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Abstract1

Assigning 16S rRNA gene sequences to operational taxonomic units (OTUs) allows microbial2

ecologists to overcome the inconsistencies and biases within bacterial taxonomy and provides a3

strategy for clustering similar sequences that do not have representatives in a reference database. I4

have applied the Matthew’s correlation coefficient to assess the ability of 15 reference-independent5

and -dependent clustering algorithms to assign sequences to OTUs. This metric quantifies the6

ability of an algorithm to reflect the relationships between sequences without the use of a reference7

and can be applied to any dataset or method. The most consistently robust method was the average8

neighbor algorithm; however, for some datasets other algorithms matched its performance.9
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Numerous algorithms have been developed for solving the seemingly simple problem of assigning10

16S rRNA gene sequences to operational taxonomic units (OTUs). These algorithms were recently11

the subject of benchmarking studies performed by Westcott and myself (1, 2), He et al (3), and12

Kopylova et al (4). These studies provide a thorough review of the sequencing clustering landscape,13

which can be divided into three general approaches: (i) de novo clustering where sequences are14

clustered without first mapping sequences to a reference database, (ii) closed-reference clustering15

where sequences are clustered based on the references that the sequences map to, and (iii)16

open reference clustering where sequences that do not map adequately to the reference are then17

clustered using a de novo approach. Assessing the quality of the clustering assignments has been18

a persistent problem in the development of clustering algorithms.19

The recent analysis of Kopylova et al (4) repeated many of the benchmarking strategies employed20

by previous researchers. Many algorithm developers have clustered sequences from simulated21

communities or sequencing data from synthetic communities of cultured organisms and quantify22

how well the OTU assignments matched the organisms’ taxonomy (5–16). This approach is23

flawed because bacterial taxonomy often reflects those inconsistencies and biases within bacterial24

taxonomy that OTU-based methods strive to overcome. Furthermore, it is unclear how the methods25

scale to sequences from the novel organisms we are likely to encounter in deep sequencing26

surveys. In a second approach, developers have compared the time and memory required to27

cluster sequences in a dataset (6, 13, 17, 18). These are valid parameters to assess when judging28

a clustering method, but indicate little regarding the quality of the OTU assignments. One could29

randomly assign sequences to a predetermined number of OTUs. This would be efficient. It would30

also poorly reflect the genetic diversity within the community. In a third approach, developers have31

compared the number of OTUs generated by various methods for a common dataset (4, 5). Again,32

one could randomly cluster sequences into a target number of OTUs, but the clusterings would33

likely be meaningless. In a fourth approach a metric of OTU stability has been proposed as a34

way to assess algorithms (3). Although it is important that the methods generate reproducible35

OTU assignments when the initial order of the sequences is randomized, this metric ignores the36

possibility that the variation in assignments may be equally robust or that the assignments by37

a highly reproducible algorithm may be quite poor. In a final approach, some developers have38
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assessed the quality of clustering based on the method’s ability to generate the same OTUs39

generated by other methods (18, 19). Unfortunately, without the ability to ground truth any method,40

such comparisons are tenuous. There is a need for an objective metric to assess the quality of41

OTU assignments.42

Westcott and I have proposed an unbiased and objective method for assessing the quality of OTU43

assignments that can be applied to any collection of sequences (1, 2). Our approach uses the44

observed dissimilarity between pairs of sequences and information about whether sequences were45

clustered together to quantify how well similar sequences are clustered together and dissimilar46

sequences are clustered apart. To quantify the correlation between the observed and expected47

OTU assignments, we synthesize the relationship between OTU assignments and the distances48

between sequences using the Matthew’s correlation coefficient (20). I have expanded our previous49

analysis to evaluate three hierarchical and seven greedy de novo algorithms, one open-reference50

clustering algorithm, and four closed-reference algorithms (Figure 1). To test these approaches51

I applied each of them to datasets from soil (21), mouse feces (22), and two simulated datasets.52

The simulated communities were generated by randomly selecting 10,000 16S rRNA sequences53

that were unique within the V4 region from the SILVA non-redundant database (4, 23). Next,54

an even community was generated by specifying that each sequence had a frequency of 10055

reads and a staggered community was generated by specifying that the abundance of each56

sequence was a randomly drawn a uniform distribution between 1 and 200. A reproducible57

version of this manuscript and analysis has been added to the repository available at https:58

//github.com/SchlossLab/Schloss_Cluster_PeerJ_2015.59

I replicated the benchmarking approach that I have used previously to assess the ability of an60

algorithm to correctly group sequences that are similar to each other and split sequences that61

are dissimilar to each other using the MCC (1, 2). When I compared the MCC values calculated62

using the ten de novo algorithms with the four datasets, the average neighbor algorithm reliably63

performed as well or better than the other methods (Figure 1). For the murine dataset, the MCC64

values for the VSEARCH (AGC: 0.76 and DGC: 0.78) and USEARCH-based (AGC: 0.76 and65

DGC: 0.77) algorithms, Sumaclust (0.76), and average neighbor (0.76) were similarly high. For66

each of the other datasets, the MCC value for the average neighbor algorithm was at least 5%67
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higher than the next best method. Swarm does not use a traditional distance-based criteria to68

cluster sequences into OTUs and instead looks for natural subnetworks in the data. When I used69

the distance threshold that gave the best MCC value for the Swarm data, the MCC values were70

generally not as high as they were using the average neighbor algorithm. The one exception was71

for the soil dataset. Among the reference-based methods, all of the MCC values suffer because72

when sequences that are at least 97% similar to a reference are pooled, the sequences within73

an OTU could be as much as 6% different from each other. The effect of this is observed in the74

MCC values that were calculated for the OTUs assigned by these methods generally being lower75

than those observed using the de novo approaches (Figure 1). It is also important to note that the76

MCC values for the closed-reference OTUs are inflated because sequences were removed from77

the analysis if there was not a reference sequence that was more than 97% similar to the sequence.78

Given the consistent quality of the clusterings formed by the average neighbor algorithm, these79

results confirm the conclusion from the previous analysis that researchers should use the average80

neighbor algorithm or calculate MCC values for several methods and use the clustering that gives81

the best MCC value (2).82

Next, I investigated the ability of the reference-based methods to properly assign sequences83

to OTUs. The full-length 16S rRNA gene sequences in the default reference taxonomy that84

accompanies QIIME are less than 97% similar to each other. Within the V4 region, however, many85

of the sequences were more similar to each other and even identical to each other. As a result, we86

previously found that there was a dependence between the ordering of sequences in the reference87

database and the OTU assignments with USEARCH and VSEARCH (2). To explore this further,88

we analyzed the 32,106 unique sequences from the murine dataset with randomized databases.89

VSEARCH always found matches for 27,737 murine sequences, the reference matched to those90

sequences differed between randomizations. For USEARCH there were between 28,007 and91

28,111 matches depending on the order of the reference. In the updated analysis we found that92

SortMeRNA resulted in between 23,912 and 28,464 matches. Using NINJA-OPS with different93

orderings of the reference sequences generated the same 28,499 matches. These results point94

to an additional problem with closed-reference clustering, which is the inability for the method to95

assign sequences to OTUs when a similar reference sequence does not exist in the database. For96
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the well-characterized murine microbiota, NINJA-OPS did the best by finding relatives for 88.8%97

of the unique murine sequences. As indicated by the variation in the number of sequences that98

matched a reference sequence, these methods varied in their sensitivity and specificity to find the99

best reference sequence. Of the closed-reference methods, NINJA-OPS had the best sensitivity100

(99.7%) and specificity (79.7%) while SortMeRNA had the worst sensitivity (95.7%) and VSEARCH101

had the worst specificity (60.3%). Reference-based clustering algorithms are much faster than de102

novo approaches, but do not generate OTUs that are as robust.103

Although the goal of Kopylova et al (4) was to compare various clustering algorithms, they also104

studied these algorithms in the broader context of raw sequence processing, screening for chimeras,105

and removal of singletons. Each of these are critical decisions in a comprehensive pipeline. By106

including these steps, they confounded their analysis of how best to cluster sequences into OTUs.107

The effect of differences in MCC values on one’s ability to draw inferences is unclear and admittedly108

may be relatively minor for some datasets. Because of this uncertainty, researchers should use109

the most reliable methods available in case the differences in clustering do effect the conclusions110

that can be drawn from a particular dataset. Through the use of objective criteria that measure111

the quality of the clusterings, independent of taxonomy or database, researchers will be able to112

evaluate which clustering algorithm is the best fit for their data.113
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Figure 1. Comparison of OTU quality generated by multiple algorithms applied to four114

datasets. The nearest, average, and furthest neighbor clustering algorithms were used as115

implemented in mothur (v.1.37)(24). Abundance (AGC) and Distance-based greedy clustering116

(DGC) were implemented using USEARCH (v.6.1) and VSEARCH (v.1.5.0)(3, 5, 25). Other de117

novo clustering algorithms included Swarm (v.2.1.1)(6, 7), OTUCLUST (v.0.1)(26), and Sumaclust118

(v.1.0.20). The MCC values for Swarm were determined by selecting the distance threshold that119

generated the maximum MCC value for each dataset. The USEARCH and SortMeRNA (v.2.0)120

closed-reference clusterings were performed using QIIME (v.1.9.1) (27, 28). Closed-reference121

clustering was also performed using VSEARCH (v.1.5.0) and NINJA-OPS (v.1.3.2) (16). The order122

of the sequences in each dataset was randomized thirty times and the intra-method range in MCC123

values was smaller than the plotting symbol. MCC values were calculated using mothur.124
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