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Abstract

Linear mixed models (LMMs) are among the most commonly used tools for genetic association
studies. However, the standard method for estimating variance components in LMMs — the restricted
maximum likelihood estimation method (REML) — suffers from several important drawbacks: REML
is computationally slow, requires individual-level genotypes and phenotypes, and produces biased
estimates in case control studies. To remedy these drawbacks, we present an alternative framework for
variance component estimation, which we refer to as MQS. MQS is based on the method of moments
(MoM) and the minimal norm quadratic unbiased estimation (MINQUE) criteria, and brings two
seemingly unrelated methods — the renowned Haseman-Elston (HE) regression and the recent LD
score regression (LDSC) — into the same unified framework. With this new framework, we provide an
alternative but mathematically equivalent form of HE that allows for the use of summary statistics
and is faster to compute. We also provide an exact estimation form of LDSC to yield unbiased
and more accurate estimates with calibrated confidence intervals. A key feature of our method is
that it can effectively use a small random subset of individuals for computation while still producing
estimates that are almost as accurate as if the full data were used. As a result, our method produces
unbiased and accurate estimates with calibrated standard errors, while it is computationally efficient
for large data sets. Using simulations and applications to 33 phenotypes from 7 real data sets, we
illustrate the benefits of our method for estimating and partitioning chip heritability. Our method is
implemented in the GEMMA software package, freely available at www.xzlab.org/software.html.

Introduction

Linear mixed models (LMMs), sometimes referred to as variance component models, have been widely
applied in many areas of genetics. For example, they have been used for linkage analysis and heritability
estimations in family studies [1-5], for association analysis to control for individual relatedness and
population stratification [6-15], for genomic selection and risk prediction by jointly modeling genome-
wide SNPs [16-22], and for rare variant association tests by grouping individually weak effects to improve
power [23]. More recently, with growing interest, LMMs have been applied to estimate the proportion
of phenotypic variance explained by available SNPs [21,22,24-26] — a quantity often referred to as chip
heritability — and to partition the chip heritability by different chromosome segments or by different
functional genomic annotations [27-30]. These applications all require accurate estimation of variance
components in LMMs. However, due to the increasingly large samples being collected today, estimating
variance components in genetic data is becoming increasingly challenging.

Two standard statistical methods exist for variance component estimation. The first is the restricted
maximum likelihood estimation (REML) method. REML is statistically efficient, but has three major
drawbacks. First, despite recent computational innovations [7,10-12,31], REML is computationally
expensive. It requires not only an iterative optimization algorithm that scales cubically with the number
of individuals, but also a pre-computation step to construct a genetic relatedness matrix from genome-
wide SNPs — a step that scales both quadratically with the sample size and linearly with the number
of markers. Second, REML requires individual-level genotypes and phenotypes, both of which are not
readily available in many large consortium studies or meta-analyses. Using individual-level data thus
restricts the use of REML and limits the benefits of LMMs in large-scale studies. Finally, REML relies
on the normality assumption of residual errors and is not robust to model misspecification. In particular,
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in ascertained case control studies or studies with an extreme sample design, REML underestimates chip
heritability [32,33].

A long existing alternative to REML for variance component estimation is the minimal norm quadratic
unbiased estimation (MINQUE) method, a method of moments (MoM) [34,35]. Because the MINQUE
estimates are relatively efficient and closely related to REML estimates [36,37], MINQUE is widely used
in many non-genetic settings and has also been applied to animal breeding programs [38]. However,
MINQUE shares the drawbacks of REML: it requires computing a genetic relatedness matrix and is thus
computationally slow, it does not allow the use of summary statistics, and it has unknown properties in
case control studies.

To remedy these three drawbacks, we present a new, alternative framework for variance component
estimation. We refer to our method as MQS (MinQue for Summary statistics) as it is based on MINQUE,
but addresses its shortcomings with two approximations. Our first approximation allows us to use sum-
mary statistics and obtain unbiased estimates at the price of a small reduction of estimation accuracy.
Our second approximation allows us to use only a small random subset of individuals to compute the
genetic relatedness matrices. This sub-sampling strategy greatly improves computational efficiency, but
does not significantly reduce the estimation accuracy in MQS. Most importantly, our framework unifies
two seemingly unrelated methods — the renowned Haseman-Elston (HE) regression [32,39-44] and the re-
cent LD score regression (LDSC) [30,45,46] — into the same umbrella. With simulations and applications
to 33 phenotypes from 7 real data sets, we illustrate the benefits of our method.

Results

Method Overview

Our method applies to the following LMMSs that can be used to partition chip heritability into k different
non-overlapping categories

k
y=> git+e g ~MVN(0,0/K;), e~MVN(0,07, M), (1)
=1

where y is an n-vector of phenotypes for n individuals; g; is an n-vector of random effects representing
the combined genetic effects of SNPs in ith category; K; = X; X7 /p; is an n by n genetic relatedness
matrix computed from the n by p; genotype matrix for p; SNPs in ith category; o = (07, -+, 0,3) are the
corresponding variance components; € is a n-vector of residual errors; 0’,% 41 1s the residual error variance;
M =1-1,11/n is a projection matrix; and MVN denotes a multivariate normal distribution. Both y
and every column of X have been centered to have mean zero, allowing us to ignore the intercept and
use M instead of the usual identity matrix I to constrain the errors to have mean zero. We denote the
phenotype variance s2 = yly/(n — 1). We also define the scaled version of the variance components as
h* = (h%7 T ah%) = (0%/512;7 e >UI%/812/) = 0'2/53 and hiJrl = 012c+1/812/'

We have described our method for variance component estimation in detail in the Methods section.
Briefly, our framework, which we refer to as MQS, is based on MINQUE and provides unbiased estimates
with calibrated standard errors. MQS has a simple, closed-form solution for estimating the k variance
components: 2 = S~lq, with a k-vector q and a k by k matrix S (equation 11). Intuitively, the
ith element of q measures the proportion of variance in phenotypes explained (PVE) by SNPs in ith
category when SNPs are independent, while 7jth element of S accounts for the linkage disequilibrium
(LD) between SNPs in ith and jth categories. MQS requires the marginal z-scores for computing q, the
usual genetic relatedness matrices for computing S (or the genetic relatedness matrices from a reference
panel for estimating S; see below), and a set of pre-specified SNP weights that are used for both q and S.
This set of pre-specified SNP weights is used in MQS to approximate the optimal MINQUE estimating
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equations. Different choices of weights represent different ways of approximation and can lead to unbiased
estimates with different accuracy.

MQS is a unified framework because different SNP weighting options lead to different estimation
methods. We consider two particular weighting options here. The first option is equal SNP weights
(equation 9). We refer to the variation of MQS under this weighting option MQS-HEW. MQS-HEW is
mathematically equivalent to the renowned Haseman-Elston (HE) cross-product regression [32,39-44].
However, our particular MQS formulation allows us to both make use of summary statistics and compute
the standard errors faster than before. The equivalence between HE and MQS-HEW guarantees the MQS-
HEW estimates to be unbiased for case control studies [32,33]. The second option assigns SNP weights as
a function of both the LD scores and a priori set of variance components (equation 10). We refer to the
variation of MQS under this weighting option MQS-LDW. For k = 1, MQS-LDW is effectively an exact
form of LDSC [45]. However, in contrast to LDSC, MQS-LDW uses S instead of LD scores to measure
SNP correlations. Because LD scores are inevitably under-estimated, using LD scores to measure SNP
correlations is expected to yield biased estimates. In particular, when k£ = 1, LDSC will over-estimate
the variance components. When k > 1, the variance components from LDSC will show different degrees
of bias. By providing an exact form of LDSC and a new computing form of standard errors (CI1; see
below), MQS-LDW yields unbiased and more accurate estimates with calibrated confidence intervals.

One particular feature of MQS is that we can use a random subset of individuals to obtain an estimate
of S — S — without significantly reducing the accuracy of the variance component estimates. Estimating
S with a smaller sub-sample instead of computing S with the full data not only improves computational
efficiency, but also allows us to apply MQS to data from many consortium studies: thus, we can pair q
computed from the available marginal z-scores in the consortium study with S estimated from a random
sub-sample of the study. When such a random sub-sample of the study is not available, we can also
use a reference panel, such as the 1000 genome project [47], to estimate S, so long as individuals in
the reference panel can be viewed as a sub-sample of the study (e.g. of the same ethnic origin). Our
statistical arguments for using the sub-sampling strategy, as detailed in the Methods section, is based on
examining the variances of q and S. Briefly, the variance of 62, ‘/(6’2)7 is contributed by both V(q) and
V(S). However, V(q) dominates the contribution and can be \/2p'm/n times larger than V (S), where p/
is the effective number of independent SNPs and m is the number of sub-samples. Thus, we can use a
much smaller number of individuals m to estimate S without increasing V([rz) significantly. In addition,
our computation of standard errors explicitly accounts for the uncertainty introduced by using a much
smaller set of individuals to estimate S instead of computing it.

Finally, MQS provides three different options to compute the standard errors. The first option, CI,
requires genetic relatedness matrices from the full data but is n times faster than the standard formula
used in MoM (equations 15, 16 and 18). The second (CI1) and the third (CI2) options use only sum-
mary statistics (equations 20 and 21). CII is exact but requires additional summary statistics besides
the marginal z-scores equation (equation 25). CI2 follows the approach of LDSC [45] and requires only
permutation of the marginal z-scores. However, CI2 assumes SNP independence and is approximate.
Thus, CI2, like LDSC, does not yield calibrated confidence intervals when the LD pattern is complicated.
Examples where CI2 does not apply include ascertained case control studies [48,49], admixture popula-
tions [50], and related individuals (defined loosely as individuals who are not far away in time from their
most recent common ancestor, MRCA [51]).

We summarize the key features of several variance component estimation methods and their compu-
tational complexity in Table 1.

Simulations: Point Estimates and Confidence Intervals

We perform simulations to compare the performance of several different methods on variance component
estimation. We use two real genotype data sets for simulations: an Australian data set with n = 3,925
individuals and p = 4,352,968 imputed SNPs [24], and a Finish data set with n = 5,123 individuals
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and p = 319, 148 genotyped SNPs [52]. We choose these two data sets not only because both consist of
Caucasian individuals, but also because the two differ in LD pattern: the Finland data displays longer
LD than the Australia data (Figure S4). The pattern of long LD in the Finland data makes it easy
to validate some of our expectations. The Finland data displays such long LD pattern presumably
because individuals from the Finland data are more closely related to each other than individuals from
the Australia data (notice that the Finland study is not a family study however). For each data set,
the real genotypes are used to compute genetic relatedness matrices, with which we simulate phenotypes
based on LMMs.

We compare five different methods: (1) REML uses individual-level phenotypes and genotypes; (2)
HE regression uses individual-level phenotypes and genotypes; (3) LDSC uses z-scores computed from
the full data and LD scores estimated based on 1 MB window from the full data; (4) MQS-HEW uses
z-scores computed from the full data, and S estimated from m = 400 randomly selected individuals; and
(5) MQS-LDW uses z-scores computed from the full data, LD scores estimated based on 1 MB window
from genotypes of m = 400 randomly selected individuals, and S estimated from the same m = 400
selected individuals. Notice that for MQS-HEW and MQS-LDW, a different set of m = 400 individuals
are used in each replicate.

We first simulate phenotypes under LMMs with k& = 1. We check three scenarios: h? = 0, 0.25, or
0.5 (notice that most quantitative traits have a chip heritability below 0.5 [53]). For each scenario, we
perform 1,000 replicates. We obtain the variance component estimates from different methods. Figures
1A and 1C show boxplots of these estimates. Figures 1B and 1D show the accuracy of these estimates
by plotting the mean squared error (MSE) relative to REML. The simulations validate a few of our
expectations.

First, because MQS-HEW with S is identical to HE and because S is an accurate estimate of S,
estimates from MQS-HEW with S are similar to those from HE. In addition, because the variance of
the MQS estimates depends on a product of V(S) and heritability, estimates from MQS-HEW are more
similar to HE for a small h? than for a large h? (Figure S5).

Second, in practice LD scores are estimated via a sliding window based approach and are inevitably
under-estimated. Because LDSC uses these under-estimated LD scores to approximate S, LDSC under-
estimates S and over-estimates the variance components. Such upward bias is more obvious in the Finland
data than in the Australia data because of longer LD in the Finland data. For instance, when h? = 0.5,
the LDSC estimates on average are 8.0% higher than expected in the Australia data and 47.4% higher
in the Finland data. Estimates from all other methods are unbiased. Because of the bias, the estimates
from LDSC are the least accurate ones in all scenarios.

Third, MQS-HEW /HE and MQS-LDW approximate MINQUE in different ways, but both approxi-
mations are only accurate when the variance component is small and/or when individuals are unrelated.
Thus, both MQS-HEW /HE and MQS-LDW are more accurate for a small h? than for a large h?, and
more accurate in the Australia data than in the Finland data. In addition, in the case of h? = 0, both
MQS-HEW/HE and MQS-LDW are more accurate than REML because they effectively assume h? = 0
a priori and are locally optimal.

Fourth, presumably because MQS-LDW uses estimates from MQS-HEW as initial values, and pre-
sumably because MQS-LDW uses the extra information of LD scores to compute the SNP weights,
MQS-LDW is more accurate than MQS-HEW in the Australia data. However, because long LD reduces
the accuracy of LD score estimates, MQS-LDW is of similar accuracy as MQS-HEW in the Finland data.

Next, we simulate phenotypes under LMMs with k& = 6. We first annotate the genome using six
categories as in [29]. The six categories include coding, untranslated region (UTR), promoter, DNAse
hyper-sensitivity regions (DHS), intronic and intergenic regions. SNPs are classified into these six cat-
egories based on genomic location. We then compute a genetic relatedness matrix for each category,
based on which we simulate phenotypes using LMMs with multiple variance components. We ex-
amine three different scenarios: (I) a null scenario where all variance components are zero (h? = 0
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for i = 1,---,6); (II) an alternative scenario with total chip heritability h? = Zle h? = 0.5, and
with each category explaining an equal proportion (h? = 0.5/6 for i = 1,---,6); (III) a more real-
istic alternative scenario with h? = 0.5 and with DHS explaining a large proportion of heritability
(h? = 0.04,h3 = 0.02,h3 = 0.02,h3 = 0.4,h = 0.01,h2 = 0.01). For each scenario, we perform 1,000
replicates. Figure 2 show the estimates and estimation accuracy for scenario III. Figures S6 and S7
show the estimates and estimation accuracy for scenario I and scenario II, respectively. The conclusions
from these k£ = 6 simulations are largely consistent with k£ = 1 simulations. For example, all estimates
except for LDSC are unbiased. Estimates from LDSC for the total heritability are upward biased. In
particular, in scenario III, the total chip heritabilty estimates on average are 6.0% higher than expected
in the Australia data and 45.9% higher than expected in the Finland data. However, k = 6 simulations
also revealed new insights. First, because LD scores in different categories are estimated with different
accuracy, individual variance component estimates from LDSC sometimes are upward biased and some-
times downward biased. Second, MQS-LDW is more accurate than MQS-HEW in scenario IT with the
Australia data, is worse than MQS-HEW in scenario I with the Australia data, and is of comparable
accuracy as MQS-HEW in other cases. The comparison between MQS-LDW and MQS-HEW suggests
that MQS-LDW is not always more accurate than MQS-HEW even in the Australia data.

Finally, we check whether different methods produce calibrated confidence intervals. To do so, we
compute the coverage probabilities of the 95% confidence intervals from different methods using the 1,000
replicates from both k£ = 1 simulations and k = 6 simulations (Figure 3). If the confidence interval is
calibrated, then the coverage probability is expected to be 0.95, with 99% chance in the range of (93.1%,
96.7%). We use CI to compute standard errors for HE and we use CI1 or CI2 to compute standard
errors for MQS-HEW and MQS-LDW. The results are as expected: REML, CI for HE, CI1 for both
MQS-HEW and MQS-LDW all produced calibrated confidence intervals. CI2 works well in the Australia
data with short range LD, but works poorly in the Finland data with long range LD. Like CI2, LDSC
produced calibrated confidence intervals in the Australia data but not in the Finland data. The failure
of LDSC confidence intervals in the Finland data is in part due to the estimation bias and in part due to
the approximate standard error computation method.

Real Data Applications

To obtain further insights into the differences between various methods, we apply all five methods to
estimate chip heritability for 18 phenotypes in three human GWAS data sets. The first GWAS data is
the Australian data that contains height measurements for Australian. The second GWAS data is the
Finland data that contains 10 quantitative traits, including C-reactive protein (CRP), glucose, insulin,
total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TG),
body mass index (BMI), systolic blood pressure (SysBP) and diastolic blood pressure (DiaBP). The third
GWAS data is the WTCCC data [54], which includes about 14,000 cases from 7 common diseases and
about 3,000 shared controls, all typed on a common set of 458,868 SNPs. The 7 common diseases
are bipolar disorder (BD), coronary artery disease (CAD), Crohns disease (CD), hypertension (HT),
rheumatoid arthritis (RA), type 1 diabetes (T1D) and type 2 diabetes (T2D). We select the WTCCC
data because this is a case control study and we expect long range LD in case control studies due to
ascertainment [48,49]. We apply the five methods to these data in the same way as described in the
simulations. For LDSC, we also use 10 MB sliding window in addition to the 1 MB window to estimate
the LD scores.

The chip heritability estimates are presented in Table 2. For case control studies, we present estimates
on the observed scale, which can be easily converted to the liability scale with a known disease prevalence
in the population [21,33,55]. For example, for a disease with a disease prevalence of 0.5% in the population
and a case proportion of 50% in the case control study, then the scaling factor is 0.47. Because of the
small scaling factor, the heritability estimates for some diseases are above one. The heritability estimates
in the Finland data are largely consistent with a previous study [56]. The estimates in the WTCCC are
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also consistent with a previous study [33]. The heritability estimate for height in the Australia data is
slightly smaller than that from previous studies [21,24]. This is because we used imputed data here.
Using imputed data is known to disrupt LD pattern and reduce heritability estimates [57].

The real data results are consistent with what we see from the simulations. First, MQS-HEW estimates
and the standard errors (CI1) are almost identical to that of HE (CI). Second, LDSC estimates are larger
than the other estimates, consistent with the upward bias in the simulations. The bias is also more obvious
in the Finland and the WTCCC data than in the Australia data. The bias can be reduced by using 10
MB estimation window instead of 1 MB but cannot be completely removed. In contrast, consistent with
its known downward bias in case control studies [32,33], REML estimates are consistently smaller in 7
disease phenotypes. Third, MQS-LDW estimates are largely similar to MQS-HEW for quantitative traits
and for diseases with a low chip heritability estimate (e.g. CAD, HT, RA, T2D). However, MQS-LDW
estimates are noticeably different from MQS-HEW for diseases with a high chip heritability estimate (e.g.
BD, CD, T1D). Because we do not know if MQS-LDW provides unbiased estimates in case control studies,
we do not know whether such difference was due to a large variance or a potential bias of MQS-LDW
in case control studies. Fourth, consistent with simulations, CI2 often produces overly narrow standard
errors when compared with CI1 (Table S2). However, for two disease phenotypes (RA and T1D), the
standard errors from CI2 are extremely large, suggesting that the calibration issue with CI2 may not
always favor one direction. The standard errors of LDSC are similar to that of CI2 but are different from
the exact method CI1 for most traits.

Our method requires genotypes from a random sub-sample of the study to estimate S. When such a
subset of individuals is not available, we can use a reference panel to estimate .S, so long as individuals
in the reference panel can be viewed as a sub-sample of the study. However, a mismatch between the
reference panel and the study sample can cause estimation bias. In addition, using a separate reference
panel prevents us from using the exact method CI1 to compute the standard errors. Here, we explore
the use of genotype data from the 1,000 genomes project [47] for chip heritability estimation in the three
GWASSs. Specifically, instead of using 400 randomly selected individual from the study sample, we use 503
individuals of European ancestry from the 1,000 genomes project to estimate S. The chip heritability
estimates for all traits from the three data sets are shown in Table S2. For both the Australia and
WTCCC data sets, using the 1,000 genomes data as a reference panel produce similar results. However,
for the Finland data set, the estimates from using the 1,000 genomes data are much larger, suggesting a
potential over estimation. The results suggest that a match between the reference panel and study sample
is critical for accurate estimation. In addition, because we can only use CI2 to compute the standard
errors, the standard errors suffer from the same drawback as detailed in the previous paragraph.

Finally, we apply MQS-HEW and MQS-LDW methods to analyze 8 phenotypes from four consortium
studies. These phenotypes include BMI (n = 120,569), height (HT, n = 129,945) from the GIANT
consortium [58,59], HDL (n = 88,754), LDL (n = 84,685), TC (n = 89,005) and TG (n = 85,691)
from the Global Lipids Genetics Consortium [60], fasting glucose (FG, n = 58,074) from the MAGIC
consortium [61], and Crohn’s disease (CD, n = 21,447) from the International Inflammatory Bowel
Disease Genetics Consortium [62]. The data have been pre-processed by a previous study [63]. We further
select a common set of p = 5,014,740 SNPs among these phenotypes for analysis. We partition SNPs
into the same six functional categories (coding, UTR, promoter, DHS, intronic and else) as before [29].
Because only z-scores are available for these phenotypes, we have to use CI2 to compute the standard
errors and use genotypes from 503 individuals of European ancestry in the 1000 genomes project [47] as a
reference panel to estimate S. In addition, following previous approaches [30], to contrast the importance
of different categories, we focus on estimating the relative value instead of the absolute value of variance
components. Specifically, as in [30], we construct a fold enrichment parameter, defined as the ratio
between the per-SNP variance in one category and the per-SNP variance in all categories, to quantify
the relative importance of different functional categories (Supplementary Text).

Figure 4 shows the enrichment parameters for six categories in 8 phenotypes estimated by either
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MQS-HEW or MQS-LDW. The results from both MQS-HEW and MQS-LDW are consistent with what
we expect [30]: for most phenotypes (with the notable exception of BMI), the per-SNP variance in the
coding region is the largest, followed by the UTR, promoter and the DNS regions. The per-SNP variance
for both the intronic and intergenic regions are close to zero. The enrichment estimates between MQS-
HEW and MQS-LDW are similar overall, though the enrichment of the coding region is estimated to be
larger in MQS-LDW than in MQS-HEW for the lipid phenotypes.

Discussion

We have presented a novel framework, MQS, for variance component estimation with summary statistics.
MQS is computationally efficient for large data and produces unbiased estimates with calibrated standard
errors. MQS is also flexible and can be used with other methods to model uneven linkage disequilibrium
[25,64] or model the effect size dependency on minor allele frequencies [21]. In addition, MQS can be
extended to model multiple correlated phenotypes [13,46] and /or incorporate overlapping SNP functional
annotations. With simulations and applications to 33 phenotypes from 7 GWASs, we have shown the
benefits of our method.

We have focused on two variations of MQS in the present study. Both variations, MQS-HEW and
MQS-LDW, yield unbiased estimates but with varying degrees of accuracy. Although we cannot tell in
advance which method is more accurate for a particular data set, simulations suggest that, when k = 1,
MQS-LDW may be more accurate than MQS-HEW for quantitative traits and unrelated individuals.
The superior accuracy presumably stems from the fact that MQS-LDW uses LD score information and
relies on a priori set of estimates from MQS-HEW. However, MQS-LDW is not always more accurate
than MQS-HEW. In real data applications, the estimates from MQS-LDW are often very similar to
that from MQS-HEW. MQS-LDW is also comparable to and sometimes even worse than MQS-HEW
for related individuals or for £ > 1. In addition, MQS-LDW suffers from two important drawbacks.
First, because MQS-LDW requires an iterative procedure, computing the standard errors using CI1 for
MQS-LDW is less convenient than MQS-HEW. Inconvenience in computing the exact standard errors
can affect the usage of MQS-LDW in consortium studies. Second, because of the iterative procedure and
the non-linear dependence on the MQS-HEW estimates, it is unclear whether MQS-LDW can produce
unbiased estimates in case control studies as MQS-HEW is known to do [32,33]. Therefore, at this
stage, we recommend the use of MQS-HEW as a default choice for both quantitative traits and case
control studies. However, exploring other variations of MQS by using other SNP weighting matrices,
especially non-diagonal ones, will be an interesting avenue for future research. Our derivation of MQS-
LDW provides some possible non-diagonal weight matrices for exploration. It would be ideal to identify
a weighting matrix that can lead to estimates that are consistently more accurate than MQS-HEW while
remaining unbiased in case control studies.

MQS uses a small random subset of individuals to estimate S. Using S instead of S reduces much
of the computational cost while yielding estimates that are almost as accurate as if the full data were
used. For instance, in both our simulations and real data applications, we have used ~ 10% of the data
to estimate S. Using ~ 10% of the data incurs minimal loss of accuracy but results in an effective ~ 100
fold speed gain (because computational complexity scales with m?). Our sub-sampling approach of using
S instead of S is motivated by recent genetic studies that make use of a reference panel for genotype
imputation [65-68], and more recently, for multi-loci analysis [45,69] (including LDSC [45]): when the full
data is not completely observed, these studies rely on a reference panel to impute the missing pieces to
construct a complete data. Our approach, however, differs from the previous approaches in two important
ways: we actively use a subset of data to estimate certain quantities even when the full data is completely
observed (i.e. in line with the idea of stochastic approximation method [70]); and we account for the
extra uncertainty introduced by using a smaller subset of data. Importantly, in the present study, we
provide an initial set of statistical reasoning to justify our sub-sampling approach in MQS. However, even


https://doi.org/10.1101/042846
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/042846; this version posted March 8, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

with our guidelines, it often remains difficult to choose the right number of sub-samples, m, for practical
analysis. A large m would not save much computational time while a small m could be insufficient to
produce unbiased estimates. In practice, the optimal choice of m will likely depend on both the number
of categories k and the effective number of independent SNPs in each category; thus we caution against
the use of an m that is too small when k is large. Despite this small concern, however, we believe the
sub-sampling strategy allows MQS to achieve an appealing balance between computational efficiency and
statistical efficiency. With increasing data sizes, exploring the benefits of sub-sampling strategy in other
statistical methods for large-scale GWASs — as well as other big data applications — is likely to yield
fruitful results in the future.
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Material and Methods
The Model

Although our method can be reasonably general, we introduce it by considering a particular application:
partitioning heritability by different functional categories. To do so, we assume that variants have been
pre-classified into k different, non-overlapping functional categories. Our goal is to estimate the proportion
of phenotypic variance explained (PVE) by all variants in each category. We consider the following model

k
y=> XiB;+€ €~MVN(0,o07, M), (2)

i=1

where y is an n-vector of phenotypes for n individuals; X; is an n by p; genotype matrix for p; variants
in ith category; 3, is a p;-vector of corresponding effect sizes; € is a n-vector of residual errors; o 4118
the residual error variance; M = I — 1,12 /n is the projection matrix onto the null space of the intercept;
and MVN denotes a (degenerate) multivariate normal distribution. Notice that we ignore the intercept
and use M instead of the usual identity matrix I to reflect the fact that both y and every column of X
have been centered to have mean zero. Because of the centering, the residual errors follow a multivariate
normal distribution with a low-rank covariance matrix M that constrains the errors to sum to zero.
Centering does not affect results but simplifies the algebra. Generalization of the model to incorporate
other covariates in addition to the intercept is straightforward, requiring projecting y, every column of
X and the residual errors to the null space of the covariates.

Following previous approaches [21,24], for each effect size vector B;, we specify a normal prior with
mean zero and variance o7 /p;, or 3; ~ MVN(0, 02 /p;I). This normality assumption of effect size leads
to an alternative but equivalent form — a LMM with k variance components [21]

k
y=> gi+e 8 ~MVN(,0/K;), €~MVN(,07, M), (3)
1=1

where g; = X;(3, is the combined genetic effects of ith category; K; = X; X! /p; is an n by n genetic
relatedness matrix computed from SNPs in ith category; % = (0%, -+ ,0}) are the variance components.

As usual [24,71,72], we standardize every column of X to have variance one. Unlike centering, stan-
dardizing the X columns will affect the results because it changes our prior assumption [21]. Specifically,
standardizing the X columns corresponds to making an assumption that rarer variants tend to have larger
effects than common variants, and that marker effect sizes depend on the minor allele frequencies (MAFs)
in a particular mathematical form (see [21] for relevant discussion). We do not, however, standardize y,
and the phenotype variance is s2 = y'y/(n —1).

At this point, it is useful to define the scaled version of the variance components: h? = (h2,--- h%) =
(03/s5,--- ,0r/s2) = 0*/s. and hj = o}, /s2. As we will show below, when the phenotype variance

‘912/ is unknown, o? and o}, are not estimable from summary statistics alone, but h? and h7_, are.

With these modeling assumptions, PVE by ith category is PVE; = J?/(Zfill 0}) = hf/(Zfill h3), i€
{1,--- ,k} [21].

Finally, although we will focus on the specific model defined in equation 3, we note that it is straightfor-
ward to generalize our model to incorporate other modeling assumptions. For example, we can generalize
the model to incorporate other prior assumptions on the dependence of effect sizes on the MAFs (and
other variant information), as long as the dependency is linear in o7 (i.e. in the form of g(f;)o?/p;, where
f1 is the MAF for the Ith variant in the ith category). Such generalization can be achieved by replacing
the usual genetic relatedness matrix K; with a corresponding weighted genetic relatedness matrix with
variant weights depending on ¢(f;). Similarly, we can generalize our model to incorporate overlapping
categories. If [th variant belongs to k; different categories, we can assume its effect size variance to be
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a weighted function of the variances of each category, or Zfl: 102 /(pik;). With this assumption, we can
again generalize our model by replacing the genetic relatedness matrix K; with a corresponding weighted
genetic relatedness matrix with variance weights 1;c;/k;, where the indicator function 1;¢; equals one
when the [th variant belongs to the ith category and equals zero otherwise.

MoM and MINQUE

Our goal is to estimate the variance components o2 and the residual error variance o7 41 (or the scaled
version h? and hi +1)- The estimated parameters can then be used to compute PVE. To estimate the
variance components, we consider the method of moments, which is based on the following set of quadratic
equations (e.g. [34])

k

E(y"Ajy) =) tr(A;K:)o7 +tr(Ay)of .y, (4)
i=1
where each A; is a symmetric non-negative definite matrix and ¢r denotes matrix trace. For estimation
with MoM, we replace the expectation on the left hand side (LHS) of equation 4 with the realized value
yTAjy. We then solve the equations to obtain estimates for o and o}, ,. Because there are k + 1
parameters in our model, we only need k + 1 different A ; to obtain the estimates. Though unnecessarily,
we can also use more than k+1 A to set up an over-determined linear system, and use the ordinary least
squares (OLS) to obtain unbiased estimates. For example, the naive LDSC equation [45] is based on using
a set of p different A ;, where A; = XAjXT and A; is a rank one matrix with jjth diagonal element being
one and all other elements being zero. (Notice that we call this naive LDSC to distinguish it from LDSC.
LDSC does not use OLS estimates based on the naive LDSC equation because of poor performance.
Rather, LDSC introduces two extra weights to improve estimation accuracy. See Supplementary Text for
details.)
Any choice of A; will yield unbiased estimates for o2 and o} 41, but different choices of A; affect
estimation accuracy. The optimal choice of A; is found based on the Minimal Norm Quadratic Unbiased
Estimation (MINQUE) criterion [34,35,73,74] and takes the following form

A;=H'K;H ! (5)

where 7 =1,--- Jk+1, Ky =M and H = Zf:ll 0?K;. Notice that we have loosely used the matrix
inverse notation to denote a generalized inverse, and we have also loosely used hat on top of A; to
not denote an estimate but to denote an optimal choice. Under normality assumptions, MINQUE is also
referred to as the best quadratic unbiased estimation (BQUE) [75] and/or the minimal variance quadratic
unbiased estimation (MIVQUE) [73,74].

This optimal Aj depends on a set of variance components that are unknown a priori. Thus, we
cannot use the optimal Aj directly in practice. Two options are available to obtain MINQUE estimates
in practice. The first option is to apply an iterative procedure on equation 4: in each iteration ¢ we plug
in the current estimates &7, i1, in H and Aj to obtained the updated estimates Gt 0i41.441- The
resulting algorithm is often referred to as an iterative MINQUE, or I-MINQUE, which, not surprisingly,
is REML [36]. The second option is to use a pre-determined set of parameters 6'?7&,% 41 to construct
H = Y77 62K, and then use A; = H 'K;H"'. For example, MINQUE(0) sets h? = 0, h} , = 1
to obtain estimates of reasonably accuracy [76,77]. However, both these two options have the same
drawbacks mentioned in the introduction.

First Approximation: SNP Weights and Approximation to MINQUE

We aim to develop an approximation form of the optimal Aj that allows the use of summary statistics,
facilitates computation, and is reasonably accurate and thus maintains the statistical efficiency comes
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with the optimal Aj. The particular approximation we consider takes the following form
A =X;W,;XT/p; (j=1,--,k), Apy1=M (6)
where W = diag(wj1,- -+ ,w;p,) is a pre-specified p; by p; diagonal matrix of SNP weights; and X; again

is an n by p; genotype matrix for i variants in ith category A (j # k+ 1) is effectively a weighted
genetic relatedness matrix, while Ak+1 approxnnates Ak+1 by assuming that H is approximately M.
Notice that Ay, ensures that Zerll o; = s and ZkH h? = 1. Because a scale transformation of W
does not affect results, to simplify the algebra we constrain tr(W) = p; or equivalently that the average
SNP weight equals one.

With this set of Aj, the set of k + 1 estimating equations from equation 4 become

yTAjy = ZtT(KZAJ)O'? —+ tT‘(Aj)(T]%_,'_l, (7)
=1
yly = Ztr Joi +tr(M)oj, . (8)

where tr(K;) = tr(M) = tr(A;) = n — 1. We refer to the above equations as MQS estimating equations.
We are yet to specify the weighting matrices W;. In the present study, we consider two particular

choices. The two choices represent different ways of approximating the optimal Aj and are related to the
HE regression [32,39-44] and the LDSC [30,45,46], respectively.

HE Weights

The first set, which we refer to as the HE weights, assigns equal weights for all SNPs, or
wj = 1. (9)

The HW weights are derived based on an approximation to ensure Aj = Aj (Supplementary Text). The
approximation becomes exact for unrelated individuals or a trait with zero hertiablity.

We refer to the variation of MQS under the HE weights as MQS-HEW. Surprisingly, MQS-HEW is
equivalent to both MINQUE(0) [76,77] and the HE regression (Supplementary Text). Because of the
equivalence between MQS-HEW and HE, MQS-HEW is expected to provide unbiased estimates for case
control studies [33]. Compared with HE and MINQUE(0), however, our MQS formulation allows the use
of summary statistics to compute both the point estimates and the standard errors (see below).

LD Weights

The second set, which we refer to as the LD weights, takes the following form

wj = (Z(n — 1) /pilimiyhi +1) 72 /cj, (10)

i

where flf is a pre-specified estimate of h?; l(ji~iy 1s the LD score of SNP jl with respect to all SNPs
(including itself if j = ¢) in ith category; and ¢; is a normalizing constant of jth category to ensure
that ), w;; = p;. In practice, we use the variance component estimates from MQS-HEW as iL?, but
restricted them to be between 0 and 1 for algorithm stability. The LD score here is defined to be the
summation of squared correlations between the jlith SNP and all SNPs in the ith category minus the
expectation under the null, or I(j;y = > b (r? 7%.im — 1/(n—1)). The LD weights are derived based on
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two approximations to ensure Aj R Aj (Supplementary Text). The approximations become exact also
for unrelated individuals or a trait with zero hertiablity.

We refer to the variation of MQS under the LD weights as MQS-HEW. When k£ = 1 and when
the LD scores are exact, MQS-LDW is mathematically equivalent to LDSC [45] (Supplementary Text).
However, LD scores in practice are estimated via a sliding window based approach [45] and are inevitably
under-estimated. Under-estimation of the LD scores have different impacts on MQS-LDW and LDSC.
For MQS-LDW, the estimates with estimated LD scores are still unbiased but are less accurate than that
based on exact LD scores. However, because LDSC uses estimated LD scores to approximate tr(KiAj)
instead of computing it as in MQS-LDW, LDSC is expected to under-estimate tr(KiAj) and thus over-
estimate the variance components.

When k& > 1, MQS-LDW is not longer equivalent to the stratified LDSC [30] even with exact LD
scores. Unlike &k = 1, it is no longer possible to convert MQS-LDW estimating equations to a set of
linear equations that relate per-SNP z-scores to per-SNP LD scores. Similar to the case of k = 1, the
stratified LDSC estimates are expected to be biased. This time, because the LD scores for SNPs in
different categories are inevitably under-estimated to a different degree, the direction and degree of bias
in the stratified LDSC are expected to vary across multiple variance components.

Point Estimates and Confidence Intervals

With the MQS estimating equations 7 and 8, it is straightforward to obtain variance component estimates.
To do so, we subtract equation 8 from each equation in 7, solve the resulting k equations to estimate
0?2, and plug in the estimated o2 to equation 8 to estimate 0,%+1. The resulting MQS estimates are in a
simple, closed-form solution

6% =8"1q, (11)

e

Gip1 =8y — ) 01, (12)
i=1
where the elements in the k-vector q and the k by k matrix S are

v (Ai —tr(Ay)/tr(M))y/(n —1)? = y" (A; = T)y/(n — 1)°, (13)
(tr(A;K,) — tr(A))tr(K,) /tr(M))/(n — 1)> = tr(A;K,)/(n — 1)> = 1/(n—1).  (14)

qi
Sij =
The variance for the estimates are
V(e*) =S~ V(@S (15)
V(6i1) = 187 V(@S (16)
where 1, is a k-vector of 1s and the k by k covariance matrix V(q) is
V()i = V(y"(A; ~D)y,y" (A; ~ Dy) = 2tr(H(A; ~ DH(A; —1))/(n — 1)°, (17)

since V(y) = H.
The above form of V(q) requires cubic operations to compute. To speed up computation, we instead
consider a novel approximation to V(q)

V() ~2y" (A; —DH(A; —T)y/(n — 1)*. (18)

We refer to the above method of computing standard errors as CI. The above approximation is based
on replacing the expectation H = F(yy?T) with its realized value yy”. The approximation is motivated
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by the average information (AI) algorithm [78] and effectively uses a realized information matrix in place
of the expected information matrix. Our approximation not only makes computation n times faster
than the usual MoM, but also allows the use of summary statistics in computing standard errors (see
below). We will show later in the simulations that the confidence intervals constructed based on this
approximation are indeed calibrated. (As a side note, when the sample size is not large enough and the
asymptotic normality does not kick in, then we cannot use V(q) for hypothesis tests. Instead, we need
to use a mixture of chi-square distributions to obtain more accurate p-values [79]. We do not explore this
issue here as we typically have large sample size in GWASs.)

Second Approximation: Estimating S via Sub-sampling

Up to now, the total computational complexity of MQS scales quadratically with respect to the sample
size and linearly with respect to the number of SNPs, or on the order of O(pn?). In particular, it takes
O(pn) time to compute g, O(pn?) time to compute S, and O(n?) time to compute V(q). Because the most
computationally expensive part is the computation of S, we consider estimating S instead of computing
it. Specifically, we consider using m randomly selected individuals from the full sample to estimate S, or

Sij = (tr(AJK]) — tr(A))tr(K) /tr(M)) /(m = 1)?, A} = X[WXT /p;, Ki =X X{T/pi.  (19)

where X/ is the standardized genotype matrix for the subset of individuals and M’ =1—1,,1,,/m is the
projecting matrix onto the null space of the intercept for this subset of individuals.

Using the estimated S in place of S reduces computational complexity from O(pn?) to O(pm?),
resulting in an overall computational complexity of O(pn +pm?) for MQS. In addition, using S allows us
to apply MQS to data from many consortium studies: we can pair q computed from the complete data
with S estimated from a random sub-sample of the study. When such a random sub-sample of the study
is not available, we can also use a reference panel, such as the 1,000 genomes project [47], to estimate S,
so long as individuals in the reference panel can be viewed as a sub-sample of the study (e.g. of the same
ethnic origin).

To account for the extra variance introduced by using S instead of S, we adjust the variance for the
estimates by the Delta method

V(6?)=S"!(V(q) +D(6*)V(S)D(6%))S ", (20)
V(6741) = 1787} (V(q) + D(6*)V(S)D(6%))S "1, (21)

where D(62) denotes a k by k diagonal matrix with ith diagonal element 62. We compute V(S) via
Jackknife [80]. Specifically, we first compute K/, A’ and S. Then, we remove one individual at a time
and use the corresponding sub-matrix K/, _; and A;n_l to compute Sim_i1. Finally, we estimate the
element-wise variance of S as V(g) Because the second step of computing S,n_1 re-uses many quantities
that are available from computing S, the overall complexity of estimating V (S) is only O(m?).

Our reasoning behind estimating S stems from the following alternative representation of the MQS

solution
1 & 2 s,
- - s 22
i ;wll’rtl,y n_1’ ( )
pPi Pj 1
wyry g — —— (23)
J png ; l/z:l gl g5l 1

where 75, = Xﬁy/(n — 1) is the correlation between phenotype and the genotype of ith SNP in ith
category, and 1 ;v = x5x;/(n — 1) is the genotype correlation between [th SNP in ith category and
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'th SNP in jth category. Intuitively, each element of S is a weighted average of p;p; different terms of
ffl i while each element of q is a weighted average of only p; different terms of 3121 Therefore, S is much
easier to be estimated accurately than q.

Besides the intuitive explanation, we also provide two formal arguments to support the sub-sampling
approach for MQS. We use MQS-HEW for illustration. Our first argument is that the variance of S
estimated by using m individuals, or V(S), is often small compared with S itself. Because of this, the
Delta method approximation will be accurate and S~! can be estimated well by using S~1. Specifically,

when k = 1, for independent SNPs, S is expected to be 1/p while /V(9) is expected to be 2/(mp) under
the null, where p is the number of SNPs (Supplementary Text). Simulations with independently and
binomially distributed SNPs confirm these relationship (Figure S1 and Table S1). For SNPs with LD, we
can use the effective number of independent SNPs in place of p to provide approximate forms E(S) = 1/p’

and /E(V(S)) &~ 2/(mp'). Simulations with real data confirm these approximate relationship (Figures
S2, S3 and Table S1).

Our second argument is that V(S) is also small compared with V(q). Because of this, the variance of
&2 and 6,% 41 is dominated by V(q) and estimating S does not introduce much extra variance. Specifically,

when k = 1, for independent SNPs, /E(V (¢)) = v2/(n./p) under the null (Supplementary Text), which

2pm/n times larger than \/V(SA' ). Simulations with independently and binomially distributed SNPs
confirm this relationship (Figure S1). For SNPs with LD, we use the effective number of independent
SNPs in place of p to provide an approximate form /E(V (q)) ~ v/2/(n/p’). Simulations with real data
again confirm the approximate form (Figures S2, S3 and Table S1).

The two arguments above represent the first attempt to understand the behavior of sub-sampling
strategy and the reference panel idea that has been widely used in genetics [45,65-69]. However, we note
that the two arguments are by no means complete. For example, we have focused on k& = 1 here. For
k > 1, the number of variance components k as well as the effective number of independent SNPs in each
category will both play a role in determining the size of m. A larger m is likely required to ensure accurate
estimation of S as well as a small V(S) with respect to V(q). In addition, we have focused only on
MQS-HEW. MQS-LDW uses an iterative procedure that makes it harder for a thorough investigation.
However, we will provide simulations as well as real data applications to show that estimating S does
work well for either k =1 or k£ > 1 and for both MQS-HEW and MQS-LDW.

Estimation with Summary Statistics

We are now ready to describe the details of MQS estimation when we only have summary statistics.
In this case, we require marginal z-scores from the complete data and individual-level genotypes from a
subset of individuals (or from a separate reference panel whose individuals can be thought of as a subset
of the study sample). When we only have summary statistics and when the phenotype variance si is
unknown, o2 and o}, ; are not estimable but their scaled versions h? and h ,, are.

To estimate h? and h3 41, we first use the marginal z-scores to approximate q

2
7 ~ [ 24
/s n_lplE:wz (21)

The approximate assumes that the marginal variant effect size is small, which holds well for most GWASs.
Next, we use the individual-level genotype data from a sub-sample of data or a separate reference panel
to compute S (equation 19). With q/s; and S, we estimate h? and h? 41 with equations 11 and 12.

To compute the variance for the estlmates we consider two alternatlve strategies. The first strategy,
which we refer to as CI1, is accurate but requires summary statistics in addition to the marginal z scores.
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This strategy is based on an alternative expression of the equation 18

k
Vi(@)ij/sy~2)  hi(a] WX X X]X Wz /(pipjp) — 2 WiX] Xz / (pipr)
=1

— 2] X\ X;W;z;/(pip1) + 21 zi/p1)/(n — 1)°
+ 203 4 (2] WiXTX Wz /pip; — 2] Wiz /pi — 21 Wz /p; +1)/(n — 1) (25)

where z; is a p; vector of marginal z-scores for SNPs in ith category. Thus, if we can compute additional
summary statistics — specifically the n by k matrix of X;z;, the n by k matrix of X;W,z;, and the
p by k matrix of XTX,W,z; — then we can compute the standard errors. These additional summary
statistics are easy to compute; in consortium studies, they can be computed within each sub-study and
then combined across studies without sharing individual level data. Importantly, for MQS-HEW, we only
need to compute two of these three matrices, X;z; and X7 X;z;. These two matrices do not require W,
which is a function of variance components in MQS-LDW. Thus, MQS-HEW can be much more convenient
than MQS-LDW. Finally, we note that, although it is tempting to use quantities computed from a subset
of individuals to estimate the confidence interval, we find that ziTWngTX;XETX;-szj /((m—1)2) from
m individuals is not a good estimate of z] W, X7 X, X! X ;W ,z;/((n — 1)?).

The second strategy, which we refer to as CI2, does not require extra summary statistics. It is
based on the strategy used in LDSC [45]. It works well when SNPs are approximately independent
but can work poorly otherwise. This second strategy is based on the observation that the covari-
ance function V(q) as a function of y can be written as a function of the marginal z-scores z =
(z1,-,2z1)". z; = XT'y/(syv/n —1) follows approximately a degenerate multivariate normal distri-
bution z; ~ MVN(O,XZ-THXi/(s?/ (n —1))). When SNPs are independent (i.e. X?HX; is diagonal) or
when X7 HX; is block-diagonal, we can use block-wise permutation of z-scores to estimate V(q) as in
LDSC [45]. However, as we show in the Results, when LD pattern is complicated, CI2, like LDSC, can
yield untrustworthy confidence intervals.

Overall, we recommend the use of CI1. However, we recognize that CI1 requires additional summary
statistics that may not be readily available from many studies at the moment. Thus, we have also
implemented CI2 as a useful practical option.
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Table 1. Features and computational complexity of different methods for variance component
estimation. The computational complexity includes time to compute the genetic relatedness matrices. n
is the number of individuals, m is the number of randomly selected subset of individuals (m < n), k is
the number of variance components, p is the number of genetic markers. Al: average information
method. HE: Haseman-Elston regression. LDSC: LD score regression. w is the average number of
variants used to estimate the LD scores. ¢ is the number of blocks used for the block-wise Jackknife
re-sampling algorithm. ¢ is the number of iterations used for estimation: ¢ = 1 for MQS-HEW, ¢t = 2 (or
t > 2) for MQS-LDW and LDSC. The confidence interval in MQS can be computed in three different
ways: CI requires computed genetic relatedness matrices; CI1 requires summary statistics in addition to
z-scores; CI2 follows LDSC, requires only z-scores but is an approximation.

Computational Complexity Use Summary Calibrated

Type  Methods Point Estimate Confidence Interval Statistics Unbiased Confidence Interval
REML Al pn® +t(n® + k*n?) k*n? No Yes Yes
HE pn? + k2n? E2n® No Yes Yes
MoM LDSC pn + wpm + tkp cp Yes No No
MQS  pn+t(pm? +k?*m?) CL k*n?; CI1: kpn; CI2: cp Yes Yes Yes (CI/CI1), No(CI2)

Table 2. Chip heritability estimates from different methods for 11 quantitative traits and 7 binary
phenotypes from three GWASs. Values in parentheses are standard errors. For MQS-HEW and
MQS-LDW, the standard errors are computed by CI1. The standard errors computed by CI2 are
available in a supplementary table. The heritability estimates for the WTCCC data is presented at the
observed scale. A small scaling factor is required to transform the estimates to liability scale.

Methods
Trait REML HE LDSC MQS (m = 400; CI1)
1 MB 10 MB HEW LDW
Australia, n = 3,925, p = 4,352,968
Height 0.27(0.072) 0.25(0.072) 0.30 (0.080)  0.29 (0.076) 0.26(0.072) 0.28(0.072)

Finland, n = 5,123, p = 319, 148

CRP  0.043(0.049)  0.034(0.045)  0.054(0.066) 0.046(0.056)  0.037(0.045)  0.037(0.045)
Glucose  0.17(0.046)  0.21(0.069)  0.30 (0.067)  0.25 (0.057)  0.21(0.070)  0.21(0.068)
Insulin  -0.063(0.037) -0.084(0.043) -0.12 (0.057) -0.1 (0.0476) -0.082(0.044) -0.081(0.044)

TC 0.29(0.043)  0.42(0.097)  0.63 (0.079)  0.54 (0.068)  0.42(0.098)  0.43(0.099)

HDL  0.34(0.043)  0.36(0.071)  0.50 (0.081)  0.42 (0.067)  0.36(0.072)  0.35(0.068)

LDL  0.38(0.041)  0.60(0.13)  0.91 (0.080)  0.77 (0.069)  0.61(0.13) 0.61(0.13)

TG 0.19(0.047)  0.17(0.053)  0.25 (0.070)  0.21 (0.059)  0.18(0.053)  0.17(0.053)

BMI  0.20(0.047)  0.18(0.053)  0.28 (0.063)  0.24 (0.054)  0.19(0.053)  0.19(0.054)
SysBP  0.19(0.045)  0.27(0.087)  0.41 (0.064)  0.35 (0.055)  0.27(0.088)  0.28(0.090)
DiaBP  0.071(0.046)  0.073(0.049)  0.11 (0.063) 0.093 (0.053)  0.075(0.049)  0.076(0.049)
WTCCC, n =~ 5,000, p = 458, 868

BD 0.83(0.057)  1.05(0.095)  1.32(0.085)  1.31(0.084)  1.08(0.098)  1.16(0.10)

CAD  057(0.061)  0.58(0.071)  0.72(0.078)  0.71(0.078)  0.60(0.073)  0.63(0.074)

CD 0.71(0.060)  1.06(0.15) 1.32(0.11) 1.30(0.10) 1.08(0.16) 1.12(0.17)

HT 0.58(0.060)  0.62(0.072)  0.78(0.077)  0.77(0.076)  0.63(0.072)  0.66(0.073)

RA 0.69(0.059)  0.81(0.083)  0.95(0.32)  0.90(0.29)  0.84(0.085)  0.83(0.083)

TID  097(0.052)  1.53(0.15) 1.65(0.74) 1.48(0.62) 1.60(0.15) 1.41(0.11)

T2D  0.61(0.060)  0.69(0.082)  0.87(0.080)  0.86(0.078)  0.71(0.084)  0.76(0.084)
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Figure 1. Comparison of variance component estimates from REML (red), HE (purple), LDSC (light
purple), MQS-HEW (green), and MQS-LDW (light green) for k£ = 1 simulations based on the
Australian data (a, b) or the Finland data (c, d). (a) and (c) show boxplots while (b) and (d) show the
MSE relative to REML. The true variance components from the three simulations (0, 0.25 and 0.5) are
shown on the x-axis of all panels, and are also shown as three blue horizontal dashed lines in (a) and
(c). The dot in the middle of the boxplots represents the mean of the estimates in (a) and (c). Note
that the y-axis in (d) is on log scale.
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Figure 2. Comparison of variance component estimates from REML (red), HE (purple), LDSC (light
purple), MQS-HEW (green), and MQS-LDW (light green) for k£ = 6 simulations based on the

Australian data (a, b) or the Finland data (¢, d) in scenario IIT of the k = 6 simulations. (a) and (c)

show boxplots while (b) and (d) show the MSE relative to REML for all six variance components (1-6)

as well as the total. The true variance components are shown as three blue horizontal dashed lines in

(a) and (c). The dot in the middle of the boxplots represents the mean of the estimates in (a) and (c).

Note that the y-axis in (d) is on log scale.
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Figure 3. Comparison of the coverage probability of confidence intervals from REML (red), HE with
CI (purple), LDSC (light purple), MQS-HEW (green), and MQS-LDW (light green) for simulations
based on the Australian data (a, b) or the Finland data (¢, d). Two different methods are used for
MQS-HEW and MQS-LDW to compute the confidence intervals: CI1 (circle) and CI2 (square). The
coverage probability is computed based on a 95% confidence interval. (a) and (c) show the coverage
probability for the & = 1 simulations, where the true variance components (0, 0.25 and 0.5) are shown
on the x-axis. (b) and (d) show the coverage probability for six variance components as well as the total
heritability in the k = 6 simulations with scenario III. Notice that the scale of y-axis in (a) and (b) is
different from that in (c) and (d).
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Figure 4. MQS-HEW (a) and MQS-LDW (b) reveal the importance of six functional categories in 8
phenotypes from four GWAS data sets. y-axis shows the fold enrichment, computed as a ratio between
the average SNP effect size in one category and the average SNP effect size across the whole genome.
Both MQS-HEW and MQS-LDW use marginal z-scores together with genotypes of 503 individuals with
European ancestry from the 1,000 genomes project. CI2 is used to construct the confidence intervals.
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