differentially expressed in a replicable fashion 
across datasets (i.e. replication Bayes Factor > 10; see Table S3 for full statistical 
information on these comparisons). Five of these 10 modules were on-average 
upregulated in ASD, while the remaining 5 were on-average downregulated in ASD. 
Three of the 5 ASD-upregulated modules (M12, M24, M27) were enriched in a 
variety of processes related to the immune system and inflammation; processes such 
as interferon signaling, complement system, phagocytosis, innate immune response to 
RNA viral infection, among several others (Fig 1). Interestingly, M12 and M27 are 
also enriched in M1 microglia markers, while M24 is enriched in M2 microglia 
markers (Fig 3; Table S4). The ASD-upregulated M25 module was heavily enriched 
for translation initiation and this enrichment is driven by a large number of genes 
coding for ribosomal proteins for the 40 and 60S ribosomal subunits (Fig 1). These 
genes also contributed to a significant enrichment in markers for the postsynaptic 
density (Fig 3; Table S4). The ASD-upregulated M1 module was also enriched in 
translation elongation-termination proceeses (Fig 1) and astrocyte and M2 microglia 
markers (Fig 3; Table S4). In contrast to the ASD-upregulated modules, the replicable 
ASD-downregulated modules were enriched in a variety of processes that occur at the 
synapse – GABAergic neurotransmission, synaptic vesicle exocytosis, long-term 
potentiation, and transmission of nerve impulse (Fig 2). In terms of cell type and 
cellular component enrichment, downregulated modules are enriched in neuronal 
(M3, M14), synaptic (M9), and postsynaptic density markers (M9) (Fig 3; Table S4). 

 
Results from differential expression analysis at the gene level also showed 

high degree of overlap between datasets (Fig 1 and Fig 2; Table S3). We utilized 
these gene level differential expression results to characterize the load of differential 
expression signal within each of the 10 identified replicable dysregulated modules. 
Congruent with the labels of ‘upregulated’ or ‘downregulated’ modules, we find that 
each of these modules are heavily loaded with differential expression signal at the 
gene level congruent with such labels (Fig S2). For example, all ‘upregulated’ 
modules had pronounced shifts in differential expression signal in the direction of 
ASD>Control, while all ‘downregulated’ modules had pronounced differential 
expression signal shift in the direction of Control>ASD. These results confirm that 
the on-average between-group differentiation in dysregulated modules is underpinned 
by large magnitude of differential expression signal within each module at the level of 
individual genes.  
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Fig 1:  Upregulated gene co-expression modules in ASD. This figure shows gene co-
expression modules that were on-average elevated in ME expression in ASD and in a 
replicable manner across datasets.  Each module has a scatter-boxplot whereby each 
individual is represented by a dot and the central tendency (median) and dispersion 
(interquartile range) is shown with the boxplot.  Next to each scatter-boxplot are the 
process-level enrichment terms passing FDR q<0.05 (limited to the top 10 terms) 
from MetaCore GeneGO.  The vertical black line on the enrichment bar plots 
represents p = 0.05. For each module, the replication Bayes Factor statistic (repBF) 
is cited above the scatter-boxplot (repBF > 10 indicates strong evidence for 
replication). In the bottom right corner of this figure is a Venn diagram summarizing 
the common overlap between ASD-upregulated genes across both datasets. 
 

 
Fig 2:  Downregulated gene co-expression modules in ASD. This figure shows gene 
co-expression modules that were on-average decreased in ME expression in ASD and 
in a replicable manner across datasets.  Each module has a scatter-boxplot whereby 
each individual is represented by a dot and the central tendency (median) and 
dispersion (interquartile range) is shown with the boxplot.  Next to each scatter-

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 13, 2017. ; https://doi.org/10.1101/042937doi: bioRxiv preprint 

https://doi.org/10.1101/042937
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

	 10 

boxplot are the process-level enrichment terms passing FDR q<0.05 (limited to the 
top 10 terms) from MetaCore GeneGO. The exception here is M26, whereby none of 
the terms passed FDR q<0.05. In this instance, we plot the first 5 terms for 
descriptive purposes. The vertical black line on the enrichment bar plots represents p 
= 0.05. For each module, the replication Bayes Factor statistic (repBF) is cited above 
the scatter-boxplot (repBF > 10 indicates strong evidence for replication). In the 
bottom right corner of this figure is a Venn diagram summarizing the common 
overlap between ASD-downregulated genes across both datasets.  
 

 
Fig 3:  Cell type/cellular compartment enrichments for dysregulated modules. This 
figure shows enrichments in a variety of cell types and cellular components for the 
modules that are replicably dysregulated in ASD. The left panel shows enrichments 
for downregulated modules, while the right panel shows enrichments for the 
upregulated modules. The coloring of the bars denote which specific module shows 
the enrichment and the color legend is shown in the bottom right box for each panel. 
The x-axis plots the –log10 p-values while the y-axis indicates the specific cell type or 
cellular compartment.  Next to each bar we indicate the enrichment odds ratio (OR). 
 
Differentially Expressed Modules are Highly Correlated in ASD  

Modules that are on-average differentially expressed (Figs 1-2) are highly 
correlated. This pattern of correlation was one of strong positive correlations within 
modules that share similar directionality of differential expression, but strong negative 
correlations between modules with different directionality of differential expression. 
Interestingly, these correlations become significantly enhanced in ASD compared to 
Controls in the Voineagu dataset (within downregulated modules p = 0.012; within 
upregulated modules p = 0.042; between downregulated and upregulated modules p = 
0.008; Fig 4A-B). Within the Gupta dataset, this phenomenon of highly correlated 
differentially expressed modules as well as strong negative correlations between 
upregulated and downregulated modules is already present in Controls and stays 
present in ASD, though quantitative strengthening of such connectivity in ASD does 
not occur (within downregulated modules p = 0.957; within upregulated modules p = 
0.327; between downregulated and upregulated modules p = 0.667; Fig 4C-D).  
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Fig 4: Correlations between dysregulated modules. Panels A and B show 
correlations between differentially expressed modules in the Voineagu Control (A) or 
ASD (B) datasets. Panels C and D show correlations between these same modules in 
the Gupta Control (A) or ASD (B) datasets. 
 
Highly Correlated Differentially Expressed Modules Highly Interact at the 
Level of Protein-Protein Interactions  

Statistical dependencies (i.e. correlations) between dysregulated co-expression 
modules suggest that hierarchical pathology may be present in the interactions 
between such modules. From this result, we further reasoned that strong correlations 
between dysregulated modules may result from high levels of direct physical 
interactions between proteins of such modules. If some important synergistic 
pathology were apparent across such ASD-dysregulated modules we would also 
expect that the high degree of protein-protein interactions between collections of 
dysregulated modules would be much stronger degree of interactions between 
dysregulated and non-dysregulated modules. Such protein-protein interaction 
evidence would further indicate plausibility of the idea that hierarchical pathology 
evident in the interactions between dysregulated co-expression modules exists in 
ASD. To answer this question, we queried the GeneMANIA protein-protein 
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interaction database [34] and discovered that each of the dysregulated modules do 
indeed show a large degree of connections with other dysregulated modules. 
Interestingly, modules dysregulated in opposite directions (e.g., connections between 
a downregulated seed module and all other upregulated modules) showed just as 
many connections as modules dysregulated in the same direction. While one might 
expect high degree of connections between modules dysregulated in the same 
direction (e.g., modules dysregulated and enriched in similar kinds of biological 
processes), the fact that similar numbers of protein interactions exist between modules 
dysregulated in opposite directions (e.g., connections between a downregulated 
synaptic seed module and other upregulated immune and translation modules) 
supports the idea that large-scale hierarchical interactions are important to the 
pathophysiology of ASD. Importantly, the number of connections between 
dysregulated seed modules and other dysregulated target modules was much higher 
than when non-dysregulated modules were the seed. This is evident in the predicted 
observation that dysregulated seed modules show much higher degree of connections 
than non-dysregulated seed modules of similar size (Fig 5). This evidence alongside 
the observed statistical dependencies between co-expression modules further support 
the idea that disparate co-expression modules enriched in different biological 
processes are likely interacting in important ways in the pathophysiology of the ASD 
cortical transcriptome.  
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Fig 5: Protein-protein interactions between dysregulated modules. This figure plots 
the number of protein-protein interactions (on log10 scale) between seed modules and 
downregulated (left) or upregulated (right) modules (y-axis) as a function of module 
size (number of genes in the module; x-axis). Seed modules that are downregulated 
are colored in blue, while upregulated seed modules are colored in red. Non-
dysregulated seed modules are colored in green. For dysregulated seed modules, the 
number of connections reflects the number of protein connections with other 
dysregulated modules, not counting self-connections (e.g., connections between genes 
of the same co-expression module). This figure clearly shows that seed modules that 
are dysregulated (red or blue) possess a far greater number of connections with other 
dysregulated modules compared to non-dysregulated modules (green) of a similar 
size. 
 
Processes Enriched within Dysregulated Modules 

We next asked the question of what biological processes might characterize 
such emergent phenomena of interacting collections of co-expression modules. 
Leveraging the hierarchical structure of Gene Ontology (GO), we input merged lists 
of all differentially expressed modules together and computed GO biological process 
gene set enrichment and then clustered the top 50 enriched GO terms by semantic 
similarity [30]. Here we find that the emergent process represented by the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 13, 2017. ; https://doi.org/10.1101/042937doi: bioRxiv preprint 

https://doi.org/10.1101/042937
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

	 14 

combination of highly connected downregulated modules is primarily involved in 
synaptic function (Fig 6A). In contrast, there were several emergent processes 
represented by the combination of highly connected upregulated modules – 
immune/inflammation processes, response to other organism, viral processes, 
catabolism, translation, protein targeting, and localization, cell proliferation, and 
vasculature development (Fig 6B). These results suggest that highly connected 
differentially expressed modules spanning multiple cell types and cellular 
compartments, also interact at the protein level and result in emergent phenomena that 
are not visible simply by examining modules in isolation. 
 

 
Fig 6: GO biological process enrichments for collections of downregulated or 
upregulated modules. This plot shows GO biological process enrichment terms for 
the combination of all downregulated (A) or upregulated (B) modules. The top 50 GO 
terms ranked by fold enrichment were input into REVIGO [30] in order to cluster GO 
terms by semantic similarity. These clusters are shown in different colors along with a 
descriptive label for each cluster. Plotted on the x-axis of each plot is the Bonferroni-
corrected –log10 p-value for each term.  
 
Topological Reorganization of Eigengene Networks 

While we have primarily focused on dysregulated modules, viewing 
hierarchical organization just within these 10 modules limits the insights that could be 
made by examining the full hierarchical organization of eigengene networks across all 
modules. By examining eigengene networks, we can observe organization at higher 
levels above individual co-expression modules. Such observations can show how 
individual modules cluster into collections of highly connected modules, known as 
‘meta-modules’. These analyses go beyond the 10 individually dysregulated modules  
to allow for further insights into how eigengene networks are composed across groups 
and to provide deeper insights into how such organization takes shape with regards to 
meta-modular clustering. These analyses visualize full eigengene network 
organization and meta-module membership with spring-embedded graphs that 
indicate topological change via distancing nodes based on strength of correlation 
between modules (i.e. shorter distance indicates stronger correlation, further distance 
indicates weaker correlation). We also quantitatively tested for differences with 
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respect to connectivity strength within and outside meta-module boundaries as well 
identifying specific modules with disrupted connectivity.  

 
Initial examination of preservation of the Control eigengene network 

organization indicated that high levels of preservation are not present across many 
nodes of the network (see Fig S3). Thus, this low level of preservation suggests that 
assessing replicability of any between-group differences in eigengene network 
organization across datasets is likely not possible. Unlike our initial consensus 
WGCNA analysis that ensured similar co-expression networks across datasets, this 
procedure does not guarantee that eigengene network organization may be similar, 
and this analysis verifies that the organization of eigengene networks across datasets 
differs considerably. This effect could be due to a variety of the methodological 
factors that differ across these datasets (e.g., different brain regions, differing age of 
the samples, microarray vs. RNA-seq, etc). Nevertheless, this issue does not 
invalidate observations of how eigengene network organization differs within each 
dataset, and therefore, we restrict our descriptions of eigengene network organization 
to each dataset independently.  

 
Within the Voineagu dataset, ASD-dysregulated modules are topologically 

arranged closer together in ASD and within the same meta-module, compared to the 
more disperse and heterogeneous organization in Controls with respect to meta-
module membership of dysregulated modules. This differing pattern of topological 
organization at the meta-module level can be clearly seen in the spring-embedded 
graph layouts shown in Fig 7A-B. For example, upregulated modules (circled in red 
in Fig 7A-B) are spread across 3 different meta-modules in Controls, while in ASD 
these modules are positioned close together and within the same orange meta-module 
(Fig 7A-B). Quantitatively, network reorganization can be examined in connectivity 
strength differences within and outside normative (Control-defined) meta-module 
boundaries. Four modules (M25, M9, M21, and M23) show ASD-decreased 
connectivity within normative meta-module boundaries. These same modules along 
with one other module (M16) also show enhanced connectivity outside of normative 
meta-module boundaries in ASD (Fig 7C). At a nodal level, we further observed 
specific between-module connections that are prominently affected in ASD (Fig 7D). 
The ASD-upregulated M25 translation initiation module is normatively negatively 
correlated with the prominent ASD-upregulated M27 interferon signaling and M1 
translation elongation-termination module. However, in ASD, these negative 
correlations significantly reverse and turn into positive correlations, suggesting some 
abnormally heightened integration between these distinct biological 
processes/pathways. In another example, the ASD-downregulated M9 module is 
normatively positively correlated with M1, M15, and M16, but these relationships 
reverse into negative correlations in ASD. This suggests that what should typically be 
a natural integration between these modules ends up being an abnormal lack of 
integration in ASD. Furthermore, M9’s connectivity with another ASD-
downregulated module (M3) is normatively negative, yet in ASD is highly positively 
correlated. Finally, while there is little to no normative relationship between the ASD-
downregulated M9 module and the ASD-upregulated M27 module, in ASD this 
relationship turns into a strong negative correlation. This effect could potentially 
indicate an abnormal immune-synapse interaction between upregulation of 
inflammation interferon signaling processes and downregulation of important 
synaptic processes in ASD. 
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Fig 7:  Eigengene network topology and connectivity differences within the 
Voineagu dataset. Panels A and B show eigengene networks as weighted graphs in a 
spring embedded layout for the Voineagu Control (A) or ASD (B) groups. The spring 
embedded layout places modules (nodes within the graphs) that are highly connected 
as much closer in space whereas modules that are less highly connected are repelled 
away from each other.  The thickness of the connections (i.e. edges) between modules 
are scaled to connection strength whereby the thinnest line represents a correlation of 
r = -1 and the thickest line represents a correlation of r = 1. The color of each 
module node represents the ASD meta-module it belongs to. This was done to 
represent where the ASD meta-modules are located within the Control graph. The 
color-filled outlines around collections of modules represent the meta-module 
boundaries. Modules with a solid red or blue circle around it are modules that were 
identified in Figs 1-2 as being replicably dysregulated in ASD across both datasets 
(blue = ASD-downregulated; red = ASD-upregulated).  The dotted circles represent 
differentially expressed modules (FDR q<0.05) present only within that specific 
dataset (see Table S3). Panel C shows within (C) and outside (D) normative meta-
module connectivity strength for each seed module depicted on the y-axis. The 
normative (Control-defined) meta-modules are denoted by the color of the 
rectangular outlines on the y-axis. Connectivity strength is depicted on the x-axis and 
for within meta-module connectivity is defined as the sum of connection strength 
between the seed module and all other modules within the seed module’s normative 
meta-module. Outside meta-module connectivity strength is defined as the sum of 
connection strength between the seed module and all other modules outside of the 
seed module’s normative meta-module. Turquoise bars indicated Controls and 
salmon colored bars indicate ASD. The stars next to specific modules indicate a 
significant between-group difference in connectivity strength.  Panel D illustrates 
eigengene networks as robust ME partial correlation matrices. Red coloring within 
the matrices indicates increasing positive correlation strength, while blue coloring 
indicates increasing negative correlation strength; see colorbar for key indicating 
how color corresponds to correlation strength. Matrices have rows and columns 
ordered by hierarchical clustering based on the Control group and the individual 
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module numbers as well as meta-module colors are shown. Normative (Control-
defined) meta-module boundaries are also clearly delineated by the black outlines 
over cells in the correlation matrices.  Any cells with green outlines are those specific 
between-module connectivity comparisons that differed between-groups. 
 

Within the Gupta dataset there was also evidence of topological 
reorganization, with a much more fractionated organization of meta-modules in ASD 
compared to Controls (i.e. 6 meta-modules in ASD versus 4 in Controls). This 
differing pattern of topological organization at the meta-module level can be clearly 
seen in the spring-embedded graph layouts shown in Fig 8A-B. Similar to the 
Voineagu dataset, dysregulated modules again clustered close together and within the 
same meta-modules relative to a more heterogeneous organization in Controls (Fig 
8A-B).  Quantitatively, connectivity within and outside of normative meta-module 
boundaries was perturbed in ASD for nearly every single module (Fig 8C). This 
indicates that ASD eigengene network organization is highly perturbed with regard to 
connectivity of modules within normative eigengene network topology. In contrast to 
the numerous modules showing connectivity differences at the nodal level in the 
Voineagu dataset, very few nodal-level differences emerged in the Gupta dataset. 
Thus within the Gupta dataset, it appears that overall eigengene network topology is 
reorganized in ASD in subtle ways that are spread across many modules and 
considerably affect meta-modular organizational structure. However, they cannot be 
tied to very pronounced and specific differences within specific subsets of modules. 
 

 
Fig 8:  Eigengene network topology and connectivity differences within the Gupta 
dataset. Panels A and B show eigengene networks as weighted graphs in a spring 
embedded layout for the Gupta Control (A) or ASD (B) groups. The spring embedded 
layout places modules (nodes within the graphs) that are highly connected as much 
closer in space whereas modules that are less highly connected are repelled away 
from each other.  The thickness of the connections (i.e. edges) between modules are 
scaled to connection strength whereby the thinnest line represents a correlation of r = 
-1 and the thickest line represents a correlation of r = 1. The color of each module 
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node represents the ASD meta-module it belongs to. This was done to represent where 
the ASD meta-modules are located within the Control graph. The color-filled outlines 
around collections of modules represent the meta-module boundaries. Modules with a 
solid red or blue circle around it are modules that were identified in Figs 1-2 as being 
replicably dysregulated in ASD across both datasets (blue = ASD-downregulated; red 
= ASD-upregulated).  The dotted circles represent differentially expressed modules 
(FDR q<0.05) present only within that specific dataset (see Table S3). Panel C shows 
within (C) and outside (D) normative meta-module connectivity strength for each seed 
module depicted on the y-axis. The normative (Control-defined) meta-modules are 
denoted by the color of the rectangular outlines on the y-axis. Connectivity strength is 
depicted on the x-axis and for within meta-module connectivity is defined as the sum 
of connection strength between the seed module and all other modules within the seed 
module’s normative meta-module. Outside meta-module connectivity strength is 
defined as the sum of connection strength between the seed module and all other 
modules outside of the seed module’s normative meta-module. Turquoise bars 
indicated Controls and salmon colored bars indicate ASD. The stars next to specific 
modules indicate a significant between-group difference in connectivity strength.  
Panel D illustrates eigengene networks as robust ME partial correlation matrices. 
Red coloring within the matrices indicates increasing positive correlation strength, 
while blue coloring indicates increasing negative correlation strength; see colorbar 
for key indicating how color corresponds to correlation strength. Matrices have rows 
and columns ordered by hierarchical clustering based on the Control group and the 
individual module numbers as well as meta-module colors are shown. Normative 
(Control-defined) meta-module boundaries are also clearly delineated by the black 
outlines over cells in the correlation matrices.  Any cells with green outlines are those 
specific between-module connectivity comparisons that differed between-groups. 
 
Discussion 
 Here we provide the first detailed characterization of how the ASD cortical 
transcriptome is hierarchically disorganized both at the level of specific co-expression 
modules and at higher levels of eigengene network organization (i.e. connectivity 
between modules and meta-modules). We have pinpointed several novel co-
expression signals that show strong evidence for replicable dysregulation across 
datasets [20, 21]. Rather than pinpointing a single synaptic or immune-related 
module, we have identified several dysregulated synaptic and immune modules. 
These modules are differentiated in terms of cell type/compartment enrichment and/or 
show different biological process enrichment within the broader class of synaptic and 
immune-related processes. For example, while both M3 and M9 modules are 
downregulated in ASD and enriched in similar synaptic processes, their cell 
type/compartment enrichments differ. M3 is primarily enriched in neuronal markers, 
whereas M9 is specifically enriched in synaptic and postsynaptic density markers. 
Synaptic M3 and M9 modules also differentiate in how they interact with other 
modules (see Fig 7C-D for example). These results provide an example of how subtle 
distinctions may be present within the class of downregulated synaptic signals. 

 
 We have also identified multiple types of ASD-upregulated 
immune/inflammation modules that are novel distinctions from past work. Although 
prior work has implicated interferon signaling, particularly with respect to M2 
microglia markers [20], here we find evidence for 2 upregulated interferon signaling 
modules (M24, M27). These modules differentiate by M1 and M2 microglia 
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activation states, with M27 enriched in M1 microglia markers while M24 is enriched 
in M2 microglia markers. Between-module connectivity evidence also suggests that 
these two interferon signaling modules are disrupted in different ways. M27 is 
abnormally connected to an important ASD-upregulated translation initiation (M25) 
and ASD-downregulated synaptic module (M9). Given the enrichment in M27 for M1 
microglia activation markers, this evidence suggests that cytotoxic M1 microglia 
processes may be affecting synaptic proteins in ASD. On the other hand, M24 shows 
intact connectivity between M25 and M9, but aberrant connectivity between other 
modules (M2, M22). These results suggest that while upregulated interferon signaling 
can be linked to both M1 and M2 microglia phenotypes, such aberrant processes may 
have differing impact on ASD brain function and structure. 
 

In addition to the multiple dysregulated interferon signaling modules, we have 
also uncovered novel evidence for ASD-upregulation of an immune/inflammation 
module (M12) enriched in the complement system and phagocytosis processes and 
M1 microglia markers. In conjunction with effects from interferon signaling modules, 
the addition of the complement system may be of particular importance given the 
known links between the complement system and synaptic pruning [35, 36] and 
remodeling as well as enhancing pro-inflammatory states of microglia activation in 
ASD [37-39]. Recently, the complement system has been noted as a prominent player 
in the pathophysiology of schizophrenia, particularly for its role in synaptic pruning 
[40]. In the larger context of eigengene networks it is interesting that all of these 
important immune/inflammation modules are members of the same meta-module in 
ASD and that such a meta-module also includes other prominent modules such as the 
ASD-upregulated M25 translation initiation module. The current data present a role 
for complement system signaling alongside interferon signaling and other immune 
processes working together and potentially in concert with other important modules 
relating to translation and also for their role in various types of microglia activation 
states. 

 
 New modules not highlighted at all by prior work were also identified. Two 

of these modules (M1 and M25) are heavily enriched in translation initiation and 
translation elongation-termination processes and are enriched in genes coding for 
proteins that make up the 40S and 60S ribosomal subunits (RPL and RPS genes). 
Translation has been an important topic in ASD primarily because of work on 
syndromic forms of autism related to mutations in FMR1, TSC1/2, and PTEN [6, 41], 
as well as the important cap-dependent translation gene EIF4E [42-45]. However, 
none of this work has specifically implicated ribosomal proteins themselves and no 
prior work on the cortical transcriptome in ASD has specifically implicated 
upregulation of translation initiation signals. These modules were dysregulated with 
respect to connectivity within and outside of normative meta-modular boundaries and 
showed specific abnormal interactions with each other as well as other ASD-
upregulated modules (e.g., M27). Additionally, these translation modules were also a 
member of a meta-module in ASD that was composed of other upregulated 
immune/inflammation modules (M12, M24, M27), suggesting that they may play 
important roles integrating with upregulated immune/inflammation processes in ASD. 
Thus, not only have we discovered evidence for a novel and important upregulated 
signal in the ASD cortical transcriptome, but this finding also may have important 
implications with regards to its potential as a cross-cutting influence on other 
pathophysiological processes in ASD.  
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This novel finding of upregulated translation initiation and elongation-

termination processes in ASD is important, as it agrees with other work on blood 
transcriptome markers. Our recent work on blood leukocyte gene expression has also 
uncovered upregulated translation initiation as a prominent signal in young toddlers 
with ASD and this signal is present alongside other upregulated 
immune/inflammation signals, particularly interferon signaling and phagocytosis [46]. 
Further bolstering these inferences, a recent mega-analysis of seven different studies 
in the literature and also found ribosomal translation as one prominent upregulated 
process in blood [47]. The presence of these dysregulated and highly connected 
translation initiation and immune/inflammation signals across brain and blood is 
potentially important because it may signal a unique opportunity to assay brain-
relevant dysregulation in peripheral tissues and in-vivo in living patients. This 
peripheral window into potentially brain-relevant dysfunction that can be assayed in 
living patients may be particularly important given the recent discovery of a direct 
linkage between the brain and lymphatic vessels of the immune system [48]. 
Investigating this possible peripheral linkage to brain-relevant dysfunction in living 
patients using in-vivo techniques like functional and structural neuroimaging [49] will 
be an important next step in understanding whether peripherally dysregulated signals 
in blood play some role in linking directly to important macro-level neural systems 
dysfunction in living patients [50]. We have also recently identified similar 
upregulation of translation initiation signals, particularly ribosomal proteins, in a 
rodent model of maternal immune activation [51], indicating that sources of 
translation initiation upregulation in ASD may have pathophysiological impact in 
early fetal development and can be influenced by environmental factors. Furthermore, 
modeling the upregulated expression of a long non-coding RNA, MSNP1AS, in neural 
progenitor cells also leads to differential expression of genes involved in translation, 
protein synthesis and which are localized to the ribosome [52]. MSNP1AS was the 
first GWAS hit in ASD [53] and is known to be upregulated in expression in ASD 
cortex [54]. Influence via this common variant may further indicate influence over 
this process of translation in the developing ASD brain. Future work using in-vivo and 
in-vitro models targeting these novel ribosomal protein genes from the M25 
translation initiation module (e.g., hub genes shown in Table S2) may be important 
for leading to further insights on the pathophysiology behind ASD. 
 

In addition to implicating several new gene co-expression modules of 
significance to ASD, this work provides primary evidence supporting the idea that the 
cortical transcriptome is dysregulated at hierarchical levels and this hierarchical view 
of pathophysiology cannot be well understood from the vantage point of examining 
single co-expression modules in isolation. By identifying disruption in the interaction 
between-modules and in how eigengene networks are reconfigured into different 
meta-modular structures, this work presents a larger view on how multiple 
dysregulated signals may operate in conjunction with one another and potentially 
implicate important emergent interactions at the protein level. We show that a number 
of specific modules that are on-average up- or downregulated in ASD are also highly 
correlated and that this correlation can become stronger in ASD. This result is not 
apparent in prior work on this topic, with the closest result being the previous 
observation of a negative correlation when collapsing across both groups between 
single pair of modules enriched in synaptic and immune functions [8, 20]. We have 
gone much further to show correlations between dysregulated modules including 
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translation initiation modules and several other modules. We also demonstrated that 
beyond the statistical dependencies between co-expression modules, these 
dysregulated modules physically interact at the level of proteins. The disruption of 
these coordinated higher-order interactions at a protein level suggests that systems-
level phenomena are disrupted in ASD that coordinates disparate biological processes 
and which cannot be adequately characterized by viewing smaller elements (e.g., 
single genes, single co-expression modules) in isolation. Thus, a primary conceptual 
advance from this aspect our work suggests that we may need to move beyond 
arguments about single unitary processes, since the interactions between multiple 
dysregulated processes may underlie and better describe the pathology.  

 
As a whole, the collection of ASD-downregulated modules appears to involve 

a number of processes occurring at the synapse. While synaptic processes are 
commonly discussed as important mechanisms [21, 55], genes that are typically 
characterized as synaptic genes may have other pleiotropic roles in very early neural 
developmental processes. It is known that annotations in enrichment databases (e.g., 
GO, MetaCore) may be incomplete and an example of this can be seen in potential 
other interpretations of genes typically thought of as involved in synaptic processes. 
Casanova and colleagues recently showed that many high-risk ASD genes that have 
canonical roles in synapse development are also involved in very early stages of 
neural proliferation, growth, and maturation [56]. As a specific example of this idea, 
Konopka and colleagues discovered that NRXN3 plays a role in earlier neural 
progenitor biology that is different from its later function at the synapse [57]. Early 
fetal brain developmental processes occurring as early as the end of the first trimester 
of gestation [58] and are key signals of importance highlighted by prior studies on 
very early pathophysiology in ASD [5, 12, 17, 49, 56, 59-62]. These specific neural 
developmental processes are developmentally prior to abnormalities in synaptic 
processes which emerge at later points in fetal development and continue to change 
throughout life as a result of postnatal experience and adaptation. Therefore, a 
nuanced interpretation of the role of synapse gene dysregulation in ASD could be that 
these genes have pleiotropic roles in both early stages of neural development (e.g., 
proliferation, growth, and maturation) and at later stages dealing with synaptic 
processes that continue throughout the lifespan. 

 
The collections of modules upregulated in ASD showed evidence for several 

novel and emergent biological phenomena. To our knowledge, the novel signal of 
upregulated catabolism has not been implicated in any past work. Additionally, there 
are novel upregulated processes involved in protein targeting and localization that can 
be intertwined with translation processes (e.g., SRP-dependent co-translational 
protein targeting to membrane). Finally, we also found enrichment in several viral 
processes, responses to other organisms, cell proliferation, and vasculature 
developmental processes are highly prominent. These highly coordinated processes 
are associated with multiple cell types/compartments, and the downregulation of 
synaptic processes – as evidenced by the strong negative correlations between 
upregulated and downregulated modules. This evidence is generally in agreement 
with past theoretical ideas [60] that suggested that early manifestations of 
pathophysiology potentially emerging in fetal development could then trigger a later 
corrective phase of development characterized by downregulation of synaptic and 
neuronal processes and potential upregulation immune/inflammation (e.g., microglia 
activation) [37-39], apoptotic, and other processes. A challenge for future research 
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will be to unpack the relationships between known and novel upregulated processes 
with downregulated synaptic and neural developmental processes. However, it is 
important to underscore that these inferences emerge from the looking at the highly-
coordinated interactions between multiple dysregulated co-expression modules, and 
are not obvious by simply targeting specific modules and looking at such elements in 
isolation. Thus, these new insights regarding systems level phenomena in ASD can 
further guide future studies to unravel specific novel mechanisms (e.g., targeting hub 
genes for many of the dysregulated modules we have implicated and examining their 
impact on other connected systems-level processes; Table S2).  
 
Conclusions 

In summary, this work highlights several novel aspects about how the cortical 
transcriptome is dysregulated in ASD. A primary advance of this work is the idea that 
dysregulation of the cortical transcriptome in ASD does not occur only at the level of 
individual gene co-expression modules. Rather, the cortical transcriptome is 
disorganized at higher levels of analysis such as the interactions between modules and 
how modules form hierarchical organization structure as meta-modules within 
eigengene networks. The insight that this new view may shed on the biology of 
autism is yet to be explored, but at the very least implicates that emergent pathology 
may arise out of interactions across otherwise disparate separate biological processes 
and pathways. As development progresses, the brain in ASD may be engaging in 
adaptive processes to compensate for inherent biological problems that originate in 
very early fetal or postnatal brain development [60, 63, 64]. This might lead to the 
interesting proposition that the core symptomatology of ASD present by 2-4 years of 
age, is the direct output of this postnatal early developmental adaptation process that 
attempts to compensate for early fetal abnormalities in how the brain lays down core 
elements to build upon with further experience. Our approach here may provide a 
better viewpoint on how to describe such processes and may further help enable 
future translational insights. 
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Supplementary Figures  
 

 
Fig S1:  Scale-free topology model fit across a range of soft power thresholds. This 
plot shows the scale-free topology model fit scores (R2) across a range of soft power 
thresholds. This analysis is done in order to choose a soft-power threshold to use in 
the main analyses.  As a rule, we picked the soft power threshold whereby scale-free 
topology model fit R2 is maximum and begins to plateau (i.e. soft power = 14).   
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Fig S2:  Differential expression load within replicably dysregulated co-expression 
modules. This plot shows strength of differential expression (DE) for each gene 
within the 10 replicably dysregulated co-expression modules. DE strength is 
quantified continuously as the effect size (t-stat) from the DE gene-level analyses. All 
modules show a substantial shift in DE signal in the direction congruent with the 
label of ‘upregulated’ (ASD>Control) or ‘downregulated’ (Control>ASD) given to 
each module. 
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Fig S3:  Preservation of eigengene networks in the TD group. Panel A shows the 
eigengene networks for Voineagu and Gupta datasets when the rows and columns of 
the matrix are ordered by meta-module clustering. Panel B shows the matrices when 
ordered only by the Voineagu TD dataset clustering. Panel C shows average 
preservation levels across each module.  Panel D shows preservation for all pairwise 
module comparisons. The plots in panels C and D were made using a modified 
version of the plotEigengeneNetworks function in the WGCNA R library. We modified 
this function to use ME robust partial correlation matrices. 
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Supplemental Table Legends 
 
Table S1:  Enrichments for all dysregulated modules and collections of 
downregulated and upregulated modules.  
 
Table S2:  Module membership and hub gene information for each module 
 
Table S3:  Full result table of analysis examining on-average differential expression 
in module eigengene variation  
 
Table S4:  Cell type and cellular component enrichment information 
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