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Abstract 

Elucidating how the cortical transcriptome is hierarchically disorganized may be key 
for understanding the pathophysiology behind of autism (ASD). Here we find 
replicable evidence across 2 datasets for 10 gene co-expression modules that are 
differentially expressed in ASD. These modules span multiple cell types and 
compartments including M1 and M2 microglia, astrocytes, ribosomal subunits, 
neuron, synapse, and postsynaptic density. These dysregulated modules are also 
strongly correlated and form higher-level emergent properties characterized by 
coordination between downregulated synaptic and neural developmental processes 
and upregulated catabolism, viral processes, translation, protein targeting and 
localization, interferon signaling, glia-relevant, and apoptosis processes. Hierarchical 
organization at the level of clusters of highly connected modules (i.e. meta-modules) 
is also disrupted in ASD, as is connectivity between specific synaptic, immune, and 
translation modules. These results support a view of hierarchical cortical 
transcriptome disorganization in ASD characterized by emergent pathophysiology not 
readily apparent in smaller isolated elements. 
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The diversity of mechanisms implicated in ASD is large and this heterogeneity 

presents a complex puzzle with regards to how diverse molecular mechanisms may 
converge or diverge at different levels of analysis1, 2. At the level of the transcriptome, 
several studies have examined how gene expression is dysregulated in autism 
spectrum disorders (ASD) within blood and brain tissue samples3, 4, 5, 6, 7, 8, 9, 10. This 
work highlights some common themes regarding atypical synaptic and 
immune/inflammation processes. While this progress is very important, we also need 
to move further towards an understanding of how multiple dysregulated processes fit 
together within a larger systems biological context. The human brain is a 
hierarchically organized complex system and understanding the pathophysiology 
behind complex neurodevelopmental disorders like ASD requires an approach that 
elucidates how brain development in ASD may be hierarchically disrupted11. This 
more holistic systems biology understanding will allow us to move from important 
reductionist insights about single unitary mechanisms to understanding how such 
mechanisms may work at multiple hierarchical scales in concert to produce emergent 
phenomena that may help to better explain the pathophysiology behind ASD but also 
hone in on new ways to potentially treat affected individuals. 

 
Elucidating principles of hierarchical organization of the cortical 

transcriptome in ASD has yet to be examined, but may significantly help in furthering 
our understanding about the pathophysiology of ASD. Past work has highlighted two 
important dysregulated gene modules - one downregulated in ASD and enriched for 
synaptic processes and neuronal markers and a second module upregulated in ASD 
and enriched for immune processes and astrocyte and M2 microglia activation state 
markers5, 6. Voineagu and colleagues found that the downregulated synaptic module 
was enriched in GWAS signals and thus interpreted this module to be of primary 
importance, given its likely genetic etiology. In contrast, the upregulated immune 
module was not enriched in GWAS signals and was interpreted as a secondary 
phenomenon relative to the synaptic dysregulation and/or could potentially be 
mediated by non-genetic etiological factors5. While this work was seminal in 
furthering our understanding of how the transcriptome is dysregulated in ASD, the 
interpretation could lead to some ambiguity with regard to how synaptic and immune 
dysregulation fit together. In one scenario the synaptic and immune processes could 
be considered to be independent of each other (i.e. two dysregulated yet non-
interacting uncorrelated processes), while in another scenario one might consider that 
there is some more complex interaction between the two processes, but one that 
places more emphasis and importance on synaptic than the immune factors. Providing 
some evidence for the latter scenario, Gupta and colleagues later found that these 
modules are negatively correlated amongst all data samples combined across both 
groups, suggesting that there is important interplay between synaptic and immune 
processes6. However, this observation does not clarify the relationship between such 
modules in each group or critically whether the groups differ in such a relationship. 
Gupta and colleagues also placed particular emphasis on enrichment in markers for an 
M2 microglia activation state6. M1 microglia activation typically confers pro-
inflammatory cytotoxic effects, whereas M2 microglia activation can be 
neuroprotective (e.g., trophic effects, progenitor cell proliferation)12, 13, 14, 15. Given the 
downregulation of synaptic processes and upregulation of connected 
immune/inflammation processes, these observations might be more congruent with a 
role for M1 microglia affecting the synapse. However, given other theoretical ideas 
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regarding pathophysiology potentially emerging in fetal development relating to early 
brain overgrowth, followed by a later corrective phase of development persisting 
throughout the lifespan16, it is also possible that enhanced M2 microglia activation 
states are important6 or that a mixture of M1 and M2 microglia states are present but 
differ throughout development. Thus, there may be a role for both microglia 
phenotypes in ASD and that such phenotypes could co-exist within the microglia 
population17 in the ASD brain. 

 
In contrast to the view that synaptic mechanisms are more primary, it is 

noteworthy that in animal models wherein immune phenomena linked to ASD are 
positioned as the main causal mechanism (i.e. maternal immune activation)18, 19, the 
result of such non-genetic immune etiology is up-regulation of cell cycle and DNA 
damage repair and downregulation of multiple neural developmental processes20 as 
well as alterations occurring at the synapse21, 22. Early neural developmental 
phenomena occurring near the end of the first trimester of fetal development are also 
highly perturbed via this immune-mediated non-genetic mechanism23 and could 
ultimately trigger cortical developmental defects very similar to those reported in 
ASD cortex24, 25. Therefore, it is clear that the causal directionality of dysregulated 
mechanisms could go both ways and most importantly, that we must better understand 
how such dysregulated processes form hierarchical emergent interactions and whether 
such interaction occurs differently in ASD. 

 
Here we present the first work examining hierarchical disruption of the 

cortical transcriptome in ASD. Rather than representing independent forms of 
transcriptome dysregulation, we hypothesize that dysregulated modules work together 
to form emergent pathophysiological processes that are not visible by looking at 
single modules in isolation. Therefore, we predict that differentially expressed 
modules will be highly correlated and that such connectivity may be increased in 
ASD. Furthermore, given the emerging literature on neuronal/synaptic-immune 
interactions20, 21, 22, 23, 24, 26, 27, 28, we also hypothesized that specific dysregulated 
modules enriched in immune/inflammation and synaptic processes will be aberrantly 
connected in ASD. We also provide the first look at the full organization of 
connections between gene modules (i.e. eigengene networks) and examine how such 
connections manifest differently both at the level of inter-modular connectivity (i.e. 
connections between specific modules) as well as connectivity relevant to 
organization of clusters of highly correlated modules (i.e. meta-modules)29, 30, 31. It 
could be that subtle and specific change or global patterns of network reorganization 
occur within ASD. Both scenarios would lead to the prediction that the composition 
of meta-modules as well as connectivity within and outside of normative meta-
module boundaries would differ in ASD. 
 
 
Results 
 
Replicable Dysregulation of Specific Gene Modules in ASD 
 

Consensus WGCNA on the 8,075 genes common to both the Voineagu and 
Gupta datasets identified 27 co-expression modules. Information regarding the 
enrichments for each of these modules can be found in Table S1. Module membership 
(i.e. the correlation between a gene and its module eigengene) and the top 10 hub 
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genes based on module membership for each module are reported in Table S2. Ten of 
the 27 modules were identified as differentially expressed in a replicable fashion 
across datasets (i.e. replication Bayes Factor > 10; see Table S3 for full statistical 
information on these comparisons). Five of these 10 modules were on-average 
upregulated in ASD, while the remaining 5 were on-average downregulated in ASD. 
Three of the 5 ASD-upregulated modules (M12, M24, M27) were enriched in a 
variety of processes related to the immune system and inflammation; processes such 
as interferon signaling, complement system, phagocytosis, innate immune response to 
RNA viral infection, among several others (Fig 1). Interestingly, M12 and M27 are 
also enriched in M1 microglia markers, while M24 is enriched in M2 microglia 
markers (Fig 3; Table S4). The ASD-upregulated M25 module was heavily enriched 
for translation initiation and this enrichment is driven by a large number of genes 
coding for ribosomal proteins for the 40 and 60S ribosomal subunits (Fig 1). These 
genes also contributed to a significant enrichment in markers for the postsynaptic 
density (Fig 3; Table S4). The ASD-upregulated M1 module showed a mixed set of 
enrichment terms spanning cell signaling processes (i.e. NOTCH, Hedgehog 
signaling), axonal guidance, regulation of angiogenesis, integrin-mediated cell 
adhesion, cell cycle G1-S growth factor regulation, ESR2 signal transduction, among 
several others (Fig 1). Module M1 was enriched in astrocyte and M2 microglia 
markers (Fig 3; Table S4). In contrast to the ASD-upregulated modules, the replicable 
ASD-downregulated modules were enriched in a variety of synaptic, neuronal, 
cytoskeletal, and hormonal processes. These processes were diverse across modules 
and ranged from processes such as synaptic cell adhesion, synaptogenesis, 
neurogenesis, axonal guidance, synaptic vesicle exocytosis, transmission of nerve 
impulse, calcium transport, cell adhesion amyloid proteins, gonadotropin regulation, 
cytoskeleton spindle and cytoplasmic microtubules, actin filaments, and regulation of 
cytoskeleton rearrangement, amongst several others (Fig 2). In terms of cell type and 
cellular component enrichment, downregulated modules are enriched in neuronal 
(M3, M14), synaptic (M9), and postsynaptic density markers (M9) (Fig 3; Table S4). 

 

 
Fig 1:  Upregulated gene co-expression modules in ASD. This figure shows gene co-expression 
modules that were on-average elevated in ME expression in ASD and in a replicable manner across 
datasets.  Each module has a dot-boxplot whereby each individual is represented by a dot and the 
central tendency (median) and dispersion (interquartile range) is shown with the boxplot.  Next to each 
dot-boxplot are the process-level enrichment terms passing FDR q<0.05 (limited to the top 10 terms) 
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from MetaCore GeneGO.  The vertical black line on the enrichment bar plots represents p = 0.05. For 
each module, the replication Bayes Factor statistic (repBF) is cited above the scatter-boxplot (repBF > 
10 indicates strong evidence for replication). The plot in the bottom right corner depicts cell type and 
cellular compartment enrichments. Enrichment odds ratios (OR) are reported next to each bar. 
 

 
Fig 2:  Downregulated gene co-expression modules in ASD. This figure shows gene co-expression 
modules that were on-average decreased in ME expression in ASD and in a replicable manner across 
datasets.  Each module has a dot-boxplot whereby each individual is represented by a dot and the 
central tendency (median) and dispersion (interquartile range) is shown with the boxplot.  Next to each 
scatter-boxplot are the process-level enrichment terms passing FDR q<0.05 (limited to the top 10 
terms) from MetaCore GeneGO. The exception here is M26, whereby none of the terms passed FDR 
q<0.05. In this instance, we plot the first 5 terms for descriptive purposes. The vertical black line on 
the enrichment bar plots represents p = 0.05. For each module, the replication Bayes Factor statistic 
(repBF) is cited above the scatter-boxplot (repBF > 10 indicates strong evidence for replication).  
 

 
Fig 3:  Cell type/cellular compartment enrichments for dysregulated modules. This figure shows 
enrichments in a variety of cell types and cellular components for the modules that are replicably 
dysregulated in ASD. The left panel shows enrichments for downregulated modules, while the right 
panel shows enrichments for the upregulated modules. The coloring of the bars denote which specific 
module shows the enrichment and the color legend is shown in the bottom right box for each panel. 
The x-axis plots the –log10 p-values while the y-axis indicates the specific cell type or cellular 
compartment.  Next to each bar we indicate the enrichment odds ratio (OR). 
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Differentially Expressed Modules are Highly Connected in ASD  
 

Modules that are on-average differentially expressed (Figs 1-2) are highly 
correlated. This pattern of correlation was one of strong positive correlations within 
modules that share similar directionality of differential expression, but strong negative 
correlations between modules with different directionality of differential expression. 
Interestingly, these correlations become significantly enhanced in ASD compared to 
Controls in the Voineagu dataset  (within downregulated modules p = 0.012; within 
upregulated modules p = 0.042; between downregulated and upregulated modules p = 
0.008; Fig 3C-D). Upregulated modules M25, M12, M24, M27 and M1 are 
topologically spread out across three distinct meta-modules in Controls (blue, brown 
and turquoise; Fig 4A). In contrast, these five modules tightly clustered together 
within the same meta-module in ASD and are at opposite poles of the graph (i.e. high 
negative correlations) compared to downregulated modules M3, M14, M26, M9, and 
M13 (Fig 4B). Similarly, downregulated synaptic modules M3, M14, and M26 cluster 
close together (i.e. high positive correlations) within the Control salmon meta-
module, but are far away from (i.e. high negative correlations) other important 
synaptic modules (M9, M13) located within the Control turquoise meta-module at the 
other pole of the weighted spring embedded graph (Fig 4A). In ASD this relationship 
changes as M9 and M13 become positively correlated with M3, M14, and M26 and 
are brought within closer proximity of each other (Fig 4B). 
 

 
Fig 4:  Eigengene networks, meta-modules, and correlations between dysregulated modules within 
the Voineagu dataset. This figure shows eigengene networks as weighted graphs in a spring embedded 
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layout for the Voineagu Control (A) or ASD (B) groups. The spring embedded layout places modules 
(nodes within the graphs) that are highly connected as much closer in space whereas modules that are 
less highly connected are repelled away from each other.  The thickness of the connections (i.e. edges) 
between modules are scaled to connection strength whereby the thinnest line represents a correlation 
of r = -1 and the thickest line represents a correlation of r = 1. The color of each module node 
represents the ASD meta-module it belongs to. This was done to represent where the ASD meta-
modules are located within the Control graph. The color-filled outlines around collections of modules 
represent the meta-module boundaries. Modules with a solid red or blue circle around it are modules 
that were identified in Figs 1-2 as being replicably dysregulated in ASD across both datasets (blue = 
ASD-downregulated; red = ASD-upregulated).  The dotted circles represent differentially expressed 
modules (FDR q<0.05) present only within that specific dataset (see Table S3). Panels C and D show 
the differentially expressed modules only as correlation matrices. The strength of the correlation is 
shown within each cell and via the coloring (hot colors indicating higher correlations, cooler colors 
indicating lower correlations). The red outline denotes ASD-upregulated modules while the blue 
outline denotes ASD-downregulated modules. 
 

Within the Gupta dataset, this phenomenon of highly correlated differentially 
expressed modules as well as strong negative correlations between upregulated and 
downregulated modules is already present in Controls and stays present in ASD, 
though quantitative strengthening of such connectivity in ASD does not occur (within 
downregulated modules p = 0.957; within upregulated modules p = 0.327; between 
downregulated and upregulated modules p = 0.667; Fig 5C-D). Despite these 
correlations being already present in Controls and not quantitatively strengthened in 
ASD, there is further evidence for a qualitative difference in ASD with regards to how 
these modules cluster within meta-modules. Within Control meta-modules there are 
mixtures of modules that are either differentially expressed or not and in different 
directions (i.e. the Control skyblue meta-module contains both downregulated and 
upregulated modules as well as modules with no differential expression; Fig 5A). 
However, in ASD, the composition of meta-modules is much more homogeneous 
with respect to differentially expressed modules of similar directionality and less 
frequent presence of non-differentially expressed modules (Fig 5B).  
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Fig 5:  Eigengene networks, meta-modules, and correlations between dysregulated modules within 
the Gupta dataset. This figure shows eigengene networks as weighted graphs in a spring embedded 
layout for the Gupta Control (A) or ASD (B) groups. The spring embedded layout places modules 
(nodes within the graphs) that are highly connected as much closer in space whereas modules that are 
less highly connected are repelled away from each other.  The thickness of the connections (i.e. edges) 
between modules are scaled to connection strength whereby the thinnest line represents a correlation 
of r = -1 and the thickest line represents a correlation of r = 1. The color of each module node 
represents the ASD meta-module it belongs to. This was done to represent where the ASD meta-
modules are located within the Control graph. The color-filled outlines around collections of modules 
represent the meta-module boundaries. Modules with a solid red or blue circle around it are modules 
that were identified in Figs 1-2 as being replicably dysregulated in ASD across both datasets (blue = 
ASD-downregulated; red = ASD-upregulated).  The dotted circles represent differentially expressed 
modules (FDR q<0.05) present only within that specific dataset (see Table S3). Panels C and D show 
the differentially expressed modules only as correlation matrices. The strength of the correlation is 
shown within each cell and via the coloring (hot colors indicating higher correlations, cooler colors 
indicating lower correlations). The red outline denotes ASD-upregulated modules while the blue 
outline denotes ASD-downregulated modules. 
 

We next asked the question of whether these highly connected differentially 
expressed modules interact at the higher-level of protein-protein interactions. Using 
the STRING database (STRINGdb v10)32 we discovered strong evidence that these 
collections of dysregulated modules possess a high degree of physical and functional 
associations in protein-protein interaction networks (downregulated modules: 
observed interactions = 10206, expected interactions = 8040, p = 0; upregulated 
modules: observed interactions = 15491, expected interactions = 11900, p = 0). This 
result further bolsters the idea that these collections of highly connected differentially 
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expressed modules form emergent properties. We then asked what biological 
processes might characterize such emergent properties. Leveraging the hierarchical 
structure of Gene Ontology (GO) we input merged lists of all differentially expressed 
modules together and computed GO biological process gene set enrichment and then 
clustered the top 50 enriched GO terms by semantic similarity. Here we find that 
combining highly connected downregulated modules results in enrichment in a 
variety of synaptic and neural developmental processes (e.g., neuron projection, 
axonogenesis, neuron differentiation, regulation of cell growth) as well as very broad 
terms implicating higher organism-level disruption in cognition and behavior (Fig 
6A). In contrast, combining highly connected upregulated modules results in 
enrichments in a variety of catabolic and viral processes, translation and protein 
targeting and localization, interferon signaling, glia processes, apoptosis and others 
(Fig 6B). These results suggest that highly connected differentially expressed modules 
spanning multiple cell types and cellular compartments, also highly interact at the 
protein level and result in emergent phenomena that are not visible simply by 
examining modules in isolation. 
 

 
Fig 6: GO biological process enrichments for collections of downregulated or upregulated modules. 
This plot shows GO biological process enrichment terms for the combination of all downregulated (A) 
or upregulated (B) modules. The top 50 GO terms ranked by fold enrichment were input into 
REVIGO33 in order to cluster GO terms by semantic similarity. These clusters are shown in different 
colors along with a descriptive label for each cluster. Plotted on the x-axis of each plot is the 
Bonferroni-corrected –log10 p-value for each term. 

 
Disrupted Connectivity Between Modules and Meta-Modules 
 

Fig 4A-B and Fig 5A-B show a number of interesting shifts in topology of 
eigengene networks, particularly with respect to changes in the composition of 
modules within meta-modules in ASD and Controls. Thus, we next examined 
quantitatively whether these topological changes with respect to meta-modular 
organization are disrupted in ASD. In particular, we assessed disruptions of 
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connectivity between a particular module and other modules within or outside of its 
normative meta-module boundaries. Within the Voineagu dataset we find a specific 
subset of 4 modules (M25, M9, M21, and M23) that show ASD-decreased 
connectivity within normative meta-module boundaries. These same modules along 
with one other module (M16) also show enhanced connectivity outside of normative 
meta-module boundaries in ASD (Fig 7C-D). M25 is on-average upregulated in 
expression in ASD and heavily enriched in translation initiation genes (i.e. ribosomal 
proteins) (Fig 1), while M9, M21, and M23 are all members of a distinct meta-module 
in ASD (purple) highly enriched in synaptic processes (Table S1) and M9 is also on-
average downregulated in expression in ASD (Fig 2). These disruptions in meta-
module connectivity are easily visualized in the correlation matrix in Fig 7A-B. For 
instance, M25’s connections within and outside of the normative blue meta-module 
are reversed in ASD compared to Controls. A similar though less obvious reversal of 
connectivity strength in ASD can also be seen for M9 and M13.   
 

 
Fig 7:  Module and meta-module connectivity differences within the Voineagu dataset. Panels A and 
B illustrate eigengene networks as robust ME partial correlation matrices for the Voineagu Control 
(A) and ASD (B) groups. Red coloring within the matrices indicates increasing positive correlation 
strength, while blue coloring indicates increasing negative correlation strength; see colorbar for key 
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indicating how color corresponds to correlation strength. Matrices have rows and columns ordered by 
hierarchical clustering based on the Control group and the individual module numbers as well as 
meta-module colors are shown below the dendrograms. Normative (Control-defined) meta-module 
boundaries are also clearly delineated by the black outlines over cells in the correlation matrices.  Any 
cells with green outlines are those specific between-module connectivity comparisons that differed 
between-groups. Panels C and D show within (C) and outside (D) normative meta-module connectivity 
strength for each seed module depicted on the y-axis. The normative (Control-defined) meta-modules 
are denoted by the color of the rectangular outlines on the y-axis. Connectivity strength is depicted on 
the x-axis and for within meta-module connectivity is defined as the sum of connection strength 
between the seed module and all other modules within the seed module’s normative meta-module. 
Outside meta-module connectivity strength is defined as the sum of connection strength between the 
seed module and all other modules outside of the seed module’s normative meta-module. Turquoise 
bars indicated Controls and salmon colored bars indicate ASD. The stars next to specific modules 
indicate a significant between-group difference in connectivity strength. 
 

Upon diving specifically into inter-modular connectivity differences we 
further observed specific between-module connections that are prominently affected 
in ASD (Fig 7A-B). The ASD-upregulated M25 translation initiation module is 
normatively negatively correlated with the prominent ASD-upregulated M27 
interferon signaling and M1 cell signaling (i.e. NOTCH, Hedgehog signaling), axonal 
guidance, cytoskeleton, and cell cycle enriched modules. However, in ASD, these 
negative correlations significantly reverse and turn into positive correlations, 
suggesting some abnormally heightened integration between these distinct biological 
processes/pathways. In another example, the ASD-downregulated M9 synaptic 
module is normatively positively correlated with M1, M15, and M16, but these 
relationships reverse into negative correlations in ASD. This suggests that what 
should typically be a natural integration between these modules ends up being an 
abnormal lack of integration in ASD. Furthermore, M9’s connectivity with another 
ASD-downregulated synaptic module (M3) is normatively negative, yet in ASD is 
highly positively correlated. This is a particularly interesting effect given that both 
modules are on-average downregulated in ASD and share many synaptic enrichment 
terms (synaptogenesis, synaptic contact, synaptic vesicle exocytosis), yet are 
normatively lacking integration, but in ASD seem to be working together in tandem. 
Finally, while there is little to no normative relationship between the M9 synaptic 
module and the ASD-upregulated M27 interferon signaling module, in ASD this 
relationship turns into a strong negative correlation. This effect could potentially 
indicate an abnormal immune-synapse interaction between upregulation of 
inflammation interferon signaling processes and downregulation of important 
synaptic processes in ASD. 
 

Whereas the Voineagu dataset could be characterized by a small subset of 
modules that differed in within and outside meta-module connectivity, a vast majority 
of the modules in the Gupta dataset show such connectivity differences.  Twenty-four 
out of all 27 modules showed evidence of decreased within meta-module connectivity 
and 18/27 modules were enhanced in outside meta-module connectivity in ASD (Fig 
8C-D). This more global disorganization of eigengene network topology suggests that 
many aspects of how modules interact are disrupted in ASD (Fig 8A-B). However, 
upon diving into inter-module connectivity analyses, we found very few differences 
given the numerous shifts observed at the level of within and outside meta-module 
connectivity differences.  Most of the specific between-module connectivity 
differences involved synaptic (M3, M5, M13), proteolysis, protein folding, and cell 
cycle (M11), and translation (M6) modules (Fig 8A-B).  Here we find that this subset 
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of modules is normatively positively connected, but in ASD is abnormally negatively 
connected.  This potentially indicates that normative interactions between these 
processes are potentially shut off or are disrupted in some fashion in ASD. For the 
Gupta dataset, it appears that overall eigengene network topology is reorganized in 
ASD in subtle ways that are spread across many modules and cannot be tied to very 
pronounced and specific differences within specific subsets of modules. 
 

 
Fig 8:  Module and meta-module connectivity differences within the Gupta dataset. Panels A and B 
illustrate eigengene networks as robust ME partial correlation matrices for the Gupta Control (A) and 
ASD (B) groups. Red coloring within the matrices indicates increasing positive correlation strength, 
while blue coloring indicates increasing negative correlation strength; see colorbar for key indicating 
how color corresponds to correlation strength. Matrices have rows and columns ordered by 
hierarchical clustering based on the Control group and the individual module numbers as well as 
meta-module colors are shown below the dendrograms. Normative (Control-defined) meta-module 
boundaries are also clearly delineated by the black outlines over cells in the correlation matrices.  Any 
cells with green outlines are those specific between-module connectivity comparisons that differed 
between-groups. Panels C and D show within (C) and outside (D) normative meta-module connectivity 
strength for each seed module depicted on the y-axis. The normative (Control-defined) meta-modules 
are denoted by the color of the rectangular outlines on the y-axis. Connectivity strength is depicted on 
the x-axis and for within meta-module connectivity is defined as the sum of connection strength 
between the seed module and all other modules within the seed module’s normative meta-module. 
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Outside meta-module connectivity strength is defined as the sum of connection strength between the 
seed module and all other modules outside of the seed module’s normative meta-module. Turquoise 
bars indicated Controls and salmon colored bars indicate ASD. The stars next to specific modules 
indicate a significant between-group difference in connectivity strength. 
 
 
Discussion 
 
 Here we provide the first detailed characterization of how the ASD cortical 
transcriptome is hierarchically disorganized both at the level of specific co-expression 
modules and at higher levels of eigengene network organization (i.e. connectivity 
between modules and meta-modules).  At the level of individual co-expression 
modules, we expand on prior work5, 6 by pinpointing several previously implicated 
and novel co-expression modules that are replicably dysregulated on-average across 
the datasets. Prior work has established that synaptic and immune/inflammation co-
expression modules are dysregulated in ASD5, 6, 8, and here re-analysis of this data in 
a consensus WGCNA framework conceptually replicates these findings. Extending 
this past work, we have specifically compared identical modules across datasets and 
show quantitative Bayesian evidence confirming that such findings are indeed 
replicable signals. Our work here also highlights the importance of several novel 
modules that are not implicated by prior work.  First, unlike prior pinpointing of only 
one or two modules, we have uncovered evidence for multiple downregulated 
synaptic modules and multiple upregulated immune/inflammation modules.  The fact 
that these dysregulated signals do not converge into one module, but rather fractionate 
into several distinct modules is important as there may be subtle distinctions between 
them, particularly in how they interact with various other biological processes and 
pathways and also for the different cell types and cellular compartments they are 
associated with.  For example, M3 and M9 modules are on-average replicably 
downregulated in ASD and show similar biological process enrichment terms for 
synaptic processes. However, the specific roles of M3 and M9 may be quite different 
in a systems biological context and the specificity of these roles only becomes 
apparent by looking at enrichment in different cell type/compartment markers as well 
different interactions between modules. M3 is primarily enriched in neuronal markers, 
whereas M9 is specifically enriched in synaptic and postsynaptic density markers. 
Normatively these modules are negatively correlated in the Voineagu dataset, yet in 
ASD this relationship is significantly reversed to positive correlations. Within the 
context of normative brain development, these different modules may have unique 
roles to play but in ASD may be pulled together by some emergent 
pathophysiological process taking place at the neuron, synapse, and postsynaptic 
density. Thus, these findings are an important distinction from prior work that 
implicated only a single synaptic module showing such ASD-downregulation. 
Furthermore, putting such results into the context of hierarchical interactions at the 
eigengene network level is also critical, as it enables a better bird’s eye view of how 
such multiple modules may interact differently, despite on-average showing the same 
directionality of a between-group difference and possessing similar biological process 
enrichment terms. 
 
 The findings of multiple types of ASD-upregulated immune/inflammation 
modules are also novel distinctions from past work. Although prior work has 
implicated interferon signaling, particularly with respect to M2 microglia markers6, 
here we find evidence for 2 upregulated interferon signaling modules (M24, M27). 
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These modules differentiate by M1 and M2 microglia activation states, with M27 
enriched in M1 microglia markers while M24 is enriched in M2 microglia markers. 
Between-module connectivity evidence also suggests that these two interferon 
signaling modules are disrupted in different ways. M27 is abnormally connected to an 
important ASD-upregulated translation initiation (M25) and ASD-downregulated 
synaptic module (M9). Given the enrichment in M27 for M1 microglia activation 
markers, this evidence suggests that cytotoxic M1 microglia processes may be 
affecting synaptic proteins in ASD. On the other hand, M24 shows intact connectivity 
between M25 and M9, but aberrant connectivity between other modules (M2, M22). 
These results suggest that upregulated interferon signaling can be linked to both M1 
and M2 microglia phenotypes and likely supports the idea that such aberrant 
processes may have differing impact. In addition to the multiple dysregulated 
interferon signaling modules, we have also uncovered novel evidence for ASD-
upregulation of an immune/inflammation module (M12) enriched in the complement 
system and phagocytosis processes and M1 microglia markers. In conjunction with 
effects from interferon signaling modules, the addition of the complement system 
may be of particular importance given the known links between the complement 
system and synaptic pruning27, 28 as well as enhancing pro-inflammatory states of 
microglia activation in ASD34, 35, 36. Recently, the complement system has been noted 
as a prominent player in the pathophysiology of schizophrenia, particularly for its role 
in synaptic pruning37. In the larger context of eigengene networks it is interesting that 
all of these important immune/inflammation modules are members of the same meta-
module in ASD and that such a meta-module also includes other prominent modules 
such as the ASD-upregulated M25 translation initiation module. The current data 
present a role for complement system signaling alongside interferon signaling and 
other immune processes working together and potentially in concert with other 
important modules relating to translation and also for their role in various types of 
microglia activation states. 
 
 Translation has been an important topic in ASD primarily because of work on 
syndromic forms of autism related to mutations in FMR1, TSC1/2, and PTEN38, 39, as 
well as the important cap-dependent translation gene EIF4E40, 41, 42, 43. However, none 
of this work has specifically implicated ribosomal proteins themselves and no prior 
work on the cortical transcriptome in ASD has specifically implicated upregulation of 
translation initiation signals. Here we highlight one particularly prominent and novel 
ASD-upregulated module (M25) with heavy enrichment in translation initiation that is 
driven by a large number of ribosomal proteins for the 40S and 60S ribosomal 
subunits. A subset of these genes coding for ribosomal proteins also drive the 
enrichment in postsynaptic density markers. This module was also heavily 
dysregulated with respect to connectivity within and outside of normative meta-
modular boundaries and showed specific abnormal interactions with other ASD-
upregulated modules M1 and M27. Additionally, this translation module was also a 
member of a meta-module in ASD that was composed of other upregulated 
immune/inflammation modules (M12, M24, M27), suggesting that it may play an 
important role integrating with upregulated immune/inflammation processes in ASD. 
Thus, not only have we discovered evidence for a novel and important upregulated 
signal in the ASD cortical transcriptome, but this finding also may have important 
implications with regards to its potential as a cross-cutting influence on other 
pathophysiological processes in ASD.  From a systems point of view, work on blood 
leucocyte gene expression has also uncovered upregulated translation initiation as a 
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prominent signal in young toddlers with ASD and this signal is present alongside 
other upregulated immune/inflammation signals, particularly interferon signaling and 
phagocytosis3. The presence of these dysregulated and highly connected translation 
initiation and immune/inflammation signals across brain and blood is potentially 
important because it may signal a unique opportunity to assay brain-relevant 
dysregulation in peripheral tissues and in-vivo in living patients. This peripheral 
window into potentially brain-relevant dysfunction that can be assayed in living 
patients may be particularly important given the recent discovery of a direct linkage 
between the brain and lymphatic vessels of the immune system44. Investigating this 
possible peripheral linkage to brain-relevant dysfunction in living patients using in-
vivo techniques like functional and structural neuroimaging45 will be an important 
next step in understanding whether peripherally dysregulated signals in blood play 
some role in linking directly to important macro-level neural systems dysfunction in 
living patients46. Another important direction for future work on this topic could be to 
better elucidate the role of these novel ribosomal protein genes via work with in-vivo 
or in-vitro models of key ribosomal proteins that are hub genes of this important M25 
translation initiation module (see Table S2). 
 

By identifying disruption in the interaction between-modules, this work 
presents novel insights into how the transcriptome is hierarchically disrupted in ASD. 
We show that a number of specific modules that are on-average up- or downregulated 
in ASD are also highly correlated and that this correlation can become stronger in 
ASD. These modules also highly interact at the protein level and their disruption 
results in emergent phenomenon at a systems level that are not adequately 
characterized by viewing the modules in isolation. As a whole, the collection of ASD-
downregulated modules appears to involve a widespread number of synaptic and 
broader neural developmental processes. These broader neural developmental 
processes in axonogenesis, positive regulation of cell growth, and regulation of 
neuron projection development are key new additions to previously implicated 
synaptic processes known to be dysregulated in ASD in prior transcriptome studies of 
ASD5, 6. Relative to synaptic processes, these processes have developmentally prior 
roles that trace back to as early as the end of the first trimester of fetal brain 
development47 and could have key roles in ASD16, 45, 48, 49. The nexus of both synaptic 
and these other neural developmental processes suggest an ongoing pathophysiology 
that extends throughout life in ASD and these processes may have embedded roles 
very early in brain development16, 49, 50. 

 
Alongside this downregulation of important synaptic and neural 

developmental processes are coordinated upregulated biological phenomena (i.e. 
immune/inflammation processes, translation, etc) that when put together, could shed 
significant insights into higher-level systems biological disruptions in the ASD brain. 
To our knowledge, the novel signal of upregulated catabolism has not been implicated 
in any past work. Additionally, there are novel upregulated processes involved in 
protein targeting and localization that can be intertwined with translation processes 
(e.g., SRP-dependent cotranslational protein targeting to membrane). Finally, we also 
found enrichment in several viral processes, interferon signaling, glia-relevant, and 
apoptosis processes, which in combination with several of these other phenomena 
(e.g., catabolism, translation, protein targeting and localization) suggest a highly 
coordinated set of processes affecting multiple cell types/compartments, but which 
may have substantial impact on those downregulated synaptic and neuronal processes 
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– as evidenced by the strong negative correlations between upregulated and 
downregulated modules. This evidence is generally in agreement with past theoretical 
ideas16 that suggested that early manifestations of pathophysiology potentially 
emerging in fetal development could then trigger a later corrective phase of 
development characterized by downregulation of synaptic and neuronal processes and 
potential upregulation immune/inflammation (e.g., microglia activation)34, 35, 36, 
apoptotic, and other processes. A challenge for future research will be to unpack the 
relationships between known and novel upregulated processes with downregulated 
synaptic and neural developmental processes. However, it is important to underscore 
that these phenomena are emergent from the highly coordinated interactions between 
multiple dysregulated co-expression modules, and are not obvious by simply targeting 
specific modules and looking at such elements in isolation. Thus, these new insights 
can not only produce new insights about systems level phenomena in ASD, but they 
can also feedback into reductionist frameworks that can produce significant insight 
into specific mechanisms (e.g., targeting hub genes for many of the dysregulated 
modules we have implicated; Table S2). 

 
Finally, there are some caveats and limitations to consider in interpreting the 

results. First, the two datasets are different on a number of levels. Datasets were 
different with respect to the brain regions sampled, age range, and with regard to how 
gene expression was measured (i.e. microarray vs. RNAseq). Gene expression within 
specific subsets of genes can vary widely across brain regions51. We have made 
analytic attempts to reduce the effect of this heterogeneity via including brain region 
as a covariate but also in our approach to using consensus WGCNA to ensure that the 
detected modules are indeed present in both datasets despite differences in the brain 
regions sampled. Given the current scarcity of available post-mortem tissue, it is 
unlikely that this factor could be eliminated until large enough data exists to design 
definitive studies that can treat brain region as a separate variable of interest. Age 
ranges also varied across datasets, with the Gupta dataset possessing a much wider 
age range of individuals that extends into early childhood. It is well understood that 
cortical gene expression changes across the lifespan52 and may interact in interesting 
ways with ASD diagnosis8. These age-related changes are effects that we would 
ideally one day like to study with large sample sizes. However, again due to the 
limited post-mortem data currently available, these types of studies are not attainable 
at large sample sizes that are well powered to identify very subtle effects. In the 
analyses, we have attempted to covary for age-related variation in order to reduce the 
impact of this variable on our results. However, because the majority of individuals in 
the sample are within the adolescent to adult age-range, it is likely that very different 
results would be observed at much earlier ages and consequently the interpretations 
we make of such results are restricted primarily to effects that show persistent 
pathophysiology throughout the life span in ASD16.  It is worth noting that despite all 
of these differences, our analyses investigating replicable differential expression of 
gene modules demonstrates that some replicable signals are still present and robust 
enough to pop out despite all these factors. The success of this specific aspect of the 
analysis could be due in part to the fact that consensus WGCNA ensures that the 
detected modules are present in both datasets, and thus helps in making comparisons 
between datasets on specific co-expression modules. However, consensus WGCNA 
will not guarantee that datasets will have similar eigengene network and meta-
modular organization, and here we found little evidence of preservation across 
Control datasets (Fig S2).  This issue limits our ability to make some inferences about 
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replication with respect to the eigengene network results and instead these results 
should be treated as two separate looks at how eigengene network and meta-modular 
organization could vary in ASD.  
 

In summary, our analyses highlight hierarchical disruption of the cortical 
transcriptome in ASD. Our approach allows for a better bird’s eye view of how 
multiple pathophysiological processes may operate in ASD. This perspective may 
have important translational and clinical implications as well as potential to help 
enable cross-level work connecting systems biology with systems neuroscience. 
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Methods 
 
Datasets 
 

We re-analyzed two existing datasets probing cortical gene expression in 
ASD. The first dataset utilized microarrays on frontal (BA9; n =16 ASD; n = 16 
Controls) and temporal cortex (BA 41/42; n = 13 ASD; n= 13 Controls) tissue and 
was first described by Voineagu and colleagues (Gene Expression Omnibus (GEO) 
Accession ID: GSE28521)5.  The second dataset utilized RNAseq on frontal (BA10, n 
= 6 ASD, n = 8 Controls; BA44, n = 16, n = 11 Controls) and occipital cortex (BA19, 
n = 24 ASD, n = 38 Controls) tissue and was first described by Gupta and colleagues 
(http://www.arkinglab.org/resources/)6. These datasets were selected because they 
were relatively the largest studies in the literature. For each dataset we utilized the 
already pre-processed and quality controlled datasets publicly available in order to be 
as congruent as possible with prior published work. For genes with multiple probes in 
the Voineagu dataset we selected the probe with the highest mean expression value 
across the full dataset using the collapseRows function in R53. Within the Gupta 
dataset, missing values were present for some genes in some subjects and these 
missing values were imputed using the impute.knn function within the impute R 
library. This procedure was done in order to maximize the total number of genes 
possible for inclusion into further WGCNA analysis. All further analyses utilize a 
subset of the 8,075 genes that were common across both datasets. 
 
Weighted Gene Co-Expression Network Analysis (WGCNA) 

 
Co-expression analysis was implemented with the WGCNA package in 

R54.   A consensus WGCNA analysis was implemented in order to detect consensus 
modules for cross-dataset comparisons (implemented with the 
blockwiseConsensusModules function)29. Consensus WGCNA analysis consisted of 
construction of correlation matrices, which were then converted into adjacency 
matrices that retain information about the sign of the correlation (i.e. signed networks 
use a transformation of 0.5*(r+1)).  Adjacency matrices were raised to a soft power 
threshold selected based on an analysis across various soft power thresholds and 
choosing the soft power threshold based on a measure of R2 scale-free topology 
model fit that maximized and plateaued well above 0.8 (i.e. soft power = 14 for both 
datasets; see Fig S1).  Soft power thresholded adjacency matrices were then converted 
into a topological overlap matrix (TOM) and a TOM dissimilarity matrix (i.e. 1-
TOM). The TOM dissimilarity matrix was then input into agglomerative hierarchical 
clustering using the average linkage method.  Gene modules were defined from the 
resulting clustering tree and branches were cut using a hybrid dynamic tree cutting 
algorithm (deepSplit = 2)55. Modules were merged at a cut height of 0.2 and the 
minimum module size was set to 30. For each gene module a summary measure 
called the module eigengene (ME) was computed as the first principal component of 
the scaled (standardized) module expression profiles.  Genes that cannot be clustered 
into any specific module are left within the M0 module, and this module is not 
considered in any further analyses.  
 

To test for differential expression at the level of ME variation we used linear 
mixed effect models implemented with the lme function in the nlme R library. These 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2016. ; https://doi.org/10.1101/042937doi: bioRxiv preprint 

https://doi.org/10.1101/042937
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

	   20 

models included diagnosis as the fixed effect of interest and additionally included age, 
sex, brain region, RIN, PMI, and median 5’ to 3’ prime bias (specific to Gupta 
dataset) as fixed effect covariates. Brain region was also included in each model as a 
within-subject random effect modeled with random intercepts to account for the 
correlation of multiple brain regions from the same individual. Sample collection site 
in the Gupta dataset was highly correlated with diagnosis (Spearman rho = -0.51) and 
was not included as a covariate in these specific analyses in order to guard against the 
possibility that its inclusion would eliminate a large degree of variability associated 
with diagnosis. To identify MEs with replicable differential expression across both 
datasets, we utilized t-statistics from the linear mixed models to compute replication 
Bayes Factor (repBF) statistics56 that quantify evidence for or against replication (see 
here for R code: http://bit.ly/1GHiPRe). Replication Bayes Factors greater than 10 are 
generally considered as strong evidence for replication. To identify replicable 
modules we first considered modules that possessed a significant effect passing 
FDR57 q<0.05 within the Voineagu dataset and then also required these modules 
possess significant effects in the Gupta dataset (FDR q<0.05) and that this evidence 
quantitatively produces evidence for replication with a replication Bayes Factor 
statistic > 10. 
 
Gene Set Enrichment Analyses 
 

To characterize specific biological processes for all modules, we performed 
process level (i.e. Process Networks) enrichment analyses within the MetaCore 
GeneGO software platform. To identify emergent processes from collections of 
highly correlated dysregulated modules we used GO biological processes enrichment 
analysis (AmiGO 2; http://amigo.geneontology.org/) in order to leverage GO’s 
relatively broader hierarchical structure (compared to MetaCore GeneGO). 
REVIGO33 was then utilized on the top 50 GO terms ranked by fold enrichment in 
order to assist in reducing the large number of GO terms into semantically similar 
clusters of terms.  We manually edited the REVIGO output by inserting custom 
descriptive terms for each cluster and to correct for obvious errors in semantic 
clustering (e.g., a term like ‘synaptic organization’ occurring outside of the synaptic 
cluster). 

 
To characterize differentially expressed modules by enrichments in specific 

cell types (neuron, astrocyte, oligodendrocyte, M1 and M2 microglia states), and 
cellular compartments (synapse, postsynaptic density, ribosomal subunits), we 
utilized lists of markers previously used by Gupta and colleagues6. The exception to 
this was lists of ribosomal subunit markers. These were obtained from lists contained 
in GO. Enrichment tests were hypergeometric tests (i.e. sum(dhyper()) in R) using the 
total number of genes (8,075) as the background pool total.  

 
Eigengene Network Analysis 
 
 Eigengene network analysis proceeded by constructing robust ME partial 
correlation matrices separately for each group. These matrices were computed in 
MATLAB using robust regression to be insensitive to outliers58 and the robust 
regression models incorporated the removal of variation from nuisance covariates (i.e. 
age, sex, RIN, PMI, median 5’ to 3’ bias, brain region, site).  Partial correlation 
matrices were then converted into adjacency matrices that retain information about 
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the sign of the correlation. ME adjacency matrices were converted into topological 
overlap dissimilarity matrices (1-TOM) and then were inserted into agglomerative 
hierarchical clustering using the ward.D linkage method. The resulting cluster tree 
was then cleaved into meta-modules using the same dynamic hybrid tree cutting 
algorithm utilized in WGCNA. We used a deepSplit parameter of 3 since this 
selection was optimal over and above other options for being able to accurately 
capture the major branch divisions that are apparent upon visual inspection of the 
dendrograms. 
 
 To visualize eigengene network topology we utilized the qgraph library in R59 
to construct weighted graphs of the ME adjacency matrices for each group. These 
graphs are depicted using a spring embedded layout algorithm60 whereby highly 
connected nodes are attracted to each other and less highly connected nodes are 
repulsed away from each other. Because these plots are constructed from the 
adjacency matrices, distance is furthest apart when the correlation is r = -1 and closest 
when r = 1.  
 
 All hypothesis tests on connectivity strength between replicable differentially 
expressed modules, within and outside meta-module connectivity, and specific inter-
modular (i.e. between-module) connectivity were implemented with permutation tests 
(10,000 iterations). The test statistic in each case was the difference in connectivity 
strength between ASD and Controls. On each iteration we randomized group labels 
and recomputed the test statistic. FDR57 q<0.05 was used as the threshold for multiple 
comparisons correction.   
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Figure Legends 

	  
Fig 1:  Upregulated gene co-expression modules in ASD. This figure shows gene 
co-expression modules that were on-average elevated in ME expression in ASD and 
in a replicable manner across datasets.  Each module has a dot-boxplot whereby each 
individual is represented by a dot and the central tendency (median) and dispersion 
(interquartile range) is shown with the boxplot.  Next to each dot-boxplot are the 
process-level enrichment terms passing FDR q<0.05 (limited to the top 10 terms) 
from MetaCore GeneGO.  The vertical black line on the enrichment bar plots 
represents p = 0.05. For each module, the replication Bayes Factor statistic (repBF) is 
cited above the scatter-boxplot (repBF > 10 indicates strong evidence for replication).  
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Fig 2:  Downregulated gene co-expression modules in ASD. This figure shows 
gene co-expression modules that were on-average decreased in ME expression in 
ASD and in a replicable manner across datasets.  Each module has a dot-boxplot 
whereby each individual is represented by a dot and the central tendency (median) 
and dispersion (interquartile range) is shown with the boxplot.  Next to each scatter-
boxplot are the process-level enrichment terms passing FDR q<0.05 (limited to the 
top 10 terms) from MetaCore GeneGO. The exception here is M26, whereby none of 
the terms passed FDR q<0.05. In this instance, we plot the first 5 terms for descriptive 
purposes. The vertical black line on the enrichment bar plots represents p = 0.05. For 
each module, the replication Bayes Factor statistic (repBF) is cited above the scatter-
boxplot (repBF > 10 indicates strong evidence for replication).  
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Fig 3:  Cell type/cellular compartment enrichments for dysregulated modules. 
This figure shows enrichments in a variety of cell types and cellular components for 
the modules that are replicably dysregulated in ASD. The left panel shows 
enrichments for downregulated modules, while the right panel shows enrichments for 
the upregulated modules. The coloring of the bars denote which specific module 
shows the enrichment and the color legend is shown in the bottom right box for each 
panel. The x-axis plots the –log10 p-values while the y-axis indicates the specific cell 
type or cellular compartment.  Next to each bar we indicate the enrichment odds ratio 
(OR). 
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Fig 4:  Eigengene networks, meta-modules, and correlations between 
dysregulated modules within the Voineagu dataset. This figure shows eigengene 
networks as weighted graphs in a spring embedded layout for the Voineagu Control 
(A) or ASD (B) groups. The spring embedded layout places modules (nodes within 
the graphs) that are highly connected as much closer in space whereas modules that 
are less highly connected are repelled away from each other.  The thickness of the 
connections (i.e. edges) between modules are scaled to connection strength whereby 
the thinnest line represents a correlation of r = -1 and the thickest line represents a 
correlation of r = 1. The color of each module node represents the ASD meta-module 
it belongs to. This was done to represent where the ASD meta-modules are located 
within the Control graph. The color-filled outlines around collections of modules 
represent the meta-module boundaries. Modules with a solid red or blue circle around 
it are modules that were identified in Figs 1-2 as being replicably dysregulated in 
ASD across both datasets (blue = ASD-downregulated; red = ASD-upregulated).  The 
dotted circles represent differentially expressed modules (FDR q<0.05) present only 
within that specific dataset (see Table S3). Panels C and D show the differentially 
expressed modules only as correlation matrices. The strength of the correlation is 
shown within each cell and via the coloring (hot colors indicating higher correlations, 
cooler colors indicating lower correlations). The red outline denotes ASD-upregulated 
modules while the blue outline denotes ASD-downregulated modules. 
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Fig 5:  Eigengene networks, meta-modules, and correlations between 
dysregulated modules within the Gupta dataset. This figure shows eigengene 
networks as weighted graphs in a spring embedded layout for the Gupta Control (A) 
or ASD (B) groups. The spring embedded layout places modules (nodes within the 
graphs) that are highly connected as much closer in space whereas modules that are 
less highly connected are repelled away from each other.  The thickness of the 
connections (i.e. edges) between modules are scaled to connection strength whereby 
the thinnest line represents a correlation of r = -1 and the thickest line represents a 
correlation of r = 1. The color of each module node represents the ASD meta-module 
it belongs to. This was done to represent where the ASD meta-modules are located 
within the Control graph. The color-filled outlines around collections of modules 
represent the meta-module boundaries. Modules with a solid red or blue circle around 
it are modules that were identified in Figs 1-2 as being replicably dysregulated in 
ASD across both datasets (blue = ASD-downregulated; red = ASD-upregulated).  The 
dotted circles represent differentially expressed modules (FDR q<0.05) present only 
within that specific dataset (see Table S3). Panels C and D show the differentially 
expressed modules only as correlation matrices. The strength of the correlation is 
shown within each cell and via the coloring (hot colors indicating higher correlations, 
cooler colors indicating lower correlations). The red outline denotes ASD-upregulated 
modules while the blue outline denotes ASD-downregulated modules. 
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Fig 6: GO biological process enrichments for collections of downregulated or 
upregulated modules. This plot shows GO biological process enrichment terms for 
the combination of all downregulated (A) or upregulated (B) modules. The top 50 GO 
terms ranked by fold enrichment were input into REVIGO33 in order to cluster GO 
terms by semantic similarity. These clusters are shown in different colors along with a 
descriptive label for each cluster. Plotted on the x-axis of each plot is the Bonferroni-
corrected –log10 p-value for each term.  
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Fig 7:  Module and meta-module connectivity differences within the Voineagu 
dataset. Panels A and B illustrate eigengene networks as robust ME partial 
correlation matrices for the Voineagu Control (A) and ASD (B) groups. Red coloring 
within the matrices indicates increasing positive correlation strength, while blue 
coloring indicates increasing negative correlation strength; see colorbar for key 
indicating how color corresponds to correlation strength. Matrices have rows and 
columns ordered by hierarchical clustering based on the Control group and the 
individual module numbers as well as meta-module colors are shown below the 
dendrograms. Normative (Control-defined) meta-module boundaries are also clearly 
delineated by the black outlines over cells in the correlation matrices.  Any cells with 
green outlines are those specific between-module connectivity comparisons that 
differed between-groups. Panels C and D show within (C) and outside (D) normative 
meta-module connectivity strength for each seed module depicted on the y-axis. The 
normative (Control-defined) meta-modules are denoted by the color of the rectangular 
outlines on the y-axis. Connectivity strength is depicted on the x-axis and for within 
meta-module connectivity is defined as the sum of connection strength between the 
seed module and all other modules within the seed module’s normative meta-module. 
Outside meta-module connectivity strength is defined as the sum of connection 
strength between the seed module and all other modules outside of the seed module’s 
normative meta-module. Turquoise bars indicated Controls and salmon colored bars 
indicate ASD. The stars next to specific modules indicate a significant between-group 
difference in connectivity strength. 
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Fig 8:  Module and meta-module connectivity differences within the Gupta 
dataset. Panels A and B illustrate eigengene networks as robust ME partial 
correlation matrices for the Gupta Control (A) and ASD (B) groups. Red coloring 
within the matrices indicates increasing positive correlation strength, while blue 
coloring indicates increasing negative correlation strength; see colorbar for key 
indicating how color corresponds to correlation strength. Matrices have rows and 
columns ordered by hierarchical clustering based on the Control group and the 
individual module numbers as well as meta-module colors are shown below the 
dendrograms. Normative (Control-defined) meta-module boundaries are also clearly 
delineated by the black outlines over cells in the correlation matrices.  Any cells with 
green outlines are those specific between-module connectivity comparisons that 
differed between-groups. Panels C and D show within (C) and outside (D) normative 
meta-module connectivity strength for each seed module depicted on the y-axis. The 
normative (Control-defined) meta-modules are denoted by the color of the rectangular 
outlines on the y-axis. Connectivity strength is depicted on the x-axis and for within 
meta-module connectivity is defined as the sum of connection strength between the 
seed module and all other modules within the seed module’s normative meta-module. 
Outside meta-module connectivity strength is defined as the sum of connection 
strength between the seed module and all other modules outside of the seed module’s 
normative meta-module. Turquoise bars indicated Controls and salmon colored bars 
indicate ASD. The stars next to specific modules indicate a significant between-group 
difference in connectivity strength. 
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Supplementary Figures 
 
 

 
Fig S1:  Scale-free topology model fit across a range of soft power thresholds 
 
This plot shows the scale-free topology model fit scores (R2) across a range of soft 
power thresholds. This analysis is done in order to choose a soft-power threshold to 
use in the main analyses.  As a rule, we picked the soft power threshold whereby 
scale-free topology model fit R2 is maximum and begins to plateau (i.e. soft power = 
14).   
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Fig S2:  Preservation of eigengene networks in the TD group 
 
Panel A shows the eigengene networks for Voineagu and Gupta datasets when the 
rows and columns of the matrix are ordered by meta-module clustering. Panel B 
shows the matrices when ordered only by the Voineagu TD dataset clustering. Panel 
C shows average preservation levels across each module.  Panel D shows preservation 
for all pairwise module comparisons. The plots in panels C and D were made using a 
modified version of the plotEigengeneNetworks function in the WGCNA R library. 
We modified this function to use ME robust partial correlation matrices. 
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Supplemental Tables 
 
Table S1:  Enrichments for all modules, meta-modules, and collections of 
downregulated and upregulated modules.  
 
Table S2:  Module membership and hub gene information for each module 
 
Table S3:  Full result table of analysis examining on-average differential 
expression in ME values. 
 
Table S4:  Cell type and cellular component enrichment information 
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