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Abstract 23	
  

Identical by descent (IBD) segments are used to understand a number of fundamental issues in 24	
  

genetics. IBD segments are typically detected using long stretches of identical alleles between 25	
  

haplotypes in whole-genome SNP data. Phase or SNP call errors in genomic data can degrade 26	
  

accuracy of IBD detection and lead to false positive calls, false negative calls, and under- or 27	
  

overextension of true IBD segments. Furthermore, the number of comparisons increases 28	
  

quadratically with sample size, requiring high computational efficiency. We developed a new 29	
  

IBD segment detection program, FISHR (Find IBD Shared Haplotypes Rapidly), in an attempt to 30	
  

accurately detect IBD segments and to better estimate their endpoints using an algorithm that is 31	
  

fast enough to be deployed on the very large whole-genome SNP datasets. We compared the 32	
  

performance of FISHR to three leading IBD segment detection programs: GERMLINE, 33	
  

refinedIBD, and HaploScore. Using simulated and real genomic sequence data, we show that 34	
  

FISHR is slightly more accurate than all programs at detecting long (>3 cM) IBD segments but 35	
  

slightly less accurate than refinedIBD at detecting short (~1 cM) IBD segments. Moreover, 36	
  

FISHR outperforms all programs in determining the true endpoints of IBD segments, which is 37	
  

important for several reasons. FISHR takes two to four times longer than GERMLINE to run, 38	
  

whereas both GERMLINE and FISHR were orders of magnitude faster than refinedIBD and 39	
  

HaploScore. Overall, FISHR provides accurate IBD detection in unrelated individuals and is 40	
  

computationally efficient enough to be utilized on large SNP datasets > 20,000 individuals. 41	
  

  42	
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Introduction 43	
  

Two haplotypes (homologous chromosomal segments of DNA) can be defined as being identical 44	
  

by descent (IBD) if they descend from a common ancestor without either haplotype experiencing 45	
  

an intervening recombination (Powell et al. 2010). Using this definition, IBD haplotypes are 46	
  

identical at all measured and unmeasured genetic polymorphisms except at sites harboring 47	
  

(typically very rare) mutations that arose on either haplotype since the last common ancestor. 48	
  

The probability of two individuals co-inheriting an IBD haplotype from a common ancestor at a 49	
  

given location is a function of the number of generations (g) since the common ancestor:50	
  

. Thus, siblings (g=1) have a 0.5 probability of sharing a segment IBD from 51	
  

one of their common ancestors (one parent) at a given genomic location, cousins (g=2) have a 52	
  

0.125 probability, second cousins (g=3) a .03125 probability, and so forth. Although this 53	
  

probability drops off rapidly as a function of generations since the common ancestor, when 54	
  

haplotypes are shared IBD, they can be quite long, even for distantly related pairs of individuals. 55	
  

Under Haldane’s (1919) model of recombination, the length of IBD haplotypes shared between 56	
  

two individuals is exponentially distributed with mean 100/2g centiMorgans (cM). Thus, 57	
  

although a pair of individuals sharing a common ancestor 15 generations ago is highly unlikely 58	
  

to share any IBD haplotypes from that ancestor, when they do, the expected length of the 59	
  

segment is ~3.3 cM. Given that the probability of two random individuals sharing at least one 60	
  

common ancestor within 15 generations is ~1 in even large, randomly mating populations (Keller 61	
  

et al. 2011),	
  a large number of IBD shared haplotypes around this length exist in any group of 62	
  

‘unrelated’ individuals of the same population. 63	
  

 64	
  

P(IBD | g) = 21−2g
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IBD shared haplotypes in samples with no known pedigree relatedness have been used for 65	
  

genotype imputation (Kong et al. 2008; Setty et al. 2011), IBD mapping (Vacic et al. 2014), 66	
  

heritability estimation (Browning and Browning 2013), phase inference (Kong et al. 2008), and 67	
  

inference of population structure (Palamara et al. 2012; Soi et al. 2011). Such IBD shared 68	
  

haplotypes are typically inferred from long stretches of identical alleles in phased, whole-69	
  

genome single nucleotide polymorphism (SNP) arrays, but accurate and efficient IBD detection 70	
  

from such data is difficult for several reasons. First, phase and SNP-call errors can split long IBD 71	
  

segments into two or more shorter segments or lead to artificial truncation of IBD segments. 72	
  

Such splitting and truncating of IBD segments can lead to failure to detect a segment altogether, 73	
  

due to the segment being shorter than a prespecified length threshold or due to the fact that 74	
  

shorter segments have lower posterior probabilities of being IBD, depending on the IBD 75	
  

detection algorithm. Thus, errors in SNP calling and phasing inflate false negative (miss) rates of 76	
  

IBD detection. Second, the sheer number of comparisons that must be made at each site (four 77	
  

comparisons between each pair of diploid individuals leads to a number of comparisons ~twice 78	
  

the squared sample size), combined with the low base rate of true IBD segments between pairs of 79	
  

unrelated individuals, means that a substantial fraction of called IBD segments can be false 80	
  

positives. Similar to the case of false negatives, a false positive can be due to either an entire 81	
  

called segment not being IBD or to a called segment being overextended in one or both 82	
  

directions. Finally, because of the computational complexity of IBD detection, algorithms that 83	
  

sacrifice speed for accuracy can be unusable on the large sample sizes (e.g., >50,000) currently 84	
  

being accumulated (e.g., Schizophrenia	
  Working	
  Group	
  of	
  Psychiatric	
  Genomics	
  Consortium 85	
  

2014; Sudlow et al. 2015). In a sample of 50,000 individuals, nearly 5 billion comparisons must 86	
  

be made per site. Thus, successful IBD detection programs must simultaneously meet a number 87	
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2016. ; https://doi.org/10.1101/042879doi: bioRxiv preprint 

https://doi.org/10.1101/042879
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   5	
  

of goals—computational efficiency, low false positive rates, low false negative rates, and 88	
  

accurate detection of IBD segment endpoints—that typically trade off with one another. 89	
  

 90	
  

Several programs have been developed to discover IBD segments in SNP datasets when 91	
  

expected pedigree relatedness is low. GERMLINE (Gusev et al. 2009), often considered the 92	
  

benchmark IBD discovery program, is computationally efficient and therefore usable on very 93	
  

large samples, but the literature has indicated that its accuracy is lower than more recently 94	
  

developed programs. Because GERMLINE is fast and can be run in a way that leads to few 95	
  

false-negative calls at the expense of many false-positive calls, two newer IBD detection 96	
  

programs that reportedly outperform GERMLINE in accuracy, refined IBD (rIBD; Browning 97	
  

and Browning 2011) and HaploScore (Durand et al. 2014), use GERMLINE to detect candidate 98	
  

IBD segments. These candidate IBD segments are found using GERMLINE parameters that are 99	
  

optimized for each program. They are then post-processed, by extending, removing, or slicing 100	
  

the candidate segments in the hope of providing more accurate detection of IBD segments. rIBD 101	
  

uses a probabilistic hidden Markov model to give each candidate IBD segment obtained from 102	
  

GERMLINE a posterior LOD score as to whether it is truly IBD or not. rIBD has a lower false-103	
  

positive rate than GERMLINE with only a modest increase in the false-negative rate, but it is 104	
  

computationally intensive and therefore has a very long runtime for large datasets. HaploScore 105	
  

uses information on the switch error rate and the SNP error rate to give a posterior probability of 106	
  

whether each candidate segment from GERMLINE is truly IBD or not.    107	
  

 108	
  

The current paper describes a new program, FISHR (Find IBD Shared Haplotypes Rapidly), we 109	
  

developed to have a computational efficiency comparable to GERMLINE with accuracy as good 110	
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as or better than rIBD or HaploScore. Importantly, because we had observed that existing 111	
  

programs tend either to over-extend true IBD segments or to split true IBD segments into 112	
  

multiple smaller ones, one of our central goals was to develop an algorithm that accurately 113	
  

determines the endpoints and hence the true lengths of IBD segments. This is important because 114	
  

bias in estimating the true length of IBD segments can lead to under- or over-estimates of 115	
  

heritability using IBD haplotypes, and inaccurate endpoint estimates can lead to decreased 116	
  

accuracy of imputation, phasing, and mapping near endpoints. As with rIBD and HaploScore, 117	
  

FISHR obtains candidate IBD segments by using GERMLINE. Segments can then be stitched 118	
  

together if separated by a small number of SNPs. After this, the number of “implied errors” 119	
  

(IE)—likely SNP call or phase errors—throughout the segment are counted, and the segment can 120	
  

then be shortened or removed entirely based on the number and location of the of IEs (see 121	
  

Methods). To analyze the programs, we compare the runtimes and offer extrapolated estimates 122	
  

for running them on large, whole-genome datasets. We then compare the positive predictive 123	
  

value (PPV, the proportion of called segments that are truly IBD) and sensitivity (the proportion 124	
  

of true IBD segments that are called) across a range of tuning parameters to explore the PPV-125	
  

sensitivity trade-off for each program. We also compare the bias, precision, and accuracy of 126	
  

endpoint detection of truly IBD segments across programs and explain how these are related to 127	
  

PPV and sensitivity depending on how these metrics are defined. Much of the apparent 128	
  

discrepancy in comparisons of IBD detection programs that exist in the literature can be 129	
  

explained by how researchers have decided how over- and underextensions of called segments 130	
  

affect PPV and sensitivity. 131	
  

 132	
  

Results 133	
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Comparison of run times 134	
  

Figure 1 presents the log2 runtimes of the four programs as a function of sample size for five 135	
  

sample sizes. We calculated runtimes based on the optimal parameters found for each of the 136	
  

programs as described below. Runtimes were averaged from three separate simulated 137	
  

subchromosomes that were on average 16 cM long and contained 1,185 SNPs each (see 138	
  

Methods). Because GERMLINE is used as a first step for FISHR, HaploScore and rIBD, the 139	
  

runtimes for those programs include the time it took GERMLINE to find the candidate segments 140	
  

as well. Whereas GERMLINE is run internally for rIBD, FISHR and HaploScore require 141	
  

GERMLINE to be run separately and with user-specified parameters. Thus, in the present 142	
  

manuscript, we used three different sets of GERMLINE parameters: those that optimized 143	
  

accuracy for GERMLINE when reporting GERMLINE results, those that did so for FISHR for 144	
  

FISHR results, and those that did so for HaploScore for HaploScore results. For this reason , the 145	
  

runtimes presented in Supplemental Table 1 show different runtimes for GERMLINE when run 146	
  

by itself than when used as a precursor program.  147	
  

 148	
  

GERMLINE was the fastest program to run at any of the sample sizes, with FISHR doubling to 149	
  

quadrupling its runtime at all sample sizes. Most of the increase in runtime for FISHR compared 150	
  

to GERMLINE was caused by using a smaller minimum cM threshold for the initial 151	
  

GERMLINE segment discovery, which is necessary in order for FISHR to stitch together any 152	
  

segments that GERMLINE splits apart. Both HaploScore and rIBD had runtimes hundreds to 153	
  

thousands of times longer than FISHR, with this ratio increasing with larger sample sizes for 154	
  

rIBD. To gauge how the programs performed on a realistic, large SNP dataset, we also calculated 155	
  

runtime on a sample of 17,093 individuals aggregated from four datasets (the Atherosclerosis 156	
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Risk in Communities cohort, the Coronary Artery Risk Development in Young Adults study, the 157	
  

controls from the Molecular Genetics of Schizophrenia study, and the GENEVA Genes and 158	
  

Environment Initiative in Type 2 Diabetes study; dbGap accessions phs000280.v2.p1, 159	
  

phs000285.v3.p2, phs000167.v1.p1, and phs000091.v2.p1, respectively) from the NIH Genotype 160	
  

and Phenotype database. Because IBD detection is typically done in parallel for each 161	
  

subchromosome arm, we analyzed the longest chromosome arm, 5q, which contained 19,772 162	
  

SNPs on the Affy 6.0 SNP array. When the threshold for segment length was set to 1 cM, 163	
  

GERMLINE took about 1.5 days to run, FISHR took about 6.5 days (including 5 days, 16 hours 164	
  

for GERMLINE initial candidate segment discovery), whereas both rIBD and HaploScore ran 165	
  

for nearly two months before the server required maintenance and the processes were stopped. 166	
  

From extrapolations of the runtimes on simulated data (Figure 1), we predict that HaploScore 167	
  

would have finished running in just over two months and rIBD would have required over a year 168	
  

to finish. 169	
  

 170	
  

Figure 1. Runtime in log2 seconds for FISHR, GERMLINE, HaploScore, and rIBD at sample 171	
  

sizes of 500, 1,000, 2,000, 4,000, and 8,000 averaged from three 16-cM simulated chromosomal 172	
  

segments consisting of 1,185 SNPs each. rIBD with a sample size of 8,000 ran for one month 173	
  

(~221 sec) before the server required maintenance and was shut down. 174	
  

 175	
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 176	
  

 177	
  

PPV and sensitivity in simulated data 178	
  

PPV and sensitivity are the most common metrics in this literature for comparing the accuracies 179	
  

of the programs, and so we focus on these for commensurability. An inherent tradeoff exists 180	
  

between the two metrics: conservative calling algorithms that call fewer IBD segments tend to 181	
  

have relatively high PPVs and low sensitivities, whereas more liberal calling algorithms that call 182	
  

more IBD segments tend to have relatively high sensitivities and low PPVs. Figure 2 illustrates 183	
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how we defined PPV and sensitivity depending on the degree to which called segments over- or 184	
  

underextend the endpoints of true IBD segments. For PPV, we first calculated the total length of 185	
  

overlap between each called segment and any corresponding true IBD segment(s) and divided 186	
  

this overlap by the length of each called segment. Thus, this proportion was 1 for the called 187	
  

segment in Figure 2A and for both of the called segments in Figure 2D, < 1 for the called 188	
  

segments in Figures 2B, 2C, and 2E, and 0 for called segments that did not overlap any true IBD 189	
  

segments. When a single called segment overlapped multiple true IBD segments (Figure 2E), 190	
  

overlap was defined as the sum of the overlapping lengths. PPV was then calculated as the 191	
  

average of these proportions across all called segments weighted by their length in basepairs. 192	
  

Similarly, for sensitivity, we calculated the length of total overlap between each true IBD 193	
  

segment and any corresponding called segment(s) and divided this overlap by the length of the 194	
  

true IBD segment. When multiple called segments split up a single true IBD segment (Figure 195	
  

2D), overlap was again calculated as the sum of the overlapping lengths. Thus, these proportions 196	
  

were <1 for Figures 2A, 2C, and 2D but 1 for Figure 2B and for both true segments in Figure 2E. 197	
  

We defined sensitivity as the average of these proportions weighted by base pair length across all 198	
  

true IBD segments. Alternative definitions of these metrics are possible. For example, 199	
  

proportions greater than a threshold (.5) have been treated as true positives and those less than .5 200	
  

as false positives for calculating PPV (Browning and Browning 2011). We prefer our definitions 201	
  

because they result in PPV and sensitivity being continuous functions, rather than step functions, 202	
  

of the degree of over- or underextension, respectively. 203	
  

 204	
  

To estimate the accuracies of the programs, we used perfectly matching phased haplotypes from 205	
  

simulated, dense sequence data with no phase or call errors to define the endpoints of true IBD 206	
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segments (see Methods). We then called segments by applying each of the programs to a subset 207	
  

of the sequenced variants designed to mimic phased SNP array data, with realistic linkage 208	
  

disequilibrium (LD) patterns, allele frequencies, SNP densities, and levels of SNP-call and phase 209	
  

errors. Figure 3 displays PPV and sensitivity where both called and true IBD segments had 210	
  

minimum lengths of 3 cM (Figure 3A) or 1 cM (Figure 3B). For each program, we varied 211	
  

thresholds to produce a spectrum of conservative to liberal segment calling. In particular, we 212	
  

varied the moving average threshold for FISHR, the minimum LOD score for rIBD, and the bits 213	
  

argument for GERMLINE and HaploScore. At 3 cM minimum segment lengths, FISHR 214	
  

outperformed every other program with a higher PPV for any given sensitivity or, alternatively, a 215	
  

higher sensitivity for any given PPV. At 1cM minimum threshold lengths, FISHR and rIBD 216	
  

performed similarly and outperformed both GERMLINE and HaploScore.  217	
  

 218	
  

By using the same minimum-length thresholds (e.g., 3 cM) for both the called and true IBD 219	
  

segments, the results displayed in Figure 3 are highly sensitive to the accuracy of the endpoints 220	
  

of the called segments, as well as to truncation and splitting errors. For example, all sensitivity 221	
  

estimates of rIBD in Figure 3A are less than 0.3, below those of other programs and below those 222	
  

reported in the manuscript introducing rIBD (Browning and Browning 2011). As we demonstrate 223	
  

below, this is because rIBD tends to split true IBD segments into multiple, smaller called 224	
  

segments; when these called segments are shorter than the threshold (e.g., 3 cM), they are 225	
  

dropped for the purposes of calculating sensitivity, and therefore most true IBD segments > 3 cM 226	
  

appear to be missed. Because the endpoints of segments called by GERMLINE and especially 227	
  

FISHR are more accurate (see below), the performances of these programs are not degraded to 228	
  

the same extent. An alternative definition of PPV that is less affected by such truncation/split 229	
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errors is to compare all called segments greater than a length threshold (3 or 1 cM) to all true 230	
  

IBD segments that are at least half that length (1.5 or 0.5 cM, respectively). Similarly, sensitivity 231	
  

can be computed by comparing all true IBD segments greater than 3 or 1 cM to all called 232	
  

segments greater than 1.5 or 0.5 cM, respectively. Figure 4 shows PPV and sensitivity calculated 233	
  

in this way. The performance of all programs improved but the improvement was greater for 234	
  

programs that are inaccurate at endpoint estimation (rIBD and HaploScore) than for programs 235	
  

that are more accurate at endpoint estimation (GERMLINE and especially FISHR; see results on 236	
  

endpoint accuracy below). At 3 cM minimum called (PPV) and true IBD (sensitivity) segment 237	
  

lengths, FISHR performed slightly better than GERMLINE or rIBD, whereas at 1 cM minimum 238	
  

thresholds, rIBD outperformed FISHR. Because rIBD uses a posterior probability instead of a 239	
  

minimum cM length threshold to call segments, Figure 4 also shows rIBD results when no 240	
  

minimum length was used in calculating sensitivity and when much smaller true IBD lengths 241	
  

(0.5 cM for Figure 4A and 0.25 cM for Figure 4B) were used for calculating PPV. The 242	
  

sensitivity values for these instances of rIBD were improved and show rIBD to be superior to all 243	
  

other programs with respect to IBD detection accuracy. However, as demonstrated above, these 244	
  

conclusions rest upon arbitrary decisions on how PPV and sensitivity are defined. Moreover, as 245	
  

demonstrated below, the improved sensitivity of rIBD when there was no minimum length of 246	
  

called segments occurred because rIBD often splits long, true IBD segments into multiple, short 247	
  

called segments, which were sometimes dropped when a length threshold was used in calculating 248	
  

sensitivity.  249	
  

 250	
  

Figure 2. Method for calculating PPV and sensitivity from the called IBD segments and the 251	
  

known true IBD segment from an (A) underextended call, (B) overextend call, (C) off-center 252	
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call, (D) situation where two called segments occur within a single true IBD, and (E) situation 253	
  

where one called segments occurs within two true IBD segments. For each called segment, we 254	
  

divided the length of the overlap with the true segment (O) or sum of the overlaps (O1+O2) by 255	
  

the length of the called segment. PPV was the average of these proportions across all called 256	
  

segments, weighted by base pair length. To determine sensitivity, for each true segment, we 257	
  

divided the length of overlap (O) or sum of the overlaps (O1+O2) by the length of true IBD 258	
  

segment. Sensitivity was the average of these proportions across all true IBD segments, weighted 259	
  

by base pair length. When two called segments overlapped one true IBD segment (D), two 260	
  

proportions contributed to PPV (one for each of the called segments) but one proportion to 261	
  

sensitivity. Conversely, when one called segment overlapped two true IBD segments (E), one 262	
  

proportion contributed to PPV and two to sensitivity. 263	
  

 264	
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 265	
  

 266	
  

Figure 3. PPV-Sensitivity plots for FISHR (o), GERMLINE (Δ), rIBD (+), and HaploScore (x) 267	
  

when calculated using a minimum of 3 cM for called IBD and a minimum of 3 cM for true IBD 268	
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(A) and when using a minimum of 1 cM for called IBD and a minimum of 1 cM for true IBD 269	
  

(B).  270	
  

 271	
  

 272	
  

 273	
  

Figure 4. PPV-Sensitivity plots for FISHR (o), GERMLINE (Δ), rIBD (+), and HaploScore (x) 274	
  

when calculated using a minimum of 3 cM for called IBD and a minimum of 1.5 cM for true 275	
  

IBD (A) and when using a minimum of 1 cM for called IBD and a minimum of 0.5 cM for true 276	
  

IBD (B). Additional measures are present for rIBD (+) using a minimum true IBD length of 0.5 277	
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2016. ; https://doi.org/10.1101/042879doi: bioRxiv preprint 

https://doi.org/10.1101/042879
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   16	
  

cM for PPV and no minimum called cM length for sensitivity (A) and a minimum true IBD 278	
  

length of 0.25 cM for PPV and no minimum called cM length for sensitivity (B). 279	
  

 280	
  

 281	
  

 282	
  

Accuracy of called segment endpoints in simulated data 283	
  

As noted above, the differences between the results in Figures 3 and 4 correspond to how 284	
  

accurately the endpoints were estimated by each program. To quantify accuracy of endpoint 285	
  

estimation, we first found optimal parameters for each program by searching through 286	
  

combinations of the various input parameters, choosing those that maximized the sum of PPV 287	
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and sensitivity. Using these parameters, we divided the length of over- or underextension of each 288	
  

called segment endpoint by the length of the corresponding true IBD segment. Figure 5 shows 289	
  

the distribution of these proportions—the degree to which each endpoint was over- or 290	
  

underextended—when called segments had minimum length of 3 cM and true IBD segments had 291	
  

minimum length of 1.5 cM (results for 1 cM called and .5 cM true thresholds are shown in 292	
  

Supplemental Figure S1). It should be noted that using a 3 cM threshold for called and 1.5 cM 293	
  

for true IBD segments was the optimal scenario for all programs (Supplemental Figure S2). Any 294	
  

called segment that had no corresponding true IBD segment (false positive) was given an 295	
  

arbitrary value of 1 and any truly IBD segment with no corresponding called segment (false 296	
  

negative) was given a value of -1. The text to the left of each histogram shows the bias (defined 297	
  

as the mean proportion), precision (defined as the standard deviation of the proportion), and 298	
  

accuracy (defined as the standard deviation from 0 rather than from the mean proportion) when 299	
  

the false positive and false negative calls were included. Accuracy provides an estimate of how 300	
  

accurate the called segments are compared to perfect calls with no under- or overextension, and 301	
  

incorporates information on both bias and precision (accuracy2 = bias2 + precision2). FISHR had 302	
  

the most accurate (0.227) endpoints and was the most precise (0.227) of all algorithms. FISHR 303	
  

also showed very little bias (-0.011) with respect to under- or overextending calls. HaploScore 304	
  

(bias = 0.077) tended to overextend segments, whereas GERMLINE (bias = -0.044) and to a 305	
  

greater extent rIBD (bias = -0.177) tended to call segments that were shorter than the true IBD 306	
  

segments. rIBD also tends to miss truly IBD segments at a much higher rate than either FISHR 307	
  

or GERMLINE while HaploScore tends to both miss true IBD segments and call segments which 308	
  

are not IBD, as shown by the large values at -1 and 1, respectively. These conclusions remained 309	
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unchanged when we excluded false positive and false negative calls (reported on the right side of 310	
  

histograms in Figure 5). 311	
  

 312	
  

Figure 5. Histograms displaying the distributions of the proportional under- and overextension 313	
  

for each called IBD segment for FISHR, GERMLINE, rIBD, and HaploScore, with the bias, 314	
  

precision, and accuracy observed for each program. Results were found using a minimum of 3 315	
  

cM for called segments and 1.5 cM for true IBD segments. All called segments with no 316	
  

corresponding true IBD segments (the entire segment was overextended) were classified as 1, 317	
  

and all true segments with no corresponding called segments (the entire “called” segment was 318	
  

underextended) were classified as -1. Results listed on the left sides on the histograms include 319	
  

these false positive and false negative calls while the results listed on the right sides of 320	
  

histograms marked with a * only included the called segments which had a corresponding true 321	
  

IBD segment. 322	
  

 323	
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 324	
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 325	
  

Accuracy of called segment endpoints in real data 326	
  

All previous results used simulated data where the true IBD segment endpoints were known 327	
  

within a small margin of error. To determine how well the programs detect IBD segment 328	
  

endpoints in real data, we obtained data from 1,872 unrelated individuals from the UK10K 329	
  

dataset (The UK10K Consortium 2015), who were whole-genome sequenced at over 28 million 330	
  

markers. We extracted markers in the Illumina 650K SNP panel, re-phased them using 331	
  

SHAPEIT2 (Delaneau et al. 2012), and called segments from each of the four programs on this 332	
  

SNP dataset (see Methods). All remaining markers were retained as a holdout sample to calculate 333	
  

opposite homozygosity (OH) in and around regions where segments were called by each 334	
  

program. OH (e.g., an A-A genotype in one individual and a C-C genotype in the other) at 335	
  

masked markers within and around the called segments can be used to estimate the programs’ 336	
  

rates of false-positive and false-negative calls and to infer where called segments over- or 337	
  

underextended true IBD segments (Browning and Browning 2012). Even when the underlying 338	
  

haplotypes are truly IBD, sporadic mismatching alleles within a called segment can occur due to 339	
  

SNP errors, and a string of such mismatches can occur due to one or more phase errors. 340	
  

However, phase errors cannot cause OH at true IBD locations; only the rare event of SNP call 341	
  

errors changing a heterozygous SNP to the opposite homozygous call can cause (very low levels 342	
  

of) sporadic false OH in the data. Therefore, locations where the rate of OH in holdout markers 343	
  

is high within the boundaries of called segments suggest regions of false positive calls (typically 344	
  

overextended segments), whereas locations where the rate of OH is low outside the boundaries 345	
  

of called segments suggest regions of false negative calls (typically underextended calls). 346	
  

 347	
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Figure 6 shows an example of a region where all four programs called a segment between two 348	
  

individuals and the locations where OH occurred in the holdout sequence data. To compare these 349	
  

instances of OH to the rate of OH expected in a pair of non-IBD segments, we also show the 350	
  

locations of OH at all holdout markers between a pair of randomly selected individuals at this 351	
  

location. Given the highly discrepant rate of OH between the focal pair and the rate of OH 352	
  

between the random pair, it is safe to assume that a true IBD segment existed between the focal 353	
  

individuals at this region, and the endpoints of this true IBD segment can be roughly inferred 354	
  

from where the OH rates between the focal individuals increase in the holdout sequence data. 355	
  

The results depict a fairly typical example in which rIBD apparently broke up a long true IBD 356	
  

segment into multiple short called segments. FISHR, GERMLINE, and HaploScore appear to 357	
  

have done better in this example at discovering one long true IBD segment, with the main 358	
  

differences between programs being where the endpoints were estimated. Supplemental Figures 359	
  

S3-S22 display an additional 20 similar examples chosen at random from among 5 FISHR called 360	
  

segments, 5 rIBD called segments, 5 HaploScore called segments, and 5 GERMLINE called 361	
  

segments.  362	
  

 363	
  

To quantify the accuracy of the called segment endpoints for each program in this real dataset, 364	
  

we calculated the proportion of OH (POH) of holdout markers in 4 quarters of each called 365	
  

segment from the UK10K data, as well as two regions of the same base-pair length upstream and 366	
  

downstream from the called segment. We then calculated the average POH of the four quaters 367	
  

and two quarter-length flanking regions for each called segment. These results are presented in 368	
  

Figure 7 and corroborate our earlier conclusions about endpoint accuracy of the four programs in 369	
  

the simulated data (Figure 5). Figure 7A displays the four quarters of the called segment and the 370	
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flanking regions, whereas the Figure 7B displays only the first through fourth quarters within the 371	
  

called segments on an expanded scale. Figure 8 illustrates how these POH profiles should appear 372	
  

for programs that estimate endpoints perfectly, tend to underextend them, tend to overextend, or 373	
  

both. Of the four programs, the POH profile of FISHR was the most similar to the profile 374	
  

expected when the estimated endpoints of the called segments are perfect (Figure 8A); FISHR 375	
  

had levels of POH in the two flanking regions (“downstream” and “upstream”) very close to that 376	
  

between pairs of random individuals, indicating very little under-extension, and it had ~0 POH in 377	
  

quarters 1 through 4, indicating very little overextension. rIBD was very precise at finding 378	
  

segments that were truly IBD (~0 POH in quarters 1 through 4), but as predicted, it tended to 379	
  

under-extend the IBD segments much more than any of the other programs (low POH in the 380	
  

flanking regions). On the other hand, HaploScore tended to overextend true IBD segments, as 381	
  

indicated by its higher POH in the first and fourth quarters. GERMLINE tended to both 382	
  

overextend called segments and under-extend them, especially at the beginning of called 383	
  

segments. Supplementary Figure S23 illustrates the same POH analysis but instead uses a 384	
  

minimum of 1 cM for called IBD segments. 385	
  

 386	
  

Figure 6. An example of called IBD segments between two individuals in the UK10K dataset, 387	
  

from (A) rIBD, (B) HaploScore, (C) GERMLINE, and (D) FISHR, with (E) opposite 388	
  

homozygous SNPs (OH) occurring for that pair of individuals in and surrounding the FISHR 389	
  

called IBD segment with the number of OH within the called segment listed, and (F) OH 390	
  

occurring in a random pair of individuals at the same location of the called IBD segment with the 391	
  

number of OH listed. (Note that rIBD can call two individuals as IBD 2 at some locations, i.e. 392	
  

sharing two IBD haplotypes; hence the overlapping segments shown for that program.) 393	
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 394	
  

 395	
  

 396	
  

Figure 7. Results of the analysis of proportion of opposite homozygosity (OH) in (A) four 397	
  

quarters of called IBD segment and the two flanking regions and in (B) just the four quarters of 398	
  

the called IBD segments for FISHR (o), GERMLINE (Δ), rIBD (+), HaploScore (x), and random 399	
  

individuals at the same location of called IBD (◊) where called IBD segments were a minimum 400	
  

of 3 cM. 401	
  

 402	
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 403	
  

 404	
  

Figure 8. Examples that summarize the proportion of opposite homozygosity (POH) calculated 405	
  

from 4 quarters within and the two flanking regions around each called IBD segment, with the 406	
  

POH for the called segment in black and the POH of segments from random individuals at the 407	
  

same location in the genome presented in red. A program that makes every IBD call perfectly 408	
  

from perfectly genotyped data (A) would have no OH in quarters one through four and the same 409	
  

POH as random segments in the flanking regions. A program that underextends calls (B) would 410	
  

have no OH in quarters one through four and lower POH in the flanking regions than random 411	
  

segments. A program that overextends calls (C) would have positive POH in the first and fourth 412	
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quarters and the same POH in flanking regions as random segments. A program that both under- 413	
  

and overextends IBD calls (D) would display both increased POH in quarters one and four and 414	
  

decreased POH in the flanking regions. 415	
  

 416	
  

 417	
  

 418	
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Discussion 419	
  

We developed FISHR as an alternative method to detect segments of the genome shared IBD 420	
  

between pairs of individuals in a sample measured on genome-wide SNP data. Our goal was to 421	
  

develop a program that would be fast enough to be utilized with very large SNP datasets and be 422	
  

more accurate than existing programs at detecting IBD segments and their true endpoints. As we 423	
  

demonstrated using simulated data where true IBD status was known, FISHR performs as well or 424	
  

better than all competitor programs in terms of PPV and sensitivity for detecting long IBD 425	
  

segments, while slightly worse than rIBD but better than GERMLINE and HaploScore at 426	
  

detecting short IBD segments. Furthermore, as we demonstrated in both simulated and real data, 427	
  

FISHR is substantially more accurate than any existing program at estimating the correct 428	
  

endpoints of IBD segments. Accurately estimating these endpoints is important for several 429	
  

reasons. First, the length of IBD segments is relevant to many parameters of interest in 430	
  

population genetics (time to recent common ancestor, effective population size, population 431	
  

bottlenecks, etc.); systematic biases in estimating these lengths can lead to incorrect conclusions 432	
  

regarding these and other parameters. Second, phasing and imputation (Kong et al. 2008) based 433	
  

on IBD segments can be affected by the accuracy of the endpoints, with under- and 434	
  

overextensions of IBD segments causing regions to be incorrectly imputed or phased. Finally, in 435	
  

calculating genome-wide relatedness using IBD segments (Browning and Browning 2013), 436	
  

programs that tend to overextend IBD calls will lead to systematically inflated relatedness, and 437	
  

those that tend to underextend IBD calls to deflated relatedness. 438	
  

 439	
  

Despite the computationally efficient, deterministic algorithm FISHR uses to call candidate 440	
  

segments (see Methods), FISHR remains surprisingly accurate. It is fast enough to be used on 441	
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very large SNP datasets (e.g., 20,000-50,000 individuals), running two to five times slower than 442	
  

GERMLINE but running over a thousand times faster than rIBD and HaploScore at large sample 443	
  

sizes.  One practical downside of FISHR is that it requires much more RAM than its competitors. 444	
  

This is because FISHR attempts to stitch together long called segments that are separated by a 445	
  

small number of SNPs, which may represent erroneously split IBD segments (although FISHR 446	
  

may subsequently break up some of these consolidated segments if the data suggests the full 447	
  

segment is not IBD). To accomplish this, FISHR must pull all the candidate segments from 448	
  

GERMLINE into RAM to sort them, making its memory overhead high compared to programs 449	
  

such as GERMLINE that simply stream data. However, given that the price of RAM is 450	
  

plummeting, and that the RAM capacity of many high-performance computers (e.g., 1 Tb) is 451	
  

already sufficiently large for FISHR to be applied on samples of ~100,000, we do not see this as 452	
  

a major impediment to using the program. Nevertheless, we have developed a version of FISHR 453	
  

(accessed using the –low_ram flag) that uses a negligible amount of RAM at the cost of failing to 454	
  

stitch together called segments that are erroneously split. The accuracy of this version of FISHR 455	
  

is only slightly degraded compared to the default version. 456	
  

 457	
  

Another limitation of FISHR vis-à-vis rIBD is that, using the approach we presented here, it 458	
  

cannot call regions that are greater than IBD 1 – i.e., where more than one IBD segment exists at 459	
  

the same location between individuals. For example, ~25% of regions between siblings are 460	
  

expected to be IBD 2, meaning both haplotypes are IBD. FISHR (as well as GERMLINE) would 461	
  

call these regions as IBD 1, whereas rIBD can call these regions as IBD 2 (or greater). We have 462	
  

incorporated a method for detecting such multi-IBD states into FISHR (by post-processing 463	
  

GERMLINE segments found using the –haploid flag), but because such IBD 2+ situations are 464	
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extremely rare among unrelated individuals (occurring at a rate proportional to the square of 465	
  

relatedness, or ~0.0001 for IBD 2 vs. 0.01 for IBD 1 in typical datasets of nominally unrelated 466	
  

individuals), the benefit of these additional called segments did not outweigh the cost in missing 467	
  

truly IBD segments incurred by post-processing data called using –haploid in GERMLINE. 468	
  

Nevertheless, the standard version’s limitation to detecting IBD 1 must be kept in mind when 469	
  

working with highly related samples. 470	
  

 471	
  

Conclusion 472	
  

With increasingly large whole-genome SNP datasets being accumulated, it is important to have a 473	
  

method for detecting IBD segments that is both accurate and efficient. We introduced a program, 474	
  

FISHR, that accomplishes both, and that is particularly accurate at determination of the correct 475	
  

endpoints of IBD segments. We demonstrated these properties using simulations, and confirmed 476	
  

these conclusions using a novel approach on real sequence data from the UK10K project. Due to 477	
  

the number of pairwise comparisons that must be made in IBD detection, computationally 478	
  

intensive programs such as rIBD and HaploScore cannot be easily run on datasets of more than 479	
  

~10,000 individuals. FISHR is a more accurate alternative to GERMLINE as an IBD detection 480	
  

program on large datasets, with only a modest increase in runtime. 481	
  

 482	
  

Methods 483	
  

Description of the FISHR algorithm  484	
  

FISHR is written in C++ and is available freely for download at 485	
  

http://matthewckeller.com/html/program_code.html. FISHR utilizes GERMLINE (described in 486	
  

detail by Gusev et al. 2009), as an initial screen to quickly detect candidate segments. In 487	
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particular, in the results presented here, we used the –h_extend method in GERMLINE, which 488	
  

incorporates information on phased mismatches and which we found to be the most accurate of 489	
  

the three alternative methods (-h_extend, -w_extend, and -haploid) GERMLINE uses. FISHR 490	
  

then further refines the called segments as follows. First, because two long IBD calls that are 491	
  

separated by a short distance may actually be a single contiguous IBD segment that was 492	
  

artificially broken apart in GERMLINE due to phase or SNP call errors, FISHR stitches together 493	
  

segments separated by a user-defined number of SNPs (-gap). Next, FISHR finds the locations of 494	
  

IEs for all called segments. To do this, FISHR finds the longest exact match between either of 495	
  

the two phased haplotypes of the first person and either of the two phased haplotypes of the 496	
  

second person (a total of four possible combinations), starting at the first SNP of the called 497	
  

segment. An IE occurs at the first mismatching SNP after the exact match ends. FISHR then 498	
  

finds the next longest exact match between any of the four possible combinations of phased 499	
  

haplotypes, starting from the SNP following the previous IE, and extends until the next 500	
  

mismatching SNP is encountered. This process is continued until the end of the called segment.  501	
  

 502	
  

IEs represent locations along a candidate segment that are potentially inconsistent with IBD 503	
  

inheritance. Some IEs are expected by chance due to SNP and phase errors even in truly IBD 504	
  

segments. However, too many IEs within a particular region are a likely signal that the segment 505	
  

is not IBD in that area and that the segment should be truncated (if near an endpoint of the 506	
  

segment) or split into two (if in the middle of the segment). To determine such called segment 507	
  

endpoints, FISHR calculates a moving average (MA) of IEs centered at each SNP within a user-508	
  

defined window (using the –window flag) of SNPs, as outlined in Figure 9. FISHR then starts at 509	
  

the center of the called IBD segment and moves towards each endpoint until it reaches the first 510	
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SNP with a MA value greater than the user-defined maximum (-emp_ma_threshold), as shown in 511	
  

Figure 10. These points signal the endpoints of a called segment. Note that in addition to 512	
  

trimming the segment ends, this process can split a GERMLINE candidate segment into two or 513	
  

more shorter segments. Moreover, if the flag –count_gap_errors is set to TRUE, as it is by 514	
  

default, segments that had been stitched together from the first step can broken up again at this 515	
  

stage if enough IEs are clustered near the gap. Because segments that are too short, in terms of 516	
  

either number of SNPs or cM distance, are increasingly likely to be false positives, FISHR then 517	
  

drops segments shorter than user-defined thresholds of both SNP and cM length (using 518	
  

the -min_snp and –min_cm flags, respectively). The final process FISHR performs is to calculate 519	
  

the total proportion of SNPs that are IEs (PIE) within each segment. Too many IEs scattered 520	
  

across the entire length of a segment are a signal that the whole segment is unlikely to be IBD. 521	
  

Thus, if the PIE of a segment is greater than the value supplied in the –emp_pie_threshold 522	
  

argument, the segment is dropped. 523	
  

 524	
  

Because values of PIE and MA depend on the quality of SNP calls and phasing in the data at 525	
  

hand, the thresholds for these values require careful consideration by users. The approach we 526	
  

recommend and that we used here was to identify long stretches (>8 cM) of the genome where 527	
  

no opposite homozygotes occurred between pairs of individuals (this can be accomplished using 528	
  

GERMLINE –w_extend flag without the –h_extend flag). Because information on phase was not 529	
  

used in calling these segments, they are not biased to be in regions where phasing is more 530	
  

difficult. We then found the distribution of the PIE and maximum MA values calculated from the 531	
  

middlemost 50% of these segments, which can be assumed with high confidence to be truly IBD. 532	
  

We compared these distributions to distributions of PIE and maximum MA values calculated 533	
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from segments matched in location to the likely IBD segments but that were between random 534	
  

pairs of individuals. The PPV and sensitivity that will result from any choices of PIE and MA 535	
  

thresholds can be estimated by how well those thresholds separate these distributions, and thus 536	
  

thresholds can be chosen that lead to a desired PPV-sensitivity combination. We have supplied a 537	
  

utility (gl_parameter_finder) for accomplishing this step along with the FISHR download. 538	
  

 539	
  

Figure 9. Calculating the moving average (MA) of implied errors (IE) of a potential IBD call 540	
  

between two individuals, P1 & P2. The red underlined segments indicate the called haplotypes, 541	
  

and the arrows designate where IEs occur in the call. Using a moving window size of 7, line A 542	
  

displays the number of IEs within the window for each given SNP, line B displays the window 543	
  

size (which is truncated at each end of the “chromosome”), and line C displays the MA for each 544	
  

SNP. 545	
  

 546	
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 547	
  

 548	
  

Figure 10. An example how FISHR utilizes the moving average of implied errors (MA) 549	
  

calculated for each SNP to determine endpoints of a called IBD segment. In this case the 550	
  

maximum allowed MA is 0.3. The red vertical line denotes the location of where the MA 551	
  

increases above the 0.3 threshold, leaving the called segment to consist of the SNPs between the 552	
  

red lines. 553	
  

 554	
  

P1a$$$$$0$0$0$0$1$0$1$1$0$1$0$1$0$1$0$1$0$0$0$0$$$
P1b$$$$$0$0$1$0$1$1$0$0$1$1$1$0$1$1$0$1$1$1$0$1$$

P2a$$$$$1$1$1$0$1$1$0$0$1$1$0$1$0$1$1$1$1$0$1$0$$
P2b$$$$$1$1$0$1$0$0$1$0$1$1$1$1$1$1$0$1$0$0$1$0$

A$$$IE$$$$$$$$$$$$$$$$$$$$$$$$$$2$2$2$2$1$0$0$1$1$1$1$2$2$2$1$2$2$2$1$1$$

B$$$Window$$$$$$$$$$$$$$4$5$6$7$7$7$7$7$7$7$7$7$7$7$7$7$7$6$5$4$$

C$$$MA$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$.5$$.4$$.33$.29$$.14$$0$$$0$$.14$$.14$.14$.14$.29$.29$.29$.14$.29$.29$$.3$$.2$.25$$
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 555	
  

 556	
  

Simulated Sequence and SNP Data 557	
  

We simulated genotypic data using the sequence simulator HAPGEN2 (Su et al. 2011), which 558	
  

simulated haplotypes by conditioning on a reference set of population haplotypes (here, the 1000 559	
  

Genomes Project (Clarke et al. 2012) European ancestry (CEU) haplotypes of chromosome 15) 560	
  

and created a new population by combining haplotypes according to a fine-scaled recombination 561	
  

rate map (from deCODE; Kong et al. 2010). Here, we defined the effective population sizes as 562	
  

11,418 and the sample size (defined as “controls” in HAPGEN2) as 28,000. For computational 563	
  

efficiency, we created 13 independent datasets of 1,000 individuals each and averaged all results 564	
  

across these 13 replicates. The data had LD, haplotype diversity, and allele frequency 565	
  

distributions that mimic those in the initial set of haplotypes. 566	
  

 567	
  

We used the perfectly phased, simulated sequence data with no errors obtained from HAPGEN2 568	
  

to obtain “true IBD segments.” Because no program exists to our knowledge that tracks IBD 569	
  

status between pairs of haplotypes, we defined true IBD segments as perfectly matching 570	
  

haplotypes that spanned a desired cM threshold (0.25, 0.5, 1.5, or 3, depending on the analysis). 571	
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To increase computational efficiency and to ensure that rare mutations that arose on a haplotype 572	
  

since the common ancestor did not cause a true IBD segment to be missed, we pruned this 573	
  

sequence data to have MAF > .05, resulting in a density of ~1 variant per 1000 base pairs. To 574	
  

create data that mimicked post–quality-control SNP data on existing platforms, we then extracted 575	
  

SNPs pseudo-randomly such that the MAF distribution was about uniform and the density of 576	
  

SNPs was one per 6,750 base pairs (corresponding to ~400,000 SNPs genomewide). To simulate 577	
  

SNP call errors, we randomly changed one allele to its alternative allele at a rate of 0.2%, in the 578	
  

middle of what has been found empirically for SNP calls (Steemers and Gunderson 2007; Teo et 579	
  

al. 2007; Korn et al. 2008; Hong et al. 2012). Finally, we unphased the SNP data and rephrased it 580	
  

using SHAPEIT2 (Delaneau et al. 2012). 581	
  

 582	
  

Real Sequence Data 583	
  

We also compared performance of the IBD detection algorithms using the UK10K ALSPAC 584	
  

sequence data on 1,872 unrelated individuals (The UK10K Consortium 2015). In this data, we 585	
  

utilized 4 subchromosomes (5q, 9q, 14q, and 20q) and removed markers with less than a 1% 586	
  

MAF, markers in violation of Hardy-Weinberg equilibrium with p-values of less than 0.0001, 587	
  

and markers that contained missing data for any individuals. We then extracted SNPs that were 588	
  

on the Illumina 650K SNP panel (21,802 markers for subchromosome 5q, 13,716 markers for 589	
  

subchromosome 9q, 16,199 markers for subchromosome 14q, and 6,307 markers for 590	
  

subchromosome 20q) and phased this data using SHAPEIT2 for calling segments using each 591	
  

program. We retained the remaining markers not in the SNP data (an average of one marker per 592	
  

3,000 base pairs) as a holdout sample to calculate the proportion of opposite-homozygote SNPs 593	
  

within called segments. 594	
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 595	
  

Running the four IBD detection programs 596	
  

We ran FISHR, GERMLINE, rIBD, and HaploScore on the simulated SNP data that was phased 597	
  

using SHAPEIT2, varying input parameters to determine the optimal parameters for discovering 598	
  

IBD segments with minimum lengths both of 1 and 3 cM for each program (optimal parameters 599	
  

for finding IBD with a minimum of 3 cM bolded). For FISHR, we varied the candidate segment 600	
  

detection parameters (using GERMLINE) –h_extend vs. –w_extend, –bits (30, 45, 60, 75, or 90), 601	
  

-err_het (0, 1, 2, 3), -err_hom (0, 1, 2, 3), as well as the FISHR-specific parameters -gap (0, 1, or 602	
  

30), -count_gap_errors (TRUE or FALSE), -emp_ma_threshold (0.025, 0.045, 0.065, 0.085), 603	
  

and –emp_pie_threshold (0.005, 0.015, 0.025). For GERMLINE, we compared both 604	
  

the -h_extend vs. –w_extend options and varied –bits (30, 45, 60, 90, 120, 150), -err_het (0, 1, 2, 605	
  

3), and –err_hom (0, 1, 2, 3). For rIBD, we varied –ibdlod (1, 2, 3, 4, 5, 6), -overlap (100, 157, 606	
  

200), -window (7,500, 10,000, 12,500), -scale (2.5, 3, 3.16, 3.5), and -trim (11, 16, 21). Finally, 607	
  

for HaploScore, we varied the candidate segment detection parameters (using GERMLINE) 608	
  

of -h_extend vs. –w_extend, –bits (30, 45, 60, 90, 120), -err_het (0, 1, 2, 3), and –err_hom (0, 1, 609	
  

2, 3), and then varied the –switch_error (0.0005, 0.001, 0.0015, 0.01), –snp_error (0.0006, 610	
  

0.00125, 0.0025, 0.01), and HaploScore thresholds (1, 3, 5, 7, 9, 11, 13, 15) in HaploScore. For 611	
  

each program, we plotted the PPV and sensitivity, as shown in Figure 4, and the combination 612	
  

closest to perfect performance (Sensitivity=1 and PPV=1) was kept as the optimal for that 613	
  

specific program. The exact command lines used for each program with these optimal parameters 614	
  

are included in Supplemental Table S2. For Figures 3 and 4, we kept constant all the optimal 615	
  

parameters for each program other than the parameter that most influenced the PPV-sensitivity 616	
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2016. ; https://doi.org/10.1101/042879doi: bioRxiv preprint 

https://doi.org/10.1101/042879
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   36	
  

tradeoff. In particular, we varied –emp_ma_threshold for FISHR, –ibdlod for rIBD, and the -bits 617	
  

argument for GERMLINE and HaploScore. 618	
  

  619	
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Data Access 620	
  

MGS dataset(s) used for the analyses described in this manuscript were obtained from dbGaP 621	
  

found at http://www.ncbi.nlm.nih.gov/gap through dbGaP study accession numbers phs000167. 622	
  

This dataset was provided by Alan R. Sanders, M.D. CARDIA dataset(s) used for the analyses 623	
  

described in this manuscript were obtained from dbGaP found at 624	
  

http://www.ncbi.nlm.nih.gov/gap through dbGaP study accession numbers phs000309. The 625	
  

ARIC datasets used for the analyses described in this manuscript were obtained from dbGaP 626	
  

found at http://www.ncbi.nlm.nih.gov/gap through dbGaP study accession numbers phs000090. 627	
  

The GENEVA datasets used for the analyses described in this manuscript were obtained from 628	
  

dbGaP found at http://www.ncbi.nlm.nih.gov/gap through dbGaP study accession numbers 629	
  

phs000091. Simulated data, scripts to evaluate IBD detection, and FISHR can be downloaded 630	
  

from our personal website, http://matthewckeller.com/html/. 631	
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