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Abstract 
Although the repertoire of human lncRNAs has rapidly expanded, their biological 
function and regulation remain largely elusive. Here, we present AnnoLnc 
(http://annolnc.cbi.pku.edu.cn), an online portal for systematically annotating newly 
identified human lncRNAs. AnnoLnc offers a full spectrum of annotations covering 
genomic location, RNA secondary structure, expression, transcriptional regulation, 
miRNA interaction, protein interaction, genetic association and evolution, as well as 
an abstraction-based text summary and various intuitive figures to help biologists 
quickly grasp the essentials. In addition to an intuitive and mobile-friendly Web inter-
active design, AnnoLnc supports batch analysis and provides JSON-based Web Ser-
vice APIs for programmatic analysis. To the best of our knowledge, AnnoLnc is the 
first web server to provide on-the-fly and systematic annotation for newly identified 
human lncRNAs. Some case studies have shown the power of AnnoLnc to inspire 
novel hypotheses. 
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Introduction 
Long noncoding RNAs (lncRNAs) are operationally defined as RNA transcripts that 
are 1) longer than 200 nt and 2) do not encode proteins (Rinn and Chang 2012). With 
high-throughput screening and follow-up experimental validation, several studies 
show that lncRNAs play essential roles in almost every important biological process, 
including imprinting (Lee and Bartolomei 2013), cell cycles (Kitagawa et al. 2013), 
tumorigenesis (Park et al. 2014) and pluripotency maintenance (Ng et al. 2012) 
through multiple mechanisms, such as guides, scaffolds, and decoys, as well as 
chromatin architecture organizers (Trimarchi et al. 2014; Jalali et al. 2015).  

In recent years, the repertoire of human lncRNAs has rapidly expanded. Approxi-
mately 50% of human lncRNAs in the GENCODE catalog were identified in the past 
five years (15,512 in GENCODE v7 increased to 28,031 in GENCODE v24) (Derrien 
et al. 2012; Harrow et al. 2012). A recent study identified more than 30,000 additional 
unannotated human lncRNAs genes (Iyer et al. 2015). However, the functional roles 
of lncRNAs remain largely elusive: less than 1% of identified human lncRNAs have 
been experimentally investigated (Quek et al. 2015), driving the need for computa-
tional methods.  

Several studies have proposed methods for in silico prediction of the function of novel 
lncRNAs. The “guilt-by-association” strategy is the most widely used approach 
(Guttman et al. 2009). A dedicated web server, ncFAN, was developed to predict 
lncRNA functions based on enriched functional terms of coding genes in the same 
co-expression module (Liao et al. 2011a; Liao et al. 2011b); the algorithm was im-
proved by taking protein-protein interaction into account (Guo et al. 2013). Moreover, 
several attempts have been made to characterize molecules interacting with a given 
lncRNA (Agostini et al. 2013; Lu et al. 2013; Li et al. 2014; He et al. 2015; Suresh et al. 
2015).  

The immense diversity of lncRNAs’ functions calls for an integrative annotation pipe-
line that incorporates multiple disparate genome-scale datasets, offering a broad 
functional spectrum for novel human lncRNAs (Jalali et al. 2015). Here we present 
AnnoLnc, a one-stop portal for systematically annotating novel human lncRNAs (see 
Figure 1b for a detailed comparison with similar tools). Based on more than 700 data 
sources and various tool chains, AnnoLnc accepts human lncRNA sequences as in-
put, enabling a systematic annotation encompassing genomic location, secondary 
structure, expression patterns, transcriptional regulation, miRNA interaction, protein 
interaction, genetic association and evolution. An intuitive web interface is available 
for interactive analysis, supporting both desktops and mobile devices. Users can up-
load multiple sequences and perform batch analysis in one click. The results will be 
further summarized automatically in plain English for quick reading. Programmers can 
further integrate AnnoLnc into their pipeline through standard JSON-based Web Ser-
vice APIs.  
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Results and Discussion 

Systematic annotation of human lncRNAs  
Designed as a flexible platform, AnnoLnc provides systematic annotation of human 
lncRNAs through various modules and summarizes the results as figures, tables as 
well as plain English (Figure 1a and 1c).  

Genomic location 
When a lncRNA is submitted online, AnnoLnc first identifies its genomic coordinate 
and splicing structure by aligning the input sequence to the human reference genome. 
The coordinates are further compared with annotated human gene models compiled 
from lncRNAdb (Quek et al. 2015) and GENCODE (Harrow et al. 2012) (see Materials 
and Methods for details), and a direct link to the corresponding database entry is 
provided for hits. 

Secondary structure 
The structure of an RNA molecule is essential for its biological functions. For each 
input lncRNA, the secondary structure is folded based on the minimum free energy 
principle (Lorenz et al. 2011) and then rendered online as an interactive plot.  

Biological functions of secondary structures lead to local stability and bring evolu-
tionary constraints onto the sequences of lncRNAs (Smith et al. 2013). To help users 
identify functional motifs, AnnoLnc allows users to color each base in the structure 
plot by its corresponding entropy or conservation score (Figure 2a and 2b). 

Expression profile 
A transcript’s expression pattern also provides important hints about its functionality 
(Guttman et al. 2009). For each input lncRNA, the expression profiles in 17 normal 
samples (16 adult healthy tissues and one embryonic stem cell line) and 30 cancer 
cell lines (covering 10 common cancers) are presented in interactive charts (Figure 
2d and Figure 2f). To improve the response time, the expression of known lncRNAs 
(including lncRNAs in GENCODE v19 and lncRNAdb v2) was pre-calculated and 
loaded into the global cache. For novel lncRNAs, we adopt the LocExpress method to 
perform on-the-fly expression estimation accurately and efficiently (see Materials and 
Methods for more details). 

To help users identify co-regulated partners of the input lncRNA, AnnoLnc reports 
co-expressed genes based on normal samples and cancer samples. An expres-
sion-based functional prediction is further performed by identifying statistically signif-
icant enriched Gene Ontology (GO) terms based on co-expressed protein-coding 
genes. Adjusted p values for the multiple-testing issue are reported as well (Figure 2e) 
(Guttman et al. 2009; Tang et al. 2013). 
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Transcriptional regulation 
Transcriptional factors largely determine the expression level of lncRNAs. Integrating 
498 ChIP-Seq datasets, AnnoLnc locates the binding sites of 159 TFs in the input 
lncRNA locus, and reports these binding sites based on their relative location to the 
lncRNA locus, such as “upstream transcriptional start site (TSS)”, “overlap with TSS”, 
“inside the lncRNA loci”, “overlap with transcriptional end site (TES)” and “down-
stream TES” (Table S1a, Figure 2g). 

miRNA interaction 
Interacting with miRNAs, lncRNAs can be post-transcriptionally regulated or act as 
decoys (Yoon et al. 2014). AnnoLnc provides predicted miRNA family partners of 
lncRNAs and highlights high-confidence binding sites based on conservation scores 
of multiple clades and 61 integrated CLIP-Seq datasets (for details about CLIP-Seq 
dataset processing, refer to the “Protein interaction” section). If a predicted site is 
supported by CLIP-Seq data, it is marked “CLIP support” (Table S1b). 

Protein interaction 
lncRNAs can interact with multiple proteins, as guides and/or scaffolds, to perform 
their functions (Wang and Chang 2011). CLIP-Seq is one of the most widely used 
high-throughput methods to detect RNA-protein interactions experimentally (McHugh 
et al. 2014). AnnoLnc screens putative protein partners for an input lncRNA in 112 
CLIP-Seq datasets covering 51 RNA binding proteins. In case of methodology bias 
introduced by heterogeneous analysis pipelines, all the CLIP-Seq data were reana-
lyzed locally with a uniform pipeline (see Materials and Methods for more details). 
Finally, protein partners, cell types, treatments and corresponding p values reported 
by the analysis pipeline are reported to users. 

In addition, AnnoLnc conducts in silico prediction across the entire human proteome 
for each lncRNA by lncPro (Lu et al. 2013). To improve the specificity, we estimate p 
value for each hit based on an empirical NULL distribution. Then, the predicted pro-
tein partners, interaction scores and empirical p values are reported. 

Genetic association 
Large-scale genetic association studies enable detection of multiple phenotypic traits 
that lncRNAs may associate with (Cheetham et al. 2013). By integrating the NHGRI 
GWAS Catalog (Welter et al. 2014), AnnoLnc links an input lncRNA to diseases/traits 
based on strong linkage blocks defined by linkage disequilibrium (LD) values in mul-
tiple populations. Then, linked SNPs, corresponding tagSNPs, traits/diseases, p val-
ues, significance, LD values and populations from which these LD values are derived, 
as well as supporting PubMed IDs, are reported to users (Table S2). 

Evolution 
The evolutionary signature is an important hint as to biological function. AnnoLnc 
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generates an interactive overview chart for users to easily interrogate inter-species 
conservation of exons and promoter regions among primate, mammal and vertebrate 
clades. To further detect intra-species purifying selection, AnnoLnc also provides the 
derived allele frequency for input lncRNAs based on 1000 Genomes Project data 
(Genomes Project et al. 2010). Because many lncRNAs are partially conserved, we 
also report conserved elements predicted by phastCons (Siepel et al. 2005) in dif-
ferent clades with the length and score, which is an indicator of conservation. These 
conserved blocks can help users identify functional elements combined with other 
annotation results, especially in the integrated plot. 

User interface and visualization 
AnnoLnc is designed to be intuitive. The most common operations (such as submit-
ting sequences and obtaining annotation results) can be performed with just a few 
clicks (Figure 1c). The default Web interface is implemented based on responsive 
design, which enables the optimal view for both desktop PCs and mobile devices. To 
further help users quickly grasp the essentials from abundant annotations generated 
by various modules, AnnoLnc provides a concise summary text in plain English for 
each input lncRNA at the top of the annotation result page by abstraction-based 
summarization, with inline links available for checking original results when necessary 
(Figure 2c). Furthermore, to help users explore the genomic context of input lncRNAs, 
AnnoLnc supports exporting transcript-level annotations (including transcript structure, 
TF binding sites, miRNA binding sites, protein binding sites and SNPs) onto the 
UCSC genome browser as pre-tuned custom tracks (Figure 2h). 

In addition to the browser-based interactive analysis, AnnoLnc provides a “batch 
mode” that allows users to upload multiple sequences together and fetch annotations 
as a ZIP. AnnoLnc also offers a set of JSON-based web service APIs to help ad-
vanced users run the analysis and fetch results programmatically, enabling an easy 
integration of AnnoLnc into downstream analysis pipelines (see 
http://annolnc.cbi.pku.edu.cn/api.jsp for more detailed instruction as well as the demo 
code). 

Case studies by AnnoLnc 
The noncoding form of the steroid receptor RNA activator (SRA, AF092038, 
http://annolnc.cbi.pku.edu.cn/cases/SRA) has been reported to function as a 
noncoding RNA by Lanz et al. (Lanz et al. 1999) and is the first lncRNA that has ex-
perimentally derived secondary structure, which was derived by Novikova et al. 
(Novikova et al. 2012). In the interactive secondary structure plot with vertebrate 
phyloP score as color overlay in AnnoLnc, it is easy to identify two conserved regions. 
One is a hairpin region from base 30 to 72 (Figure 2a). With approximately 75% of 
bases colored red, this conserved sub-structure is clearly distinguishable from others. 
In fact, this region corresponds to the most conserved H2 sub-structure highlighted by 
Novikova et al. Site-directed mutagenesis of this region reduced the co-activation 
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performance of SRA by 40% (Lanz et al. 2002), suggesting the importance of lncRNA 
secondary structure on its function (Mercer and Mattick 2013). The other distinct re-
gion is a three-way junction hairpin sub-structure from base 506 to 555 with 78% 
colored red (Figure 2b). This region is very similar to the conserved regions H15, H16 
and H17 verified by Novikova et al. 
 
H19 (http://annolnc.cbi.pku.edu.cn/cases/H19) is the first identified imprinting lncRNA 
(Brannan et al. 1990; Bartolomei et al. 1991). Consistent with the work by Dey et al. 
(Dey et al. 2014), AnnoLnc shows that H19 has the highest expression in “skeletal 
muscle” (Figure 2d) and is associated with muscle-related function terms such as 
"muscle fiber development" (GO:0048747, Figure 2e). Moreover, the “transcriptional 
regulation” module reports that H19 is regulated by multiple known cell proliferation- 
and cell cycle-related TFs, including c-Myc, Max, Maz, and E2F6 in cancer cell lines 
(Table S1a), confirming its previously reported tumorigenesis function (Guo et al. 
2014). In addition, AnnoLnc identified 18 CLIP-Seq-supported binding miRNA families 
(Table S1b), and several miRNAs have already been verified experimentally, such as 
miR-138 in colorectal cancer (Liang et al. 2015) and miR-17-5p in HeLa cells and 
myoblasts (Imig et al. 2015).  

In addition to confirming previous reports, the integrative annotations provided by 
AnnoLnc help users to generate new hypotheses. For example, lncRNA CCAT2 
(http://annolnc.cbi.pku.edu.cn/cases/CCAT2) has been reported to promote colorectal 
cancer (CRC) growth and metastasis, and risk allele G of rs6983267 within the 
CCAT2 transcript is associated with up-regulated expression of the lncRNA (Ling et al. 
2013). Integrating miRNA annotation with the variant track (Figure 2h), SNP 
rs6983267 is found to be just within the seed binding site of miRNA 
miR-148ab-3p/152, suggesting that SNP rs6983267 might weaken the binding of 
miR-148ab-3p/152 and increases the transcript level of CCAT2.  

Conclusion 
To the best of our knowledge, AnnoLnc is the first online web server to systematically 
annotate novel human lncRNAs. Compared with similar tools (Figure 1b), the anno-
tation generated by AnnoLnc covers a much wider range of perspectives with intuitive 
visualization and summarization. Several case studies have shown the power of An-
noLnc to systematically annotate lncRNAs and inspire novel hypotheses for follow-up 
experimental studies. Employing Web Service APIs, AnnoLnc is friendly for not only 
interactive users, but also programmers for batch analysis. In the future, we plan to 
upgrade the AnnoLnc server by adding more analysis modules, including RNA-DNA 
interactions as well as literature mining, and further improving the integration with 
more intuitive and interactive facilities. 
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Materials and Methods 

Annotation analysis 
As a Web server, AnnoLnc runs on-the-fly analysis for every input sequence. 

Mapping input sequences to the reference genome 
All input sequences are aligned against the reference human genome hg19 with Blat 
(Kent 2002). When a single sequence is aligned in multiple places, genome-wide best 
alignments are identified by standard pslSort and pslReps. In case of false-positive 
junction sites caused by mismatches or small indels, putative exons shorter than 20 
bp (as well as putative introns shorter than 40 bp) are discarded. 

Secondary structure 
RNAfold v2.0.7 in the ViennaRNA package (Lorenz et al. 2011) is employed to predict 
secondary structures, with the option “--noLP” enabled to avoid undesirable isolated 
base pairs. When multiple candidates are available, the one with minimum free en-
ergy is kept, as recommended by the authors of the ViennaRNA package.  

Expression- and co-expression-based functional annotation 
The expression profile of input transcripts is estimated based on 64 RNA-Seq da-
tasets (covering normal adult tissues, tumor cell lines as well as human embryonic 
stem cell lines; see Table S3 for more details). We mapped the reads of 34 normal 
tissue/cell line samples to human genome hg19 by TopHat (v1.4.1.1). Bam files of 30 
cancer samples were downloaded directly from CGHub. (see Table S3 and S4 for the 
number of mapped reads and CGHub IDs, respectively.) 

Pre-calculated expression profiles of known transcripts 

We generated a gene model (GM) gtf file 
(http://annolnc.cbi.pku.edu.cn/about/annolnc_gene_model_v1.gtf.gz) covering human 
lncRNAs in lncRNAdb v2.0 (Quek et al. 2015) based on GENCODE (Harrow et al. 
2012) v19. First, we downloaded human lncRNA sequences in the lncRNAdb and 
obtained transcript structures as described under “Mapping input sequences to the 
reference genome 
”. These transcript structures were compared with GENCODE v19 by Cuffcompare 
(v2.1.1). If the code was “=” or “c”, the lncRNA was replaced by the known transcript; 
otherwise it was considered a “novel transcript” and merged into GENCODE v19. The 
expression of all annotated transcripts in the GM file was pre-calculated by StringTie 
(v1.0.4) with the options “-e -b”, and then normalized by the geometric method in 
normal and cancer samples separately. 
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On-the-fly expression estimation of input transcripts 

Taking advantage of the local nature of RNA-Seq, we developed a novel quantifica-
tion method called LocExpress for real-time estimation of the expression level based 
on pre-mapped reads (Hou et al., manuscript in preparation). Briefly, LocExpress in-
fers the minimum spanning bundle (MSB) of an input transcript based on its genomic 
coordinate as well as reads mapped in the corresponding region. Then, the estimated 
relative abundance is further adjusted and normalized based on the original size (i.e., 
the total mass derived from all mapped reads) and reported in canonical FPKM unit. 
In our preliminary assessment, the LocExpress method usually takes less than one 
minute for one novel lncRNA across all samples, and the result is highly consistent 
with that of the classical method 
(http://annolnc.cbi.pku.edu.cn/images/LocExpress.png). For the normal sample set, 
the FPKM of two replicates of each tissue/cell line are averaged to report to users. 

Co-expression analysis 

Thirty-four normal samples and thirty cancer samples were treated separately. To 
avoid the duplicated GO annotation for isoforms, we first obtained expression profiles 
at the gene level by adding the FPKM of all transcripts of each gene in the GM file. 
Then, we filtered these genes as described below, resulting in 29,798 genes in the 
normal sample set and 25,449 genes in the cancer sample set. 
1) FPKM filter. The sum of FPKM in all samples should be not less than 1. 
2) Tissue-specific filter. The tissue-specific score is calculated by the “getsgene” 

function in the R package rsgcc. If a gene has a score larger than 0.85, it is not 
considered fit for the co-expression analysis. 

For submitted transcripts that pass the above filters, the Pearson correlations with 
genes are calculated. Then, highly correlated genes are reported by a “gradually de-
creased” criterion to remove putative false positives and retain true positives. If there 
are more than 10 genes with r ≥ 0.9, GO enrichment analysis is performed with these 
genes directly. If not, we determine whether there are 10 genes above the cutoff of 0.8. 
This process continues until the cutoff arrives at 0.7. Negatively correlated genes are 
identified in a similar manner. GO enrichment analysis for these correlated genes is 
further conducted with the R package GOstats, and significantly enriched GO terms 
(adjusted p value ≤ 0.01) are reported as putative functional assignments of the input 
transcript. 

Transcriptional regulation 
AnnoLnc integrated 498 ChIP-Seq datasets covering 159 transcript factors (TFs) in 
45 cell lines (see Table S5 for more details). Uniform peak files generated by the 
ENCODE project were downloaded from 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUn
iform/. For each input transcript, AnnoLnc searches putative TF binding sites within 5 
Kb upstream and 1 Kb downstream and reports all sites based on their position rela-
tive to the transcript. 
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miRNA interaction 
TargetScan v6.0 (Friedman et al. 2009) is employed to search putative miRNA binding 
sites. To reduce the potential false positive rate, we run the prediction on 87 highly 
conserved miRNA families (Table S6) derived from miRcode (Jeggari et al. 2012) 
(http://www.mircode.org/download.php). Then, conservation scores in primate, 
mammal and vertebrate clades for each identified site are calculated as described in 
Jeggari et al. For example, 10 species in primates are used in the TargetScan predic-
tion, and if a binding site is identified in eight species, the conservation score in pri-
mates is 8/10 = 0.8. In mammals and vertebrates, scores are calculated in the same 
manner except that “mammals” are “non-primate mammals” (26 species) and “verte-
brates” are “non-mammal vertebrates” (10 species). To further highlight 
high-confidence sites, predicted sites are screened based on a pre-compiled 61 AGO 
CLIP-Seq dataset (Table S7, see the “ 
Calling RNA-protein interactions based on CLIP-Seq data 
” section for more details about CLIP-Seq analysis), and hit sites are considered 
“CLIP supported”. 

Protein interaction 

Calling RNA-protein interactions based on CLIP-Seq data 

A total of 112 CLIP-Seq datasets were integrated in AnnoLnc, covering 51 RNA 
binding proteins (RBPs) other than AGO (see Table S8 for a full list) from the GEO. All 
these data were reanalyzed uniformly in case of methodology bias. Briefly, we first 
trimmed the adapter by FASTX Clipper, and only reads longer than 15 nt were kept 
and mapped to human genome hg19 by the algorithm BWA-backtrack (v0.7.10-r789) 
(Li and Durbin 2009) with the options “-n 1 -i 0” (allow one alignment error). Then, only 
unique mapped reads were kept. To improve precision, we used stringent criteria for 
site calling with PIPE-CLIP v1.0.0 (Chen et al. 2014); FDR cutoffs for both enriched 
clusters and reliable mutations were set as 0.05 (cross-linking sites in HITS-CLIP data 
identified by deletion, insertion and substitution were combined). 

To evaluate the performance of our pipeline, we downloaded raw reads of wild-type 
FET proteins (FUS, EWSR1 and TAF15) from DDBJ (SRA025082) and performed the 
analysis described above. For comparison with reported results (Supplementary Data 
1, (Hoell et al. 2011)), cross-linking sites identified by both methods were mapped to 
RefSeq IDs. Our pipeline shows fairly high precision (0.95 for FUS, 0.96 for EWSR1, 
and 0.91 for TAF). Meanwhile, we evaluated on a HITS-CLIP dataset for the DGCR8 
protein (Macias et al. 2012). We downloaded raw reads of all four samples (D8.1, 
D8.2, T7.1 and T7.2) from GEO (GSE39086) and analyzed them as described above 
(D8.1 data was excluded because PIPE-CLIP failed to generate cross-linking sites 
with a “model failed to converge” error). Comparison with the original results down-
loaded from http://regulatorygenomics.upf.edu/Data/DGCR8/ also shows good preci-
sion (0.89 for D8.2, 0.74 for T7.1, and 0.78 for T7.2). 
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Ab initio prediction of lncRNA-protein interaction 

lncPro (Lu et al. 2013) is employed for ab initio prediction of lncRNA-protein interac-
tions in the whole human proteome. We downloaded 99,459 human protein se-
quences from Ensembl, filtered 1,917 sequences that could not be processed by 
lncPro (containing “*”, “X”, “U” or length not within 30-30,000 AA), ultimately obtaining 
97,542 protein sequences. For efficiency, we modified the source code of lncPro to 
pre-calculate all protein features in batch. To improve specificity, we further derived 
the statistical significance of the interaction scores reported by lncPro based on em-
pirical NULL distribution (http://annolnc.cbi.pku.edu.cn/images/lncPro.png) generated 
by random shuffling. Interactions with a p value ≤ 0.01 are considered to be significant. 
To make the results more intuitive, Ensembl IDs are finally converted into 
HGNC gene symbols. If multiple Ensembl IDs are mapped to one gene symbol, the 
score with the smallest p value are reported. 

Genetic association 
To exhaustively detect genetic association, AnnoLnc first scans all SNPs within the 
transcript region (5 Kb upstream to 1 Kb downstream of each input transcript). Using 
one of these SNPs as an example, a SNP is linked with a tagSNP if it is within the 
haplotype region (defined as r2 > 0.5, 
ftp://ftp.ncbi.nlm.nih.gov/hapmap/ld_data/2009-04_rel27/) tagged by the tagSNP re-
ported in the NHGRI GWAS Catalog (Welter et al. 2014) (downloaded from the UCSC 
genome browser). Then, this linked SNP, corresponding tagSNPs, traits/diseases, p 
values, significance (defined as p value ≤ 5e-8), LD values, populations from which 
these LD values are derived, as well as supporting PubMed IDs, are reported by 
AnnoLnc. 

Evolution 
For each submitted lncRNA, we incorporated the 46 way phyloP score (primates, 
mammals/placentals and vertebrates) from the UCSC Genome Browser, and the de-
rived allele frequency (DAF) (Genomes Project et al. 2010) of the YRI population 
(Yoruba in Ibadan, Nigeria) from http://compbio.mit.edu/human-constraint/ for every 
position (if has corresponding scores) of both the exon and promoter region (1 Kb 
upstream). To obtain an overall view, we also calculate the mean scores for the exon 
and promoter regions and organized the scores into bar charts. The phastCons con-
served elements were downloaded from 
ftp://hgdownload.cse.ucsc.edu/goldenPath//hg19/database. The score reported to 
users is the LOD score. Conserved elements shorter than 20 bp are omitted from the 
table. 

AnnoLnc website 
The AnnoLnc website runs on the Tomcat server. The backend is based on Java 
Servlet and MySQL database. In the frontend, some JavaScript libraries are used to 
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facilitate accessibility. Bootstrap is used for the mobile friendly layout. jQuery is used 
for Ajax. DataTables is used to show tables and Highcharts for interactive charts. The 
display of the interactive SVG plot is enabled by “svg-pan-zoom,” available at 
https://github.com/ariutta/svg-pan-zoom. 
 
 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 7, 2016. ; https://doi.org/10.1101/042655doi: bioRxiv preprint 

https://doi.org/10.1101/042655


13 
 
 

Acknowledgements 
Funding: This work was supported by funds from the China 863 Program 
(2015AA020108), the Seeding Grant for Medicine and Life Sciences of Peking Uni-
versity (2014-MB-13), and the State Key Laboratory of Protein and Plant Gene Re-
search. The research of G.G. was supported in part by the National Program for 
Support of Top-notch Young Professionals. Part of the analysis was performed on the 
Computing Platform of the Center for Life Sciences of Peking University. 
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 7, 2016. ; https://doi.org/10.1101/042655doi: bioRxiv preprint 

https://doi.org/10.1101/042655


14 
 
 

References 
Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia GG. 2013. catRAPID 

omics: a web server for large-scale prediction of protein-RNA interactions. 
Bioinformatics 29: 2928-2930. 

Bartolomei MS, Zemel S, Tilghman SM. 1991. Parental imprinting of the mouse H19 
gene. Nature 351: 153-155. 

Brannan CI, Dees EC, Ingram RS, Tilghman SM. 1990. The product of the H19 gene 
may function as an RNA. Molecular and cellular biology 10: 28-36. 

Cheetham SW, Gruhl F, Mattick JS, Dinger ME. 2013. Long noncoding RNAs and the 
genetics of cancer. Br J Cancer 108: 2419-2425. 

Chen B, Yun J, Kim MS, Mendell JT, Xie Y. 2014. PIPE-CLIP: a comprehensive online 
tool for CLIP-seq data analysis. Genome biology 15: R18. 

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, 
Merkel A, Knowles DG et al. 2012. The GENCODE v7 catalog of human long 
noncoding RNAs: analysis of their gene structure, evolution, and expression. 
Genome research 22: 1775-1789. 

Dey BK, Pfeifer K, Dutta A. 2014. The H19 long noncoding RNA gives rise to 
microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle 
differentiation and regeneration. Genes & development 28: 491-501. 

Friedman RC, Farh KK, Burge CB, Bartel DP. 2009. Most mammalian mRNAs are 
conserved targets of microRNAs. Genome research 19: 92-105. 

Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, 
Gibbs RA, Hurles ME, McVean GA. 2010. A map of human genome variation 
from population-scale sequencing. Nature 467: 1061-1073. 

Guo G, Kang Q, Chen Q, Chen Z, Wang J, Tan L, Chen JL. 2014. High expression of 
long non-coding RNA H19 is required for efficient tumorigenesis induced by 
Bcr-Abl oncogene. FEBS letters 588: 1780-1786. 

Guo X, Gao L, Liao Q, Xiao H, Ma X, Yang X, Luo H, Zhao G, Bu D, Jiao F et al. 2013. 
Long non-coding RNAs function annotation: a global prediction method based 
on bi-colored networks. Nucleic acids research 41: e35. 

Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey 
BW, Cassady JP et al. 2009. Chromatin signature reveals over a thousand 
highly conserved large non-coding RNAs in mammals. Nature 458: 223-227. 

Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, 
Barrell D, Zadissa A, Searle S et al. 2012. GENCODE: the reference human 
genome annotation for The ENCODE Project. Genome research 22: 
1760-1774. 

He S, Zhang H, Liu H, Zhu H. 2015. LongTarget: a tool to predict lncRNA DNA-binding 
motifs and binding sites via Hoogsteen base-pairing analysis. Bioinformatics 
31: 178-186. 

Hoell JI, Larsson E, Runge S, Nusbaum JD, Duggimpudi S, Farazi TA, Hafner M, 
Borkhardt A, Sander C, Tuschl T. 2011. RNA targets of wild-type and mutant 
FET family proteins. Nature structural & molecular biology 18: 1428-1431. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 7, 2016. ; https://doi.org/10.1101/042655doi: bioRxiv preprint 

https://doi.org/10.1101/042655


15 
 
 

Imig J, Brunschweiger A, Brummer A, Guennewig B, Mittal N, Kishore S, Tsikrika P, 
Gerber AP, Zavolan M, Hall J. 2015. miR-CLIP capture of a miRNA targetome 
uncovers a lincRNA H19-miR-106a interaction. Nature chemical biology 11: 
107-114. 

Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner 
JR, Evans JR, Zhao S et al. 2015. The landscape of long noncoding RNAs in 
the human transcriptome. Nature genetics. 

Jalali S, Kapoor S, Sivadas A, Bhartiya D, Scaria V. 2015. Computational approaches 
towards understanding human long non-coding RNA biology. Bioinformatics 
31: 2241-2251. 

Jeggari A, Marks DS, Larsson E. 2012. miRcode: a map of putative microRNA target 
sites in the long non-coding transcriptome. Bioinformatics 28: 2062-2063. 

Kent WJ. 2002. BLAT--the BLAST-like alignment tool. Genome research 12: 656-664. 
Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T. 2013. Cell cycle regulation by 

long non-coding RNAs. Cellular and molecular life sciences : CMLS 70: 
4785-4794. 

Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, Tsai MJ, O'Malley BW. 
1999. A steroid receptor coactivator, SRA, functions as an RNA and is present 
in an SRC-1 complex. Cell 97: 17-27. 

Lanz RB, Razani B, Goldberg AD, O'Malley BW. 2002. Distinct RNA motifs are 
important for coactivation of steroid hormone receptors by steroid receptor 
RNA activator (SRA). Proceedings of the National Academy of Sciences of the 
United States of America 99: 16081-16086. 

Lee JT, Bartolomei MS. 2013. X-inactivation, imprinting, and long noncoding RNAs in 
health and disease. Cell 152: 1308-1323. 

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler 
transform. Bioinformatics 25: 1754-1760. 

Li J, Ma W, Zeng P, Wang J, Geng B, Yang J, Cui Q. 2014. LncTar: a tool for 
predicting the RNA targets of long noncoding RNAs. Briefings in 
bioinformatics. 

Liang WC, Fu WM, Wong CW, Wang Y, Wang WM, Hu GX, Zhang L, Xiao LJ, Wan 
DC, Zhang JF et al. 2015. The lncRNA H19 promotes epithelial to 
mesenchymal transition by functioning as miRNA sponges in colorectal cancer. 
Oncotarget 6: 22513-22525. 

Liao Q, Liu C, Yuan X, Kang S, Miao R, Xiao H, Zhao G, Luo H, Bu D, Zhao H et al. 
2011a. Large-scale prediction of long non-coding RNA functions in a 
coding-non-coding gene co-expression network. Nucleic acids research 39: 
3864-3878. 

Liao Q, Xiao H, Bu D, Xie C, Miao R, Luo H, Zhao G, Yu K, Zhao H, Skogerbo G et al. 
2011b. ncFANs: a web server for functional annotation of long non-coding 
RNAs. Nucleic acids research 39: W118-124. 

Ling H, Spizzo R, Atlasi Y, Nicoloso M, Shimizu M, Redis RS, Nishida N, Gafa R, 
Song J, Guo Z et al. 2013. CCAT2, a novel noncoding RNA mapping to 8q24, 
underlies metastatic progression and chromosomal instability in colon cancer. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 7, 2016. ; https://doi.org/10.1101/042655doi: bioRxiv preprint 

https://doi.org/10.1101/042655


16 
 
 

Genome research 23: 1446-1461. 
Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, 

Hofacker IL. 2011. ViennaRNA Package 2.0. Algorithms for molecular biology : 
AMB 6: 26. 

Lu Q, Ren S, Lu M, Zhang Y, Zhu D, Zhang X, Li T. 2013. Computational prediction of 
associations between long non-coding RNAs and proteins. BMC genomics 14: 
651. 

Macias S, Plass M, Stajuda A, Michlewski G, Eyras E, Caceres JF. 2012. DGCR8 
HITS-CLIP reveals novel functions for the Microprocessor. Nature structural & 
molecular biology 19: 760-766. 

McHugh CA, Russell P, Guttman M. 2014. Methods for comprehensive experimental 
identification of RNA-protein interactions. Genome biology 15: 203. 

Mercer TR, Mattick JS. 2013. Structure and function of long noncoding RNAs in 
epigenetic regulation. Nature structural & molecular biology 20: 300-307. 

Ng SY, Johnson R, Stanton LW. 2012. Human long non-coding RNAs promote 
pluripotency and neuronal differentiation by association with chromatin 
modifiers and transcription factors. Embo J 31: 522-533. 

Novikova IV, Hennelly SP, Sanbonmatsu KY. 2012. Structural architecture of the 
human long non-coding RNA, steroid receptor RNA activator. Nucleic acids 
research 40: 5034-5051. 

Park JY, Lee JE, Park JB, Yoo H, Lee SH, Kim JH. 2014. Roles of Long Non-Coding 
RNAs on Tumorigenesis and Glioma Development. Brain tumor research and 
treatment 2: 1-6. 

Quek XC, Thomson DW, Maag JL, Bartonicek N, Signal B, Clark MB, Gloss BS, 
Dinger ME. 2015. lncRNAdb v2.0: expanding the reference database for 
functional long noncoding RNAs. Nucleic acids research 43: D168-173. 

Rinn JL, Chang HY. 2012. Genome regulation by long noncoding RNAs. Annual 
review of biochemistry 81: 145-166. 

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, 
Spieth J, Hillier LW, Richards S et al. 2005. Evolutionarily conserved elements 
in vertebrate, insect, worm, and yeast genomes. Genome research 15: 
1034-1050. 

Smith MA, Gesell T, Stadler PF, Mattick JS. 2013. Widespread purifying selection on 
RNA structure in mammals. Nucleic acids research 41: 8220-8236. 

Suresh V, Liu L, Adjeroh D, Zhou X. 2015. RPI-Pred: predicting ncRNA-protein 
interaction using sequence and structural information. Nucleic acids research. 

Tang X, Hou M, Ding Y, Li Z, Ren L, Gao G. 2013. Systematically profiling and 
annotating long intergenic non-coding RNAs in human embryonic stem cell. 
BMC genomics 14 Suppl 5: S3. 

Trimarchi T, Bilal E, Ntziachristos P, Fabbri G, Dalla-Favera R, Tsirigos A, Aifantis I. 
2014. Genome-wide mapping and characterization of Notch-regulated long 
noncoding RNAs in acute leukemia. Cell 158: 593-606. 

Wang KC, Chang HY. 2011. Molecular mechanisms of long noncoding RNAs. 
Molecular cell 43: 904-914. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 7, 2016. ; https://doi.org/10.1101/042655doi: bioRxiv preprint 

https://doi.org/10.1101/042655


17 
 
 

Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, 
Manolio T, Hindorff L et al. 2014. The NHGRI GWAS Catalog, a curated 
resource of SNP-trait associations. Nucleic acids research 42: D1001-1006. 

Yoon JH, Abdelmohsen K, Gorospe M. 2014. Functional interactions among 
microRNAs and long noncoding RNAs. Semin Cell Dev Biol 34: 9-14. 

	
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 7, 2016. ; https://doi.org/10.1101/042655doi: bioRxiv preprint 

https://doi.org/10.1101/042655


18 
 
 

Figures and legends 

 
Figure 1. An overall introduction to AnnoLnc. a) The architecture of the AnnoLnc web 
server. Users can submit RNA sequences on the AnnoLnc website or by Web service 
APIs. First, AnnoLnc tries to map input sequences to the human genome and, if pos-
sible, obtain genomic locations. Then, AnnoLnc searches the global cache for possi-
ble hits based on both sequences and aligned splicing structures. Cached results are 
returned directly if a hit is detected, and novel sequences and loci are sent to 
on-the-fly analysis modules. b) Comparison of AnnoLnc with other similar tools. An-
noLnc has the most comprehensive annotations and is much better at the interface 
and visualization. c) AnnoLnc web pages. Only a few clicks are required from sub-
mission of sequences to receipt of annotation results. d) The introduction to Web 
service APIs provided by AnnoLnc.  
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Figure 2. Case studies for AnnoLnc. a-b) The case study of lncRNA SRA. In the in-
teractive secondary structure plot with vertebrate phyloP scores as the color overlay, 
two sub-structures are very easily to be identified because most bases are colored 
red. c-e) The case study of lncRNA H19. c is a summary of the annotation results, 
which helps users quickly grasp the essentials. d is the expression profile of H19 in 
normal samples. It has the highest expression in “skeletal muscle”. e is the predicted 
GO terms based on positively correlated coding genes in normal samples. The terms 
are all muscle related. f-h) The case study of lncRNA CCAT2. f is the expression pro-
file of CCAT2 in cancer cell lines. It has the highest expression in “colon adenocarci-
noma”. g is the result of “transcriptional regulation”. Searching the CRC cell line 
“HCT-116” shows that CCAT2 is regulated by TCF7L2 and YY1. Ling et al. has veri-
fied that CCAT2 and TCF7L2 can regulate each other and form a feedback loop to 
promote CRC (Ling et al. 2013). h is the integrative view in the UCSC genome 
browser for annotations at the transcript level. It is easy to determine that rs6983267 
is within the seed binding site of the miRNA family miR-148ab-3p/152. 
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