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ABSTRACT  

Data from ChIP-seq experiments can determine the genome-wide binding specificities of transcription 

factors (TFs) and other regulatory proteins. In the present study, we analyzed 745 ENCODE ChIP-

seq peak datasets of 189 human TFs with a novel motif discovery method that is based on recursive, 

thresholded entropy minimization. This method is able to distinguish correct information models from 

noisy motifs, quantify the strengths of individual sites based on affinity, and detect adjacent cofactor 

binding sites that coordinate with primary TFs. We derived homogeneous and bipartite information 

models for 89 sequence-specific TFs, which enabled discovery of 24 cofactor motifs for 118 TFs, and 

revealed 6 high-confidence novel motifs. The reliability and accuracy of these models were 

determined via three independent quality control criteria, including the detection of experimentally 

proven binding sites, comparison with previously published motifs and statistical analyses. We also 

predict previously unreported TF cobinding interactions, and new components of known TF 

complexes. Because they are based on information theory, the derived models constitute a powerful 

tool for detecting and predicting the effects of variants in known binding sites, and predicting 

previously unrecognized binding sites and target genes.  
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INTRODUCTION 

Transcription factors positively or negatively interact with the regulatory elements in genes to mediate 

elaborate regulation of tissue- and stage-specific expression, which is a critical contributor to the 

marvelous complexity of the human body (1, 2). They could be divided into two general classes: one 

consisting of those TFs that are able to directly bind to DNA by recognizing specific sequence motifs, 

and the other comprising those TFs which indirectly bind to DNA by acting as interacting partners of 

the sequence-specific TFs (3). Some sequence-specific TFs have homogeneous binding motifs due 

to their independent binding activity, while others need to first form homodimers or heterodimers so 

that their binding sites are bipartite (4). 

Not only do genome-wide interactions occur frequently between the two classes of TFs, but also 

abound between the sequence-specific TFs, with each interacting party being called a cofactor. For 

instance, NF-Y extensively coassociates with FOS over all chromatin states, cluster classes, and 

genic features, with 45% of NF-Y sites directly overlapping a FOS site and 39% of FOS sites directly 

overlapping an NF-Y site in K562 cells (5). NF-Y and FOS sites are located just as close (<50bp) as 

that observed between the NF-Y subunits or between FOS and JUN. CTCF extensively colocalizes 

with cohesins consisting of SMC1/SMC3 heterodimers and two non-SMC subunits RAD21 and SCC3 

(6).  

Although generally the binding sequences of TFs are highly conserved, some degree of variability 

at most positions of their binding sites is still evident in most TFs. Information theory-based models 

can be used to quantitatively and accurately describe base preferences in these motifs. A 
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homogenous model for a TF is a positional weight matrix (PWM) can be derived from a set of aligned 

binding sites using Shannon information theory (7). A bipartite model consists of two PWMs, each of 

which corresponds to a half site, separated by a range of sequence gaps. Our laboratory previously 

developed software to generate information-theory based models of bipartite (and homogeneous) 

binding sites (4). The individual information content (Ri) of a sequence bound by the TF, which 

represents the affinity of the TF-DNA binding site interaction, can be determined from these models. 

The Rsequence value of a model is the mean of the Ri values of all the binding site sequences used to 

compute the model, and represents the average binding affinity (8). ChIP-seq assays, which use 

chromatin immunoprecipitation (ChIP) to identify the repertoire of binding site sequences in a genome, 

can provide substrates for development of robust information models of TFs, and likely include 

binding site sequences of coregulatory TFs and potentially, cofactors.  

Previous work related to the derivation of TF binding motifs has been based on experimental 

evidence supported by computational approaches. Weirauch et al. (9) made use of the protein binding 

microarrays (PBM) technique to determine TF sequence specificity for >1,000 TFs encompassing 54 

different DNA binding domain (DBD) classes from 131 diverse eukaryotes. Jolma et al. (10) obtained 

830 binding profiles representing 411 human and mouse TFs using high-throughput SELEX and ChIP 

sequencing. However, the oligonucleotide-based approach is not able to well account for variable-

length spacers in bipartite binding sites, and it may produce multiple potential models among which 

correct ones, if present, may not be discriminated. In addition, the dynamic range of oligonucleotides 

used in the DNA microassays is limited so that not all the possible binding site sequences in the 

genome are covered as in the ChIP-seq assays, and there is no way to discover cofactors. Wang et al. 

(3) carried out de novo motif discovery for 119 human TFs from 457 ChIP-seq datasets using the 

MEME-ChIP software suite, and Kheradpour et al. (11) provided a systematic motif analysis for 427 

human ChIP-seq datasets of 123 TFs using five motif discovery tools. However, these studies did not 

generate bipartite motifs with half sites separated gaps varying in length; more importantly, the 

derived motifs were only based upon strongest ChIP-seq signal peaks (top 500 or 250 peaks), 

effectively eliminating thousands of intermediate or weak binding events and biasing the resulting 

PWMs toward high-affinity, consensus-like binding sites. This is necessary, as the weakest binding 

sites inferred from ChIP-seq are essentially noise that can obfuscate the detection of true binding 

motifs. Nevertheless, this type of bias distorts the binding strengths estimated from the population of 

sites (12).  

In this study, we developed a novel motif discovery approach that integrates recursive and 

thresholded features into the entropy minimization algorithm (4). We then applied this method to 745 

ENCODE (Encyclopedia of DNA Elements [13]) ChIP-seq datasets of 189 human TFs. The majority 

of the primary binding motifs were successfully recovered and refined for the immunoprecipitated TFs, 

in addition to motifs for many known and previously unreported cofactors. 

MATERIALS AND METHODS 

ENCODE ChIP-seq datasets 
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The ENCODE Consortium conducted 907 ChIP-seq assays for human TFs and generated initial peak 

datasets for each replicate of each assay using the uniform peak calling pipeline (14), and for some 

assays further produced the optimal and conservative IDR thresholded peaks after applying the IDR 

(Irreproducible Discovery Rate) framework to the initial datasets to improve irreproducibility between 

multiple replicates of one assay. In addition, Factorbook (3, 15) also provided some refined datasets 

directly generated by the SPP peak calling software (16). 

We primarily used the IDR thresholded peak datasets, because we found that these data is more 

likely to discover primary or cofactor motifs than from the initial (i.e., unprocessed) datasets; and they 

contain more peaks and thus more binding sites than the truncated corresponding Factorbook 

datasets. One notable exception, however, was BRG1 which was found to exhibit motifs of cofactors 

GATA1 and AP1 exclusively from Factorbook, because IDR thresholded data produced only noisy low 

information content motifs. The initial datasets were examined if neither IDR-thresholded nor 

Factorbook datasets were available. We also noticed, that in some instances, that different technical 

replicates of the same ChIP-seq assay were not very consistent. For example, for one of the TEAD4 

datasets, the motif for the NRSF TF was discovered from the initial peaks of replicate 1 on the A549 

cell line, whereas both the cofactor AP1 and the primary motif were derived from replicate 2.  

Sequence motif discovery 

Initially, information models from ChIP-seq reads were derived by entropy minimization with Bipad (5). 

However, we noticed that these models would not always contain the expected primary motifs and 

might show motifs of known cofactors of the primary TF. Additionally, datasets with an excess of weak 

and false positive peaks were noted to result in models consisting of overrepresented, noisy motifs. In 

order to enhance its ability to detect primary motifs in large datasets, we introduce a novel motif 

discovery algorithm by adding recursive masking and thresholding functionalities to entropy 

minimization (Figure 1). Multiple ChIP-seq datasets from distinct cell lines for the same TF, if available, 

were all examined for enriched sequence motifs to assess whether this approach was reproducible, 

and discover tissue specific preferences between these data sources. 

This masking technique provided a means of discovering additional conserved motifs in the same 

data by masking the motifs found in previous iterations of this modeling procedure. It is implemented 

by scanning a dataset with previous models and recording the coordinates of all the predicted binding 

sites, and then skipping these intervals when reanalyzing the dataset with Bipad. This is done to 

reduce the entire multiple alignment search space by the part covered by all the predicted sites. We 

rename and revise the objective function for building bipartite models to: 

 

Maskminent(D, Si) = ���min��������� �∑ 	∑ 	∑ 
���, �� log	 


����,����� ���
��
 �����,�� �, � � ��,�,�, ��    [1] 

 

where D is the ChIP-seq dataset, Si is the set of intervals of all the predicted sites of previous models 

to be masked, MA is one multiple alignment, θ is the multiple alignment space formed by all the peaks 

in D, θi is the search space covered by these predicted sites, L and R are the left and right half sites, J 
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is the length of one half site, fm(b,l) is the frequency of the base x appearing at the position l of the half 

site m. 

Thresholding the datasets to eliminate peaks with low signal strengths is another technique that 

can be used to reveal significant motifs distinguishable from noisy signals. Suppose that we want to 

take the top n peaks sorted by signal strength in a ChIP-seq dataset D. size(D) is the number of 

peaks in D, and min(D) and max(D) are the lowest and highest signal values among all the peaks in D, 

respectively. Then, the operation of thresholding the dataset D to obtain the top n peaks is defined by: 

 

threshold(D, n) = ���|��� � �� � ��	
����� � 
� � ��	
���� � ����� � �����, n < size(D)    [2] 

 

If the primary motif or a cofactor is unveiled by this operation, then theoretically there exists an 

accurate threshold δ on the number of top ranked peaks between showing the desired motif and not 

showing it and we will narrow down the error range within which δ is to less than 500 peaks. The 

masking and thresholding techniques can be combined to discover primary motifs. 

Models are derived from ChIP-seq data with the Maskminent program, which implements the 

above algorithm. The –m option indicates whether to switch on the masking, otherwise the commands 

specifying the run to build homogeneous or bipartite models are similar to Bipad, respectively: 

 

./Maskminent –n LengthOfInfoModel –y NumberOfCycles –f ChIPSeqFile [-m MaskFile] [-2] 

./Maskminent –l LengthOfLeftHalfSite –r LengthOfRightHalfSite –a MinSpacerSize –b 
MaxSpacerSize - y NumberOfCycles –f ChIPSeqFile –d/i  
 
 
The Scan program is used to detect potential binding sites with an information model in a DNA 

sequence fragment based on the following parameters: 

 

./Scan InfoModelFile SequenceFile (1 LengthOfInfoModel)/(2 LengthOfHalfSite MinSpacerSize 
MaxSpacerSize) 

 

Quality control 

The quality control criteria used to evaluate the accuracy of our information models include: 

1) Validating our models with experimentally proven binding sites in known target genes; 

2) Comparing our models with the annotated motifs in the CIS-BP database (9) by determining their 

normalized Euclidean distances; 

3) Evaluating the linearity of Ri values versus binding energy by performing F-tests on linear models 

and nested constant models between the two properties of predicted binding sites in our information 

models, in order to distinguish between correct and noisy, low complexity motifs. 

We found that the Ri values are inversely proportionate to binding energy. The frequencies of 

binding sites appearing in a ChIP-seq dataset are linearly related to their binding energy (log2Kd), 

which is delineated by Equation 1 derived by us starting from (17). And the Ri values of binding sites 
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are proportionate to their frequencies, since the higher the affinity of a binding site is, the more the 

number of times it is bound by the TF will be in a ChIP-seq assay. 

��� �  
��� ��!"#$%

�
�

� � ����     [3] 

where Kdi is the dissociation constant of the ith predicted binding site, Fi’ is its frequency, F1’ and Kd1 

are these values for the strongest site (i.e., the consensus sequence), and [Tf] is the concentration of 

unbound TF. [Tf] is negligible for most TFs. 

The frequency of each binding site sequence within the multiple alignment of a model occurring in 

the ChIP-seq dataset was calculated as follows. If only one binding site occurred in a peak, its 

frequency would increase by one. In the case that a peak contained multiple binding sites, the 

frequency of each site would gain a fraction of one based on the proportion of its Ri value accounting 

for the sum of Ri values of all the sites. Then we applied Equation 3 to compute the binding energy of 

each site. The default value 10-7M of the dissociation constant Kd1 was used, in instances where the 

exact value for a particular TF could not be established from the published studies. 

RESULTS 

The motif discovery pipeline was applied to 745 ChIP-seq peak datasets of 189 TFs. The derived 

information models displayed primary motifs for 89 TFs (Supplementary Table S1 and S2), as well as 

24 cofactor motifs for 118 primary TFs (Supplementary Table S3). We also describe 6 high-

confidence novel motifs that have not been previously annotated. 

Primary binding motifs 

Homogeneous information models. Correct information models were successfully derived for 62 TFs 

with homogenous binding motifs, which are concordant with published descriptions of these motifs (3). 

Consensus or predominant sequences can present a distorted image of TF binding by missing 

sites of weak or intermediate strength (12). We determined the frequency of these most predominant 

sequences appear on a genome scale for 10 TFs (Figure 2A) by counting the peaks containing these 

sequences in their respective datasets. Surprisingly, only 0.015%-7.3% of all peaks contain binding 

sites with the most predominant sequence, demonstrating that these predominant binding sites are 

extremely rare in the ChIP-seq datasets. This is consistent with the observation that intermediate and 

low-affinity TF-DNA interactions are the most prevalent and abundant in vivo and can effectively 

regulate gene expression (18). In addition, models for NRSF clearly demonstrate that the core 

positions in its binding sites contain the predominant sequence motif, CTGTCC. 

 

Bipartite information models. For 18 TFs bipartite information models were successfully derived, and 

were in agreement with previously reported motifs. The following demonstrates the validity of these 

models: 

El Marzouk et al. (19) demonstrated that ESR1 is able to recognize binding sites of spacer lengths 

from 0bp to 4bp, with sites containing a 3bp spacer exhibiting the highest affinity. We allowed the 
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spacer length to vary between 0 - 5bp from T47D cell line ChIP-seq data. Consistent with their 

findings, the resultant models show the documented predominant motif and are palindromic (Figure 

2B). The bipartite model contains greater information contents than the corresponding homogeneous 

site, and the dominant gap size remains 3bp. However, the models contain some bipartite sites with 

positive Ri values and a 5bp gap, implying that ESR1 may be capable of binding to sites that were not 

previously examined. The symmetry between the half sites exhibited by the bipartite models suggests 

that dimeric ESR1 may bind a narrow range of sequences with similar half site affinities. 

The palindromic predominant motif of the AP2 family is 5’-GCCN3GGC-3’, and other binding 

sequences confirmed in an in vitro binding-site selection assay include 5’-GCCN4GGC-3’ and 5’-

GCCN3/4GGG-3’. Another binding site 5’-CCCCAGGC-3’ was also found in the SV40 enhancer (20). 

Indeed, the gaps in the bipartite models of AP2A and AP2C range from 2bp to 4bp, which is 

concordant with published reports; therefore, these models are representative of the genome-wide 

pool of bona fide binding sites (Figure 2B). Besides the fact that they are quite symmetric, we also 

observed that the two outermost positions allow the highest degree of variability and that adenine can 

also appear at the first position of the right half site apart from the consensus guanine base. The 

bipartite models of AP2A and AP2C exhibit the same pattern of conservation levels across all the 

individual positions, indicating that the two members of the AP2 family are almost indistinguishable in 

binding specificity. 

STAT1 binding was reported to have a major gap size of 3bp and be able to bind to sites with a 

2bp gap (N2), but appear to be incapable of recognizing N4 sites (21). However, our bipartite models 

for STAT1 include a small number of binding sites with a 4bp gap, compared to those with 3bp or 2bp 

spacers (Figure 2B), which suggests that N4 sites can be recognized. The left- and rightmost 

nucleotides of each half site are nearly invariant, whereas the inner 4 nucleotide contacts are vary 

significantly. 

NFE2 and BACH1 form heterodimers with small MAF family proteins (MAFF, MAFG and MAFK) 

which recognize two types of bipartite palindromic motifs defined by the predominant binding 

sequences, TGCTGA(C)TCAGCA and TGCTGA(CG)TCAGCA (22). The previously reported binding 

motifs (3) are homogeneous, and do not account for the dimeric interaction that gives rise to the 

bipartite motifs. The bipartite models that we derived (Figure 2B) demonstrate that the inner six 

positions surrounding the dominant 1bp gap are more highly conserved than the outer six positions in 

the binding site.  

Discrepancies between information models of the same TF in distinct cell lines. In several instances, 

we noticed a potential discrepancy between models of the same TF from different cell types, in both 

homogeneous and bipartite motifs.  

For instance, among the three homogeneous models of ESR1 from ECC1 cells one half site has 

very high conservation levels and the information content of the other half site is lower, while the two 

half sites are much more symmetric in the T47D models (Figure 3A). For MAFF and MAFK, the 

discrepancy between the symmetric bipartite models from K562 and HepG2 cells is prominent; the 

outer 6 positions of these HepG2 models show a greater degree of conservation than the internal 6 
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positions, but the K562 models illustrates the opposite trend (Figure 3A). Additionally, MAFK motif 

derived from IMR90 cells resembles the HepG2 model, while the models from HeLa-S3 and H1-hESC 

datasets resemble the K562 model. This could be accounted for by differences in the compositions of 

binding sites, i.e., different target genes for the same TF in different tissues. 

Cofactor binding motifs 

Discovery of the binding motif of a cofactor in one dataset of a particular primary TF suggests that 

there exists transcriptional co-regulation between the two TFs on their common target genes, either 

by binding of the cofactor in the complex formed by their physical interactions, or by their cobinding to 

achieve a synergistic cis-regulatory effect. De novo motif discovery from ChIP-seq datasets provides 

an effective approach for confirming or predicting the genome-wide TF interactions, in contrast to the 

abundant yet scattered existing literature evidences in specific genes about such interactions. Figure 

4 illustrates the cofactors and their interactions with the primary TFs revealed by our motif discovery 

algorithm. 

Confirmation of known cofactors. Our information models confirmed genome-wide interactions 

between 15 cofactors and 50 primary TFs, for which we were able to find specific evidences in 

literature (5, 6, 23–65). For example, the interaction between SP1 and multiple members of the ETS 

and AP1 families is well characterized (66–71). ELK1 and SRF can recruit each other to form a 

ternary complex on the CArG-ETS elements (72). TEAD-AP1 cooperation with SRC coactivators 

serving as a bridge drives downstream gene transcription to regulate cancer cell migration and 

invasion (73). And STAT1, STAT2 and IRF9 can form a heterotrimer that regulates transcription of 

genes containing IFN-stimulated response elements (ISREs) (74). The GATA1-TAL1 and SOX2-

OCT4 complexes emerged from the datasets of TAL1 and OCT4 as primary motifs, respectively, 

suggesting the formation of the two complexes is necessary for the functioning of TAL1 and OCT4. 

Discovery of novel cofactors. A number of previously unrecognized, probable cofactor motifs (n=19) 

were revealed by our algorithm for 87 primary TFs. Enrichment of binding sites of cofactors in the 

primary TF datasets provides evidence for these TF cobinding and interactions, and new subunits of 

known complexes. This includes possible associations between the IRF and RUNX families, and their 

further cooperation with BCL11A, MEF2A, MEF2C, CEBPB and P300 in GM12878 cells. Another 

similar prediction is that the TEAD-AP1 complex can recruit MYC, STAT3 and GATA2 in multiple cell 

lines. We also predict the existence of an YY1-THAP1 complex based on the co-emergence of their 

binding motifs in the K562 dataset of THAP1. Other predictions include coordination between USF 

and ATF3 across multiple cell lines from different tissues, between ZNF143 and SIX5 in multiple cell 

lines, between ZNF143 and ETS1 in A549 and K562 cells,, between ZBTB33 and ETS1 in GM12878 

lymphoblastoid cells, between the FOXA family and GATA3 in T47D cells, between FOXA and 

ARID3A, TCF12, TEAD4 in HepG2 cells, between AP1 and SRF in HCT116 cells, between the YY 

family and IRF9 in K562 cells, between NFY and IRF3 in HeLa-S3 and HepG2 cells, between MAX 

and the ETS family in NB4 cells, between NRSF and TEAD4 in A549 cells, between NRSF and SP2 
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in HepG2 cells, between the SOX2-OCT4 complex and BCL11A in H1-hESC cells, between the 

TFIIIC complex and HSF1 in HepG2 cells, between TFIIIC and TCF12 in MCF-7 cells, between the 

IRF family and 11 DNA-binding TFs in GM12878 and K562 cells, and between the SP family and 23 

DNA-binding TFs in multiple tissues. A DNA-binding complex consisting of GATA1, TAL1, E2A, LMO2 

and LDB1 is present in the erythroid cell lineage (40). Based on the proximity and coprecipitation of 

these binding sequences, suggest that this complex in which GATA1 and TAL1 contact DNA can 

coordinately bind with NR2F2, STAT5A, and TEAD4. The complex may also incorporate P300, PML, 

RCOR1 and TBL1XR1, which are non-DNA binding proteins. 

Many cofactors were also discovered in datasets of non-sequence specific TFs, which likely 

means that these primary TFs are recruited to genes by associating with the DNA-binding cofactors. 

Our predictions based on this include interactions between NFKB and KDM5A in H1-hESC cells, 

between FOXA and HDAC2, MBD4 in HepG2 cells, between ZBTB33 and BRCA1 across multiple cell 

lines, between GATA and SIRT6 in K562 cells, between IRF and MTA3, TBL1XR1 in GM12878 cells, 

between IRF and EZH2 in GM12878 and K562 cells, between AP1 and SMARCC1, SMARCC2 in 

HeLa-S3 cells, between HSF1 and PGC1A in HepG2 cells, between YY and KDM5A in H1-hESC 

cells, between YY and DDX20, ID3, ILK, PTRF, PYGO2, TAF7 in K562 cells, and between SP and 18 

non-sequence specific TFs in multiple tissues. 

To validate the predicted cobinding between cofactors and primary TFs, we investigated 

distributions of their intersite distances by scanning the ChIP-seq datasets with our information 

models (Figure 5, Supplementary Table S4). We applied a threshold (e.g. Rsequence or ½ * Rsequence if 

using Rsequence leads to few binding sites of cofactors) on the Ri values of predicted binding sites in 

order to remove the relatively large number of weak binding sites that are likely to be low-complexity 

sequences. The SOX2-OCT4 complex was used as a primary negative control, as it is merely 

expressed in the H1-hESC cell line and thus cannot be a cofactor for the primary TFs in other cell 

lines. It can be seen that the percentage of peaks in which intersite distances between the discovered 

cofactor and the primary TF are quite small (e.g., less than 20bp) is overwhelming in the respective 

dataset, while there is no such a trend for the negative control and the primary TF. The distribution of 

intersite distances between TEAD4 and AP1, whose extensive colocalization was already observed in 

literature as mentioned above, was also generated. There exists the same difference between it and 

the distribution for TEAD4 and the negative control. 

Further detailed investigation into the binding sites of cofactors and primary TFs in peak datasets 

revealed that a lot of binding sites of the IRF and RUNX families overlap, which can be understood by 

the common T-rich feature of their predominant sequences NNTTTCNNTTTC and TGTGGTTT. This 

phenomenon was also observed for AP1 and TEAD4. The predominant sequences of AP1 and 

TEAD4 are TGA(-/- -)TCA and (A/G)CATTCC(T/A)G(G/C), and the prevalent overlapping pattern is 

that the left half site TGA of an AP1 binding site is at the same positions with the rightmost three 

bases of a TEAD4 site, or the right half site TCA is shared by the leftmost three bases of a TEAD4 

site. Similarly, a large quantity of AP1 and USF binding sites intersect. Given the USF predominant 

sequence is CA(C/T)GTGAC, the common intersecting pattern is that the first two bases TG of an 

AP1 site are shared by the last two bases of the E-box in a USF site, and vice versa. 
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Tissue-preferential activity of cofactors and their tissue-specific distributions relative to primary TFs. 

Several cofactors were revealed recurrently with different primary TF partners, and notably in specific 

cell lines. This is consistent with the possibility of coordinate regulation with these primary TFs in a 

tissue-preferential manner. For example, all the datasets of 24 primary TFs in which the IRF family 

was discovered as a cofactor came from GM12878 or related cell lines, except that the ones of 

STAT1, STAT2, ATF1 and one dataset of EZH2 were from K562 cells, and the one of FOXP2 was 

from SK-N-MC cells. The GM12878 cells are of B-lymphoblastic type, which is concordant with the 

critical role that the IRF members play in the regulation of the immune system (75). All the datasets of 

10 primary TFs from which the GATA and GATA1-TAL1 motifs emerged as cofactors were derived 

from K562 cells of the erythrocytic leukemia type, which is supported by the role the GATA family 

exhibits in hematopoietic lineage gene expression, e.g., GATA1 being an erythroid-specific activator 

(76, 77). Similarly, FOXA was revealed to be a cooperating partner in datasets of 8 primary TFs from 

the HepG2 cell line derived from hepatocellular carcinoma cells, except that two datasets of GATA3 

and P300 were produced from the T47D cell line representing breast cancer cells. This suggests that 

the FOXA proteins, which are known to regulate the initiation of liver development (78), are highly 

active in liver tissue. Another TF family known to be a key factor regulating hepatocyte differentiation 

and liver-specific functions is HNF4 (79), which was discovered as a cofactor of SP1 in a HepG2 

dataset. SOX2 and the SOX2-OCT4 complex were unveiled as cofactors only in datasets of 3 primary 

TFs from the H1-hESC cell line representing embryonic stem cells (ESC), which is in agreement with 

the fact that SOX2, OCT4 and NANOG are essential for maintaining ESC pluripotency (80). 

Interestingly, all the datasets (n=9) in which YY was revealed as a cofactor were from K562 cells, 

except that the one of KDM5A was from H1-hESC cells. Unlike GATA, the YY family is ubiquitously 

distributed and not known to play an especially central role in erythroid cells, although it was reported 

that YY1 acts as a developmental repressor of the erythroid-specific ε-globin gene along with GATA1 

(81). 

The SP family was found to be capable of interacting with the maximum number of TFs, which is 

consonant with its ubiquitous expression and may be related to its relatively simple purine-rich binding 

motif. Similarly, the ubiquitously expressed AP1 could interact with 10 TFs in multiple cell lines without 

showing an extreme cell type preference. 

A number of primary TFs exhibit an extensive capability of interacting with multiple cofactors in 

different tissues. The unique distribution of these cofactors across multiple cell lines suggests the 

tissue-specific functions of the primary TFs. For instance, TEAD4 was found to be a cooperative 

partner of GATA1-TAL1 in K562 cells, of NRSF in A549 cells, of FOXA in HepG2 cells, and of AP1 in 

multiple tissues. Cofactors which were discovered to interact with P300 include IRF/RUNX in 

GM12878 cells, SP in H1-hESC cells, AP1 and CEBPB in HeLa-S3 cells, FOXA in HepG2 and T47D 

cells and GATA1-TAL1 in K562 cells. Based on cosegregation there is an interaction between 

BCL11A and IRF/RUNX in GM12878 cells, and SOX2-OCT4 in H1-hESC cells. STAT5A and 

TBL1XR1 cosegregated with members of the IRF family in GM12878 cells and with GATA1-TAL1 in 

K562 cells. 
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Novel binding motifs 

We uncovered 6 high-confidence novel motifs that have not been previously annotated (Figure 3B). 

The “NM1” motif was considerably enriched in the datasets of non-DNA-binding proteins, BAF155 and 

BRG1, from HeLa-S3 cells and the “NM2” motif was highly conserved in the datasets of BCL11A and 

NANOG from H1-hESC cells. 

The “NM3” motif was revealed in the datasets of ESRRA and SREBF2 from GM12878 cells, MAX 

from HCT116 cells, CREB1 and GTF3C2 from K562 cells, non-DNA-binding RCOR1 from IMR90 

cells. The Euclidean distances between these novel motifs and primary motifs range from 3.1 - 3.4 

bits per nucleotide. The “NM4”, “NM5” and “NM6” motifs were discovered in the datasets of GATA3, 

MXI1 and FOSL1 from MCF-7, SK-N-SH, and H1-hESC cells, respectively. These distances range 

from 2.9 to 3.4 bits per nucleotide. These motifs may comprise the binding motifs of currently 

unknown TFs or other non-annotated functional elements in vivo. 

Quality control 

Validation of information models with bona fide binding sites. We found a total number of 794 

experimentally confirmed binding sites in literature for all of the 89 TFs whose primary binding motifs 

were discovered, and attempted to detect these sites using our information models, in order to assess 

the credibility and accuracy of our models well capturing the genuine binding specificities of these TFs. 

It turned out that our models did not fail to detect a single true binding site. The detailed results are 

listed in Supplementary Table S5. 

Comparison between our information models and other binding motifs. Binding motifs of eukaryotic 

TFs were previously reconstructed from oligonucleotide binding selection assays (9); these motifs 

represent a type of ground truth reflecting the bona fide sequence preferences of these TFs. For 133 

TFs, we compared our information matrices with these motifs quantitatively by determining the 

normalized Euclidean distances between them, and classified the distances into three categories 

(Table 1). We observed that, for most TFs, the models derived in this study and the reconstructed 

motifs are nearly identical or only differ at 1 or 2 positions. The discovery of cofactors by recursive, 

thresholded entropy minimization was the predominant explanation for large normalized distances for 

39 of these TFs. 

Statistical analyses on information models. An F-test was carried out on linear regression models to 

assess the distributions of the Ri values and binding energy of putative binding sites in each 

information model. F-test values on 60 models showing primary binding motifs and 60 noise models 

randomly selected were calculated (Figure 6; data available in Supplementary Table S2). The F-test 

values of 70% correct models (42/60) are above 1,000, while all the noise models have F-test values 

below 1,000, making 1,000 an appropriate threshold to distinguish between correct and noise models. 

DISCUSSION 
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Using our motif discovery pipeline based on recursive, thresholded entropy minimization, from 

ENCODE ChIP-seq datasets of 189 human TFs we obtained accurate homogeneous and bipartite 

information models showing primary binding motifs for 62 and 18 TFs, respectively. In addition, we 

discovered 24 cofactor motifs for 118 TFs and 6 high-confidence novel motifs as well. Our findings 

lend support for predictions of known and novel TF-cofactor interactions, new subunits of known 

complexes, and can reveal target genes that previously, were not known to be regulated by both TF 

and one or more cofactors. In addition to homogeneous information models, bipartite models with 

variable-length gaps, which more precisely reflect the binding behavior of dimeric TFs, were also 

generated. Our approach is generally able to distinguish correct models from noisy, low complexity 

motifs that are coincidentally enriched in the ChIP-seq data. The models do not only take high-affinity 

binding sites into consideration, but also encompass many intermediate and lower-affinity sites. This 

level of accuracy justifies using these models to detect variants in known binding sites that alter the 

affinity of their interactions with their cognate TFs.  

Within a peak from a ChIP-seq dataset, the strength of the binding site of the primary TF is 

expected to be proportionate to the integrated signal intensity of the peak. Therefore, the average 

strengths of the binding sites contained in a subset of top ranked peaks is greater than the remaining 

sites in a dataset; while this introduces some bias, this subset comprises many more sequences than 

those found in Factorbook for any of the transcription factors. Without this thresholding, the minimum 

entropy generates noisy or cofactor models, and therefore, top ranked peaks filtering more effectively 

reveals primary TF motifs. The masking and thresholding techniques decrease the multiple alignment 

search space from distinct directions, with masking removing a portion in which the initial model is 

contained, and thresholding increasing the possibility of a non-noise motif possessing the smallest 

entropy in the remaining search space. 

In addition to PWMs, high-throughput DNase-seq assays have also been used to predict TF 

binding sites across the genome in literature, which is based on how similar a footprint shape of a 

candidate site is to an absolute DNase-seq footprint. In order to compare the ability of our information 

models and DNase-seq predicting direct binding, we obtained DNase-seq data on true binding sites of 

20 TFs within ChIP-seq peaks from Yardimci et al. (82), and attempted to detect these sites using our 

models. All these binding sites were successfully detected by our models, whereas DNase-seq 

footprinting was only able to identify 35%-85% of them, when 0 was used as the threshold on FLR 

values indicating the similarity between digestion shapes of candidate sites and definite footprints 

(Supplementary Table S6). As weak binding sites tend not to generate footprints and thus not to be 

discovered by DNase-seq, the expectation is that the sites detected by DNase-seq would be stronger 

than those that evade detection. In fact, this trend was observed for only 10 TFs and the average 

strengths of these classes of these binding sites were not significantly different. 

These information theory-based models not only are capable of detecting strong binding sites, but 

also discover intermediate and weak sites (Supplementary Table S4). This can be ascribed to the fact 

that as many peaks as possible were retained when deriving these models from ChIP-seq datasets, 

under the precondition that the correct binding motifs were shown. By including weaker binding sites 

in addition to those resembling consensus-like motifs, the weights in the Ri(b,l) PWMs are more 
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representative of the full range of binding affinities. The resultant Ri values are more effective for 

forecasting potential binding sites and target genes, detecting variants in known binding sites and 

predicting their effects. Our models can also be used to forecast whether a SNP (Single Nucleotide 

Polymorphism) linked to a disease risk lies within a TF binding site (83) as a means of modulating 

expression of these genes, and potentially offer new explanations for disease etiology in some 

individuals. The novel cofactor binding sites in TF gene targets suggest previously unrecognized 

coregulation mechanisms in which they may be operative in these genes.  

In fact, the number of TFs for which cofactor motifs were revealed exceeds the number of TFs 

whose primary binding motifs were discovered, partially because only cofactor motifs can be found in 

the datasets of TFs which exhibit little or no sequence specificity (e.g., CCNT2, INI1 and P300). For 

11 primary TFs, the binding site sequences were extremely variable, that is, the overall conservation 

levels of their binding motifs contain less information than noisy, low complexity sequences or 

cofactor motifs. Entropy minimization finds the highest information content motif in a ChIP-seq dataset 

for a given length motif and degree of sequence conservation over that length. For 18 primary TFs 

associated with cofactors, which themselves physically contact DNA, the primary TF motif was not 

enriched. The inability of the software to discover such primary motifs is a limitation of this approach. 

Interactions between the primary TFs and a subset of the cofactors which are known to cooperate 

with them were detected, since the association has to occur with a prevalence sufficient to produce a 

recognizable motif (usually >0.5 bits per nucleotide over the entire site). Nevertheless, the algorithm 

will miss some cofactors with weakly conserved or that overlap with other conserved motifs.  

While unable to discover cofactors nor identify bipartite motifs of variable spacing, the PBM 

technique adopted by Weirauch et al. (9) and Jolma et al. (10) is able to determine binding 

specificities for a wide range of sequence-specific TFs, in that homogeneous binding sites of TFs are 

reconstructed from overlapping oligonucleotide sequences by directly detecting complexes with the 

TF. This eliminates interference of noisy sequences or cofactors which may emerge as false minimum 

entropies using our method. The configuration of outputting up to five significant motifs in MIME and 

the simultaneous use of five motif discovery tools lead Wang et al. (3) and Kheradpour et al. (11) to 

discovering a few cofactors that were not revealed by our method, albeit using only top 500 or 250 

peaks increased the likelihood of those cofactors appearing by chance. 

Our motif discovery approach can be applied to other ChIP-seq data, to derive information models 

of primary TFs and to reveal cofactors that complex with primary TFs. The quality control criteria we 

described are capable of ensuring that the user-built models are accurate and can be used for binding 

site detection. The first quality control criterion is particularly important, because it provides a 

straightforward assessment of model performance. The recursively thresholded feature is crucial for 

guaranteeing that the discovered cofactors do not appear by chance, because the greater the number 

of peaks from which a cofactor is derived, the higher the confidence that the cofactor indeed interacts 

with the primary factor.  

Our study comprehensively investigated a new approach to define TF binding specificities based 

on the ChIP-seq TF data that ENCODE has released, and mined a wealth of valuable information 

about TF binding motifs and interactions on a genome scale. This information expands the granularity 
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of the current knowledge on TF interaction with DNA and points out potential directions for future 

experimental study on interaction between TFs. 
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TABLE AND FIGURE LEGENDS 

Table 1. Results of comparing our models with the motifs produced by Weirauch et al. (9). 

Figure 1. The motif discovery algorithm. Pseudocode describing the conversion of ChIP-seq data sets 

into information models using Bipad, a program which discovers sequence elements in unaligned 

sequences. 

Figure 2. Sequence logos of homogeneous (A) and bipartite (B) information models. The TF name, 

and the cell line from which the model was derived, and the number of binding sites that the model 

contains are displayed with each logo. In (B), each of the first four rows includes a homogeneous (left) 

model and a bipartite (right) model of one TF from the same dataset. The last row includes the 

bipartite models of NFE2 (left) and BACH1 (right). The bipartite search patterns are 6<0,5>6, 3<2,4>3, 

3<2,4>3, 3<2,4>3, 6<1,2>6 and 6<1,2>6, respectively from top to bottom.  
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Figure 3. Comparison between information theory-based models from different cell lines and motifs. 

(A) Each row includes sequence logos of two models of the same TF from two different cell lines. 

Note: the bipartite models for MAFF and MAFK used the search pattern 6<1,2>6. (B) The high-

confidence novel motifs (“NM1” –“NM6”). 

Figure 4. Network graph of cofactors and their interactions with the primary TFs revealed by our motif 

discovery pipeline. A yellow ellipse denotes a cofactor and a white ellipse denotes a primary TF. A 

hexagon denotes a TF family with dash lines connecting its members. For a TF family only members 

for which ENCODE provides peak datasets are shown. A red rectangle denotes a known or predicted 

complex with black or blue dotted lines indicating its components, respectively. An undirected line 

denotes the interaction between a primary TF and a cofactor which may be a complex or a TF family. 

A directed line links two cofactors, denoting that in a dataset of the starting TF the ending TF was 

discovered as a cofactor. Black lines denote known interactions and blue lines denote the newly 

discovered interactions. 

Figure 5. Distributions of intersite distances between primary TFs and discovered cofactors versus 

negative controls. The minimum threshold information contents of predicted binding sites is Rsequence, 

except for ATF3, SP2 and TCF12, where it was set to 0.5 * Rsequence if using Rsequence leads to few 

binding sites of cofactors . Each graph illustrates a much higher frequency of short (< 20nt) intersite 

distances between primary TFs and cofactors (blue) compared to the negative control (SOX2-OCT4; 

red).  

Figure 6. F-test results on linear models between Ri values and binding energy. F-tests performed on 

60 models showing primary binding motifs (blue circles) and 60 noise models (red circles) show all 

noise models have F-values below 1000 while the F-values of the majority primary motifs are above 

1000. Thus as indicated by the dash line, 1000 is an appropriate threshold for distinguishing correct 

from noise models. 
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Table 1: Comparison of information-theory based models with the motifs derived by reconstruction of 

bound, overlapping oligonucleotides 

Normalized Euclidean 

Distance (bits per nucleotide) 

Implication Number of TFs in Category 

<1 Nearly identical models 75 

1-2 Models differ at 1 – 2 positions 18 

>2 Usually cofactor; sometimes 

noise 

39 
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Figure 4 
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