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Abstract. Interpretive analysis of metagenomic data depends on an understanding of the underlying associations
among microbes from metagenomic samples. Although several statistical tools have been developed for metage-
nomic association studies, they suffer from compositional bias or fail to take into account environmental factors that
directly affect the composition of a given microbial community. In this paper, we propose metagenomic Lognormal-
Dirichlet-Multinomial (mLDM), a hierarchical Bayesian model with sparsity constraints to bypass compositional
bias and discover new associations among microbes and between microbes and environmental factors. The mLD-
M model can 1) infer both conditionally dependent associations among microbes and direct associations between
microbes and environmental factors; 2) consider both compositional bias and variance of metagenomic data; and 3)
estimate absolute abundance for microbes. Thus, conditionally dependent association can capture direct relationship
underlying microbial pairs and remove the indirect connections induced from other common factors. Empirical s-
tudies show the effectiveness of the mLDM model, using both synthetic data and the TARA Oceans eukaryotic data
by comparing it with several state-of-the-art methodologies. Finally, mLDM is applied to western English Channel
data and finds some interesting associations.

1 Introduction
Understanding interactions among microbes and between microbes and their environment is a key research
topic in microbial ecology [28]. Most microbes cannot be cultured in laboratories, making it difficult to
gain an understanding of their interactions with existing technologies. However, with the advancement of
high-throughput sequencing technology, we are able to sequence 16s rRNA genes or whole metagenome
of uncultured microbes directly from samples at diverse time or spots and, as a result, obtain microbial
abundance information [47] for further exploration. Various microbial datasets from different environments,
such as oceans, soils and humans have been published [41, 6, 37] over the last few years. One of the major
challenges is to discover associations, usually referred to as positive and negative relationships, among
microbes and between microbes and environmental factors. Such associations could help us to unravel real
interactions, including, for example, commensalism, parasitism and competition in a community, resulting
in a broad understanding of community-wide dynamics.

Associations can be measured by different statistical methods to show reasonable relationships. Ex-
isting association studies can be classified into two categories mainly. First, pairwise association calcula-
tion, such as Pearson’s correlation coefficient (PCC) and Spearman’s rank correlation coefficient (SCC),
computes the correlation between two species. Local similarity association (LSA) also computes pairwise
association, but only works with the time-series data[39]. Second, complex association calculation esti-
mates the relationships between one species and the remaining species and/or environmental factors via
regression-based methods [17]. Methods of calculating pairwise association are simple, fast and widely
adopted [42, 21, 15, 38, 40, 13], but such methods are not suitable for metagenomic datasets for the follow-
ing two reasons. First, their calculated values may not indicate real associations because of compositional
bias which is introduced during the computation of association using computational methods that assume
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data are unconstrained, while ignoring dependence among the elements of compositional data [3]. More
specifically, since the abundance of each microbe in metagenomic samples is usually normalized as the
compositional relative abundance by dividing the total read count of a particular sample. Thus, after normal-
ization, the following example shows that xi is not independent from the rest, regardless of their underlying
relationships: ∑

i

xi = 1 →
∑
∀j 6=i

cov(xi, xj) = −V ar(xi).

Compositional bias tends to be more severe when some dominant species exist, and is widespread in the
marine microbial community [9, 14]. Consequently, for association studies, it is desirable to develop com-
putational methods that bypass compositional bias in order to enable the inference of associations in metage-
nomic sequencing data. Second, the observed read count of one microbe may deviate from its true abundance
based on a given experimental protocol, in which a series of sample preparation, amplification[1], and se-
quencing steps, leads to large variance of read counts.

Recent advancements have been made in the development of statistical tools to study the associations of
data, while taking compositional bias into account. For example, CCREPE [18] estimates the compositional-
ly corrected p-value for every association, which allows the extraction of significant associations via pairwise
association calculation. Permutation and bootstrapping are used to generate the null distribution of the asso-
ciation, while considering compositional bias, and the corrected p-value is obtained by the pooled-variance
Z-test. However, the limited number of data samples result in null-distribution and corrected p-values that are
unreliable and very sensitive to noises. SparCC [19] infers correlations among microbes by utilizing log-ratio
transformation to eliminate the effect of total number of read counts, while imposing sparsity of correlations
among microbes.

OTU-1

OTU-2

EF-1

Fig. 1. Indirect micro-

bial association. ’OTU’

and ’EF’ stand for Oper-

ational Taxonomic Units

and environmental factor.

SPIEC-EASI [29] uses the covariance of the centered log-ratio transformed data to
approximate the covariance of log-transformed absolute abundance of microbes and
then applies neighborhood selection [33] or standard graphical lasso [20] to obtain
the conditionally dependent associations among microbes. However, without con-
sidering environmental factors, many associations between and among microbes, as
determined by these methods, may not be real. For example, Figure 1 shows that two
unrelated microbes (OTU-1 and OTU-2) may appear to be associated just because
they both respond to the same environmental perturbation (EF-1). CCLasso [16]
is similar to SPIEC-EASI but it estimates the covariance matrix via an alternating
direction algorithm instead of the graphical lasso.

Therefore, in this paper, we propose the metagenomic Lognormal-Dirichlet-
Multinomial (mLDM) model, a typical hierarchical Bayesian model [2] that learns
complex relationships underlying the data. mLDM could compute conditionally de-
pendent associations among microbes and direct associations between microbes and
environmental factors, while takes both compositional bias and variance of metage-
nomic data into account. In addition, microbial absolute abundance can be estimated, which is useful for
further analysis. The effectiveness of mLDM is shown by comparing with the state-of-the-art methods using
carefully designed synthetic datasets, and it is further evaluated on TARA Oceans eukaryotic data. Finally,
we present the results and findings of mLDM on the TARA Oceans data and western English Channel data.

2 Methods
2.1 The metagenomic Lognormal-Dirichlet-Multinomial model
Suppose that N samples X = {xi}Ni=1. Each xi ∈ NP is a P -dimensional vector that contains P microbes
(or Operational Taxonomic Units (OTUs)), where xij represents the sequence/read count of the j-th mi-
crobes in the i-th sample. Let M = {mi}Ni=1 represent the environmental factors, where each mi ∈ RQ is a
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N

Fig. 2. The metagenomic Lognormal-Dirichlet-Multinomial model.

Q-dimensional vector and mij represents the value of the j-th environmental factor associated with the i-th
sample.

Figure 2 illustrates the mLDM model for metagenomic sequencing, where xi is the read count vector
of the i-th sample and mi records values of the environmental factors corresponding to the i-th sample.
The latent variable hi is the vector of the relative abundance levels of P microbes in the extracted sample,
and αi represents the absolute abundance levels of the microbes in the original community. We assume
that the counts xi are proportional to the latent microbial ratios hi which are determined by their absolute
abundance αi. Microbial absolute abundance αi can be influenced by two factors: 1) environmental factors
mi, whose effects on the microbes are denoted by a linear regression model B>mi, and 2) the associations
among microbes encoded by a latent vector zi, which is determined by the matrix Θ that records microbial
associations and the mean vectorB0 that affects the basic absolute abundance of microbes. More specifically,
the generative process of the metagenomic Lognormal-Dirichlet-Multinomial hierarchical model is defined
as:

zi ∼ Gaussian(B0, Θ
−1)

αi = exp(B>mi + zi)

hi ∼ Dirichlet(αi)

xi ∼ Multinomial(hi),

where B is a Q × P parameter matrix, B0 is the P -dimensional vector, and Θ is the inverse covariance
matrix (i.e., precision matrix) of a multivariate Gaussian distribution. With this model, our goal is to infer
both B, the environmental factor-microbe (or EF-OTU) associations, and Θ, the microbe-microbe (or OTU-
OTU) associations, under some sparsity regularization as will be made clear in next section. We now explain
the design of each component in the mLDM model.

We assume that read count data xi follows a multinomial distribution with the microbial ratio parameter
hi:

P(xi|hi) =
(

s(xi)
xi1, · · · , xiP

) P∏
j=1

h
xij
ij , (1)

where s(xi) =
∑P

j=1 xij is the total read count of the i-th sample. Since the multinomial parameter hi is
subject to the constraint that

∑P
j=1 hij = 1, we assume it follows a Dirichlet distribution

P(hi|αi) =
1

T (αi)

P∏
j=1

h
αij−1
ij , (2)

where T (αi) =
∏P
j=1 Γ (αij)

Γ (s(αi))
, Γ (·) is the Gamma function and s(αi) =

∑P
j=1 αij . Based on the conjugacy

of Dirichlet and multinomial distribution, we can obtain the following Dirichlet-multinomial distribution via
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integrating hij out

P(xi|αi) =

∫
P(xi|hi)P(hi|αi)dhi =

(
s(xi)

xi1, · · · , xiP

)
T (αi + xi)

T (αi)
. (3)

The flexible variance-covariance property of Dirichlet-multinomial distribution is suitable for modeling the
sequencing data as mentioned in [44]. A simple explanation follows. We calculate the variance of the re-
al count xij , Var(xij) = s(xi) · C · rij · (1 − rij), and the covariance of two real counts xij and xik,
Cov(xij , xik) = −s(xi) · C · rij · rik, where C = s(xi)+s(αi)

1+s(αi)
and rij = αij/s(αi), rik = αik/s(αi)

are true relative abundance levels. We can see that both the variance and covariance of microbial counts are
regulated by the sequencing depth s(xi) and the true relative abundance rij of the microbes. Moreover, the
coefficient between xij and xik is negative, which models the compositional negative bias.

We further assume that the absolute abundance αi for all microbes in the i-th sample follows the mul-
tivariate lognormal distribution with mean µi and covariance Θ−1 which is commonly used to model most
microbial abundance except for some occasional species [46, 43, 32]. Microbes survive in a community
through conditionally dependent associations. However, at the same time, microbes are also subjected to
unpredictable fluctuations impacting their microenvironment. Therefore, we record associations among mi-
crobes in the matrixΘ and let the mean µi vary with the environmental data vector mi by a linear regression
model. Then the prior distribution is defined as

P(αi|B,B0, Θ,mi) =
1

(2π)
P
2 |Θ|−

1
2

exp

(
−1

2
(logαi − µi)

>Θ (logαi − µi)

) P∏
j=1

1

αij
(4)

where µi = B>mi +B0. Using the relationship between the lognormal and Gaussian distributions, Eq. (4)
is also equivalent to the following form:

αi = exp
(
B>mi + zi

)
(5)

where zi ∼ N(B0, Θ
−1). The formulation in Eq. (5) avoids positivity constraint in the lognormal distribu-

tion. This is beneficial for finding the estimates, e.g., by using some unconstrained optimization algorithms,
as explained in the next section.

With the above model, we capture both the conditionally dependent associations among microbes and
the direct associations between microbes and environmental factors. More specifically, the conditionally
dependent associations among microbes are encoded in the precision matrix Θ. To visualize the microbial
association network, we use an undirected graph denoted as G(1) = (V (1), E(1)) employed in the Gaussian
Markov random field [35] to represent Θ, where V (1) represents the set of nodes denoting P microbes and
E(1) is the set of conditionally dependent associations with each element e(1)ij representing the association
between the i-th and j-th microbes. If Θij = 0, then the i-th and the j-th microbes are conditionally
independent, and hence, no edge exists between the two microbes in graph G(1). The weight of edge e(1)ij ,

w
(1)
ij = − Θij√

ΘiiΘjj
, is the strength of the association between the two microbes.

The direct associations between microbes and environmental factors are encoded in weight matrix B.
The association between the i-th microbe and the j-th environmental factor is Bji, and we can plot them
in another bipartite graph G(2) = (V (2), E(2)), where the set of nodes V (2) represents both P microbes
and Q environmental factors, and the edge e(2)ij in E(2) represents the direct association between the j-th

environmental factor and the i-th microbe. The weight of edge e(2)ij equals w(2)
ij = Bji.

Overall, our metagenomic association network consists of these two graphs G(1) and G(2), as illustrated
in Figure 3.
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Fig. 3. A metagenomic association network is composed of two graphs (a) and (b). ‘+’ and ‘-’ show the
positive (orange edge) and negative (grey edge) associations, respectively. (a) is a microbial (OTU-OTU)
association graph. (b) is an environmental factor-microbe (EF-OTU) association graph.

2.2 Sparse association estimation

We now explain how to estimate the metagenomic association network by using sparsity regularization.
Given metagenomic data X and environmental factors M, the posterior distribution of the latent factors Z
is

P(Z|X,M, B,B0, Θ) ∝ P(X,Z|B,B0, Θ,M) ∝ P(X|α)P(α|Z, B,B0,M)P(Z|B0, Θ), (6)

where P(X|α) can be calculated with Eq. (3), and P(Z|B0, Θ) =
∏N
i=1P(zi|B0, Θ) with each fac-

tor P(zi|B0, Θ) being a Gaussian distribution. As a consequence of the deterministic relationship αi =
exp(B>mi + zi), it should be noted that the distribution P(α|Z, B,B0,M) is a Dirac delta function. In
general, associations among microbes are not expected to be dense and only a few environmental factors
will predominate. This motivated us to identify a sparse association network which could be effectively
achieved by sparse learning techniques [45]. Also, in practice, the number of samples is usually smaller than
the number of microbes, or N � P . Therefore, introducing sparsity regularization helps avoid overfitting.
Specifically, we estimate the sparse association network by solving the following problem:

min
B,B0,Θ,Z

f(B,B0, Θ,Z) +
λ1
2
||Θ||1 + λ2||B||1 (7)

where f(B,B0, Θ,Z) = − 1
N logP(Z|X,M, B,B0, Θ) = − 1

N

∑N
i=1

(∑P
j=1 Γ̃ (αij + xij) − Γ̃ (s(αi) +

s(xi))−
∑P

j=1 Γ̃(αij) + Γ̃ (s(αi))
)
− 1

2 log |Θ|+
1
2N

∑N
i=1(zi −B0)

>Θ(zi −B0), Γ̃ (·) = logΓ (·) is the
log gamma function, and the positive parameters λ1 and λ2 are used to control the sparsity of the solution
with larger values representing sparser results. Then, the model parameters can be estimated by optimizing
the objective function with respect to Z,B,B0 and Θ alternately.

1) For Z, we minimize the objective function in Eq. (7) with respect to Z. Because of independence, we
can solve for each zi independently by the gradient descent methods. Here, we adopt the limited-memory
quasi-Newton (L-BFGS) algorithm [31], which is a quasi-Newton method and converges fast. L-BFGS
requires the derivative of zij , which is computed as follows:

∂f

∂zij
= − 1

N

(
Γ̃ ′(αij + xij)− Γ̃ ′(s(αi) + s(xi))− Γ̃ ′(αij) +Γ̃ ′(s(αi))

)
αij +

1

N
Θj:(zi −B0), (8)

where Γ̃ ′(αij) is the digamma function and Θj: is the jth row of the matrix Θ.
2) For B, we minimize Eq. (7) with respect to B. The objective is not differentiable by the existence of

the L1 norm regularizer. Therefore we use the orthant-wise limited-memory quasi-Newton (OWL-QN) al-
gorithm [5], which is based on L-BFGS and can minimize the log likelihood function with L1 regularization
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for optimization. The derivative of Bij is

δij(B) =

{∂−ijf(B) if ∂−ijf(B) > 0

∂+ijf(B) if ∂+ijf(B) < 0

0 otherwise

(9)

where

∂±ijf(B) =
∂f(B)

∂Bij
+
{λ2sign(Bij) if Bij 6= 0

±λ2 if Bij = 0
,

and ∂f(B)
∂Bij

= − 1
N

∑N
k=1

(
Γ̃ ′(αkj + xkj)− Γ̃ ′(s(αk) + s(xk))− Γ̃ ′(αkj) + Γ̃ ′(α+

k )
)
αkjmki.

3) For B0, we have the update rule B0 =
1
N

∑N
i=1 zi, which is the mean of the latent vectors zi.

4) For Θ, this step is equal to solving the classical problem of a graphical lasso (glasso):

min
Θ
− log |Θ|+ tr(SΘ) + λ1||Θ||1, (10)

where the empirical covariance S = 1
N

∑N
i=1(zi − B0)(zi − B0)

>. This problem is also termed as sparse
inverse covariance estimation and can be solved with a standard graphical lasso (glasso) algorithm by [20].
However, different from the fully observed glasso, where the empirical covariance is computed once, we
should note that our S depends on the inferred latent vectors z and needs to update at each iteration. Since
z and m mutually influence each other in explaining the observed data x (see the generative process), the
learned sparse graph (i.e., Θ) is affected by environmental factors, matching our intuition in Figure 1.

For model selection, we choose the best parameters for λ1 and λ2 via extended Bayesian information
criteria (EBIC) [11]. EBIC improves the original BIC by assigning larger prior to lower dimension models,
a strategy more suitable for model selection in large model spaces.

3 Results
3.1 Synthetic Experiment

To show the effectiveness of the proposed mLDM model, we conducted several experiments and compared
mLDM with several state-of-the-art models, including eight programs: PCC, SCC, CCREPE, SparCC, C-
CLasso, glasso (graphical lasso), SPIEC (ml) and SPIEC (gl). SPIEC (ml) and SPIEC (gl) are two different
modules within SPIEC-EASI, which estimate associations via neighborhood and covariance selection re-
spectively. The first five methods estimate associations via the calculation of correlations with PCC as the
baseline, and the last three compute the conditional independence with glasso as the baseline. It should be
noted that the Poisson-multivariate normal hierarchical model [7] is not included as a result of its instability
when processing high dimensional data. The LSA is also excluded because it requires time series informa-
tion, which our synthetic dataset doesn’t provide. In the next experiment, we will estimate the following: 1)
OTU-OTU associations among all microbes (or OTUs) and 2) EF-OTU associations between environmental
factors and microbes.

Data Generation Process The synthetic data can be naturally produced via our generative process. First,
the environmental factor matrix M is sampled from the multivariate normal distribution N(0, I) and then
normalized with

∑N
i=1Mij = 0 and 1

N−1
∑N

i=1M
2
ij = 1. The element Bij of matrix B is sampled from the

uniform distribution of [−0.5, 0.5] and set to 0 with probability of 0.85. Since dominant microbes are found
in some microbial communities, we produce vector B0 by uniformly sampling from [6, 8] with probability
of 0.2 and [2, 4.5] with probability of 0.8 to affect the distribution of absolute abundance of microbes. To
evaluate the ability of mLDM to recover network structures, we follow [29] and use five different precision
matrices Θ whose adjacency matrices are as follows:
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Fig. 4. ROC curves of all methods used to discover OTU-OTU associations among microbes when P =
50, Q = 5, and N = 500. These are the average results of 20 simulations with the same parameters.
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Fig. 5. ROC curves of all methods used to discover EF-OTU associations when P = 50, Q = 5, and
N = 500. These are the average results of 20 simulations with the same parameters.

– Random Graph: Edge e(1)ij in E(1) is set to nonzero with probability 3
P and about 3

2(P − 1) edges are
produced.

– Cluster Graph: Nodes V (1) are randomly split into bP/20c groups and within the same group the nodes
i and j are connected with probability of 0.3.

– Scale-free Graph: The B-A algorithm [4] is used to produce a graph in which a) initially two nodes in
G(1) are connected and b) every new node is added in by linking to a node in the current graph with
probability proportional to the degree of the node.

– Hub Graph: Nodes V (1) are randomly split into bP/20c groups, and within the same group, every node
is connected with a center node with probability of 1. Finally, random P − bP/20c edges are included
in the E(1).

– Band Graph: Each adjacent node pair i and j in V (1) is connected if |i − j| = 1 and P − 1 edges are
generated in E(1).

We use the huge package [48] to generate Θ and obtain the positive definite covariance matrix Σ = Θ−1. In
order to make the covariance matrixΣ sparse, and thus beneficial to methods estimating the correlations, we
set Σij = 0 if |Σij | < 0.1. Then, zi is sampled from the normal distribution N(0, Σ), and αi is calculated
via Equation (5). Next, we generate the Dirichlet-multinomial samples xi from Eq. (3). This process relies
on the R package “HMP”, which includes the generation of Dirichlet-multinomial samplers. For B, B0 and
Θ with five structures, all methods are compared with the following four experimental settings: P = 50,
Q = 5 and N = 25, 50, 200, and 500. We use public codes glasso, CCREPE, SPIEC-EASI, CCLasso and
the implementation of SparCC in SPIEC-EASI. Here PCC and SCC are implemented in R language, and
the candidates of associations are selected via p-value. We set p-value at 0.05 for PCC, SCC and CCREPE,
and the threshold of correlation for SparCC is 0.1. For each parameter setting, we randomly generate 20 sets
of data for evaluation. For all experimental results, it should be noted that we show the mean and variance
of evaluation results from the 20 synthetic datasets.

Evaluation Metrics We use three metrics for evaluation:
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Table 1.∆1 distances and AUC scores of OTU-OTU associations with standard deviations (P = 50, Q = 5,
and N = 500).

Graph Random Cluster Scale-free Hub Band

Method ∆
(1)
1 AUC(1) ∆

(1)
1 AUC(1) ∆

(1)
1 AUC(1) ∆

(1)
1 AUC(1) ∆

(1)
1 AUC(1)

PCC 0.029± 0.0011 0.600± 0.016 0.043± 0.010 0.610± 0.010 0.023± 0.0010 0.590± 0.022 0.054± 0.0006 0.559± 0.012 0.025± 0.0022 0.732± 0.022
SCC 0.033± 0.0032 0.728± 0.018 0.045± 0.0035 0.684± 0.020 0.019± 0.0012 0.758± 0.029 0.050± 0.0017 0.684± 0.022 0.017± 0.0022 0.950± 0.015

CCREPE 0.028± 0.0015 0.834± 0.019 0.039± 0.0015 0.844± 0.017 0.022± 0.0012 0.841± 0.025 0.050± 0.0012 0.691± 0.025 0.025± 0.0026 0.962± 0.008
SparCC 0.016± 0.0005 0.899± 0.011 0.021± 0.0010 0.945± 0.006 0.014± 0.0005 0.854± 0.016 0.046± 0.0012 0.709± 0.017 0.013± 0.0005 0.985± 0.005
CCLasso 0.020± 0.0008 0.899± 0.016 0.026± 0.0009 0.945± 0.007 0.017± 0.0007 0.881± 0.023 0.046± 0.0025 0.744± 0.061 0.016± 0.0008 0.985± 0.007

glasso 0.021± 0.0002 0.535± 0.005 0.038± 0.0002 0.503± 0.005 0.014± 0.0001 0.522± 0.008 0.017± 0.0001 0.527± 0.012 0.023± 0.0002 0.570± 0.024
SPIEC (gl) 0.018± 0.0005 0.873± 0.050 0.037± 0.0003 0.601± 0.034 0.012± 0.0002 0.778± 0.050 0.017± 0.0001 0.615± 0.051 0.018± 0.0007 0.993± 0.008
SPIEC (ml) - 0.889± 0.041 - 0.611± 0.024 - 0.818± 0.068 - 0.615± 0.051 - 0.996± 0.005

mLDM 0.009± 0.0009 0.998± 0.004 0.022± 0.0014 0.949± 0.019 0.006± 0.0006 0.990± 0.008 0.009± 0.0001 0.998± 0.004 0.007± 0.0009 0.999± 0.000

Table 2. ∆1 distances and AUC scores of EF-OTU associations with standard deviations (P = 50, Q = 5,
and N = 500 ). Results from other softwares (e.g., CCREPE, SparCC, CCLasso and SPIEC) are omitted
here as estimation of EF-OTU is not available.

Graph Random Cluster Scale-free Hub Band

Method ∆
(2)
1 AUC(2)p ∆

(2)
1 AUC(2) ∆

(2)
1 AUC(2) ∆

(2)
1 AUC(2) ∆

(2)
1 AUC(2)

PCC 0.019± 0.0013 0.774± 0.025 0.018± 0.0011 0.790± 0.020 0.018± 0.0014 0.813± 0.027 0.023± 0.0019 0.896± 0.017 0.017± 0.0019 0.778± 0.020
SCC 0.019± 0.0021 0.804± 0.019 0.018± 0.0021 0.833± 0.022 0.017± 0.0020 0.840± 0.021 0.023± 0.0030 0.916± 0.014 0.014± 0.0010 0.792± 0.012

glasso 0.036± 0.0004 0.649± 0.029 0.033± 0.0004 0.645± 0.028 0.035± 0.0004 0.654± 0.033 0.052± 0.0005 0.735± 0.038 0.033± 0.0003 0.641± 0.026
mLDM 0.019± 0.0016 0.837± 0.026 0.015± 0.0010 0.888± 0.027 0.017± 0.0017 0.885± 0.024 0.019± 0.0015 0.942± 0.013 0.015± 0.0010 0.851± 0.021

– ROC curves: We plot the ROC curves using two criteria. For PCC, SCC, CCREPE, SparCC and
CCLasso, which estimate pairwise correlations, we compare their results with the true correlation matrix
ρ with each element being ρij =

Σij√
ΣiiΣjj

(i < j). For glasso, SPIEC-EASI and mLDM, which estimate

conditional independence, we compare their results with the true precision matrix Θ.
– AUC score: We compute the area under the ROC curves directly. The AUC scores are calculated by

ignoring the sign of edges.
– ∆1 distance: It is defined as the L1-distance between the estimated edge weights and the true weights in

the graph. A smaller ∆1 distance indicates a higher accuracy. Let ∆(1)
1 and ∆(2)

1 denote the ∆1 distance
for the OTU-OTU and EF-OTU association graphs, respectively. For the pairwise correlation methods,
∆

(1)
1 = 2

P (P−1)
∑

i<j |ρ̂ij−ρij |, where ρ̂ is the estimated value and ρ is the true value. For the condition-

al independence methods, ∆(1)
1 = 2

P (P−1)
∑

i<j |Θ̂ij −Θij |, and ∆(2)
1 = 1

QP

∑Q
i=1

∑P
j=1 |B̂ij −Bij |.

Performance on OTU-OTU Associations Figure 4 shows the ROC curves of the OTU-OTU association
studies for the five different types of graph structures with simulation parameters P = 50, Q = 5, and
N = 500. The corresponding AUC scores and ∆1 distances are summarized in Table 1. From the ROC
curves, we can observe that the mLDM model has larger true positive rates than any other methods at small
false positive rates. The AUC scores of the mLDM model are generally superior to those of all other state-
of-the-art methods on the five different graph structures. In particular, on the Hub structure, the true positive
rates of mLDM are significantly higher than those of the other methods. A direct comparison between
the mLDM model and the two other methods which estimate conditionally dependent associations without
considering the variance of metagenomic data, i.e., glasso and SPIEC-EASI, shows that the mLDM method
achieves the highest AUC scores on all five structures. We also observe that the mLDM method has smaller
∆

(1)
1 distances than most other methods, suggesting that the mLDM model is able to accurately estimate the

weight and sign of conditionally dependent associations. On the cluster graph, the ROC curves of SparCC
and CCLasso increase more slowly than those of mLDM at the beginning, but climb higher as the false
positive rates become larger. This can be explained by the local density of each standalone cluster in the
graph. Under these conditions, mLDM tends to shrink edges with low weights, finally retaining fewer edges
than either SparCC or CCLasso. However, we argue that an initial high true positive rate, when the false
positive rate is small, is very significant, essentially because a higher ratio of predicted associations will be
correct.
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(a) True network (b) CCLasso (c) SPIEC (ml) (d) mLDM

Fig. 6. Estimated OTU-OTU associations of three methods (CCLasso, SPIEC and mLDM) and the ground-
truth on the ‘Random’ graph (P = 50, Q = 5, and N = 500). The brown and blue curves represent positive
and negative and associations, respectively. Thickness of an edge is proportional to the absolute edge weight.

(a) True network (b) PCC (c) SCC (d) mLDM

Fig. 7. Estimated EF-OTU associations of three methods (PCC, SCC and mLDM) and the ground-truth on
the ‘Random’ graph (P = 50, Q = 5, and N = 500). The brown and blue curves represent positive and
negative and associations, respectively. Thickness of an edge is proportional to the absolute edge weight.

Figure 6 illustrates the true OTU-OTU association network, and the three networks learned by the three
methods with the highest AUC scores (CCLasso, SPIEC, and mLDM), as shown in Table 1. The results
visually demonstrate that the association network, as computed by the mLDM model, is closest to the true
network and that the mLDM model recovers most of the conditionally dependent associations.

Performance on EF-OTU Associations Figure 5 shows the ROC curves for the estimated associations
between environmental factors and OTUs (EF-OTU), where simulation parameters are set as P = 50, Q =

5, and N = 500. The corresponding AUC scores and ∆(2)
1 distances are shown in Table 2. Since CCREPE,

SparCC, CCLasso and SPIEC do not estimate EF-OTU associations, we compared the mLDM model with
PCC, SCC and glasso only. From the ROC curves, we observe that the mLDM model has higher true positive
rates and smaller false positive rates than the other four methods. From the AUC scores, we observe that the
mLDM model has better performance than the other methods. For ∆(2)

1 distances, the mLDM model also
performs better than the other methods, with the exception of SCC which does slightly better in the Band
graph.

Figure 7 illustrates the true EF-OTU association network and the three networks learned by the three
methods with the highest AUC scores (PCC, SCC and mLDM), as shown in Table 2. We observe that the
networks produced by the mLDM model and SCC are closer to the true network than that by PCC.

Sensitivity Analysis with Variations of the Sample Numbers To show the sensitivity of the computational
models with respect to different sample sizes, we fixed the number of microbes P = 50 and the number of
environmental factors (Q = 5), and simulated metagenomic sequencing datasets with various sample sizes:
N = 25, 50, 200, and 500. The AUC scores of the estimated OTU-OTU associations by glasso, SPIEC-
Easi(gl), SPIEC-Easi(ml) and the mLDM model are plotted in Figure 8. As expected, the AUC scores of all
five methods increase when the sample size increases. Among these methods, the mLDM model gives the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042630doi: bioRxiv preprint 

https://doi.org/10.1101/042630
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 50 200 500

Samples

A
U

C

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

glasso
SPIEC(gl)
SPIEC(ml)
mLDM

(a) Random

25 50 200 500

Samples

A
U

C

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

glasso
SPIEC(gl)
SPIEC(ml)
mLDM

(b) Cluster

25 50 200 500

Samples

A
U

C

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

glasso
SPIEC(gl)
SPIEC(ml)
mLDM

(c) Scale-free

25 50 200 500

Samples

A
U

C

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

glasso
SPIEC(gl)
SPIEC(ml)
mLDM

(d) Hub

25 50 200 500

Samples

A
U

C

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

glasso
SPIEC(gl)
SPIEC(ml)
mLDM

(e) Band

Fig. 8. AUC scores of methods which estimate OTU-OTU associations by setting P = 50, Q = 5, and
N = 25, 50, 200, and 500.
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Fig. 9. AUC scores of methods used to discover EF-OTU associations (P = 50, Q = 5, andN = 25, 50, 200
and 500.

highest AUC scores on all five graph structures, which again proves that the mLDM model can accurately
estimate conditionally dependent associations. The AUC scores of the estimated EF-OTU associations by
PCC, SCC, glasso, and the mLDM model are shown in Figure 9 and the AUC scores of the mLDM model
are higher than those of PCC, SCC and glasso.

If we combine the performance of OTU-OTU and EF-OTU associations in Figure 8 and 9, we can
conclude that the mLDM model outperforms other methods on our synthetic data. The patterns of the ROC
curves where N = 25, 50, and 200 are similar to those in Figure 4 and 5 where the number of samples is
N = 500, and the initial true positive rate of the mLDM model is better than the others, even though in
some case its AUC score is not the highest.

3.2 Tara Oceans Eukaryotic Data

To validate the performance of mLDM on discovering associations from real metagenomic sequencing data,
we show the results of mLDM, as well as other eight methods, on Tara Oceans eukaryotic data which
were sampled from many stations at different depths over eight oceanic provinces around the world. The
eukaryotic abundance profiles were estimated by sequencing and clustering the V9 region of eukaryotic 18s
rRNA genes. The OTU table and environmental data, including the known genus-level eukaryotic symbiotic
interactions were downloaded from the PANGAEA website 1 and TARA OCEANS project website 2. A total
of 91 genus-level mapped eukaryotic symbiotic interactions that consist of both parasitism and mutualism
were collected based on the literature [23] and were used to evaluate the effectiveness of all methods.

Samples with missing environmental factor values or with too large or small read counts were removed.
OTUs that appear in less than 40% of the samples were omitted. For comparison, we chose OTUs that
were involved in known genus-level symbiotic interactions. Eventually we constructed a dataset consisting
of 67 OTUs with 28 known genus-level interactions and 17 environmental factors from 221 samples for
evaluation.

1 http://doi.pangaea.de/10.1594/PANGAEA.843018
2 http://www.raeslab.org/companion/ocean-interactome.html
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Table 3. Genus-level associations on TARA Oceans eukaryotic Data. ‘MG@Top N’ is the number of
matched known genus-level interactions among top N predicted associations. ‘-’ is shown in the entries
where the number of predictions is < N .

Method PCC SCC CCREPE sparcc CCLasso glasso SPIEC(gl) SPIECl(ml) mLDM
MG@Top 10 1 2 0 0 0 1 0 0 2
MG@Top 20 1 3 1 1 2 1 2 4 4
MG@Top 40 2 7 2 5 5 2 - 5 6
MG@Top 60 - 7 4 7 7 5 - - 8
MG@Top 80 - 8 8 8 8 - - - 9

MG@Top 100 - 9 9 8 9 - - - 13

Given that the known interactions are at the genus-level, and the exact OTU-OTU associations at the
species level are unidentified, we evaluated the results at the genus-level. We further specified that a predicted
association between two OTUs matches a known genus-level interaction if the two OTUs belong to the two
corresponding genera. Considering that the list of known interactions is incomplete, we reported the numbers
of matched genus-level associations among the top-N predicted associations (with the highest weights) of
all methods, as listed in Table 3.

It can be seen that mLDM is superior to other programs in terms of the number of matched associations
for 5 out of 6 cases, demonstrating its power of association inference. SCC is competitive with mLDM when
N ≤ 40, but its performance decreases as N increases. Both CCLasso and SparCC tend to report a very
dense association network, including both true positive associations and a large number of false positive
associations, as shown in Figure 11(b) and Figure 11(c). In contrast, mLDM assumes network sparsity and
therefore selects associations with higher weights, as shown in Figure 11(a).

(a) Known (b) mLDM (Genus N=40) (c) mLDM (EF-OTU)

Fig. 10. (a) 28 ground-truth genus-level symbiotic interactions where each node represents a genus. Since
the signs of the interactions are unknown, we show them in brown for convenience. (b) The genus-level
association network discovered by mLDM with its top N = 40 genus-level associations plotted. The brown
and blue edges represent positive and negative associations, respectively. Thickness of edges represents the
absolute edge weights. (c) Estimated EF-OTU associations discovered by mLDM on 67 OTUs and 17 EFs.

The ground-truth, 28 genus-level symbiotic interactions, as well as the top-40 highest valued genus-level
associations discovered by mLDM, are plotted in Figure 10(a) and Figure 10(b), respectively. The strong
negative association between the genus Amoebophrya and genus Gonyaulacaceae, as given by mLDM,
implies a parasitism interaction which matches with the known parasitism interactions [10]. Furthermore,
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(a) mLDM (b) SparCC (c) CCLasso

Fig. 11. OTU-OTU associations discovered by mLDM, SparCC and CCLasso on TARA Oceans eukaryotic
data. The brown and blue curves represent positive and negative associations, respectively. Thickness of
edges represents the absolute association weights.

Table 4. Top 10 OTU-OTU and EF-OTU associations on TARA Oceans eukaryotic Data. Associations are
sorted in decreasing order according to the weights. The most accurate annotation for every OTU is shown
in the bracket. ’Sign’ records the positive ’+’ or negative ’-’ associations, and some relevant studies are listed
in ’Literature’.

OTU-OTU Sign Literature EF-OTU Sign Literature
Cope-7(Centropages fu.) - Thal-18(Thalassicolla nu.) + Chl - Cope-1(Corycaeus sp.) - [25]

Acan-41(Acanthometra sp.) - Acan-52(Acanthometra sp.) + Latitude - Cope-2(Oithona sp.) +
Hexa-42(Hexaconus se.) - Acan-52(Acanthometra sp.) + [22] Depth max Brunt - Cope-1(Corycaeus sp.) + [26]

Coll-17(Collozoum se.) - Coll-34(Collozoum se.) + Oxygen - Cope-1(Corycaeus sp.) -
Gony-4(polygramma) - Gony-11(Alexandrium 01) + [27] MLE 1 day - Phae-3(Phaeocystis) +

Vamp-33(Vampyrophrya pe.) - Amoe-62(Amoebophrya sp.) + Depth max Brunt - Cope-7(Centropages fu.) -
Amoe-38(Amoebophrya ce.) - Peri-40(foliaceum) - SSD min - Phae-3(Phaeocystis) +
Coll-5(Collozoum se.) - Coll-34(Collozoum se.) + D.chl - Cope-2(Oithona sp.) - [34]

Blas-36(Blastodinium 06) - Blas-49(Blastodinium 05) + Depth max O2 - Cope-1(Corycaeus sp.) -
Amoe-20(Amoebophrya) - Amoe-53(Amoebophrya sp.) + Moon phase - Cope-7(Centropages fu.) - [36]

the known parasitism interactions between the genera Amoebophrya and Peridiniaceae, and the genera
Amoebophrya and Acanthometra were also detected by mLDM as having negative associations [24, 8].
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Fig. 12. Scatter plot of the concen-

trations of oxygen and estimated abun-

dances of Corycaeus sp by mLDM.

However, since the genus V ampy-rophrya is positively associated with
Amoebophrya, further investigation is required. In addition, mLDM dis-
covered strong positive associations between the genera Acanthometra
and Hexaconus, which are from the same family. We observed similar
associations between the genera Collozoum and Sphaerozoum, which
are also from the same family.

Table 4 lists top 10 predicted OTU-OTU associations (with the largest
weights) with relevant literature. For example, two OTUs Hexa-42 and
Acan-52 were predicted to be positively associated, which is consistent
with the results of a study in the southern California coast by Gilg et al.
(2010) [22]. In addition, we found that two associated OTUs Gony-4 and
Gony-11 belong to the same genus, and their co-occurrence is consistent
with the results of a study of the LSU rDNA sequence data bu Kim et al.
(2006) [27].

In the meantime, we also discovered some interesting EF-OTU asso-
ciations. Figure 10(c) shows the estimated EF-OTU associations discov-
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Fig. 13. The estimated metagenomic association network of 48 OTUs and 8 EFs. Nodes in the same color
belong to the same phylum, and the diameter of each node is proportional to the relative abundance of the
OTU. Edges in brown and blue colors denote positive and negative associations, respectively.

ered by mLDM. The number of the EF-OTU associations is less than that of the OTU-OTU associations,
as shown in Figure 11(a), indicating that the environmental factors have direct-affect on only a few OTUs,
while the other OTUs are affected via OTU-OTU associations. We further observed that the OTU Cope-1
annotated with the strainCorycaeus sp. is negatively associated with oxygen concentration. Almost 95% of
all 221 samples of the TARA Oceans dataset are either from the surface waters or from the deep chlorophyll
maximum subsurface, whose depths range only from 5.374m to 183.31m. From the samples near the ocean
surface, the abundance of Corycaeus sp. does not increase linearly with the increase of oxygen, but rather
tends to be more abundant when the concentration of oxygen is within a certain range, as plotted in Figure
12.

Similarly we show the top 10 predicted EF-OTU associations in Table 4. We found a negatively associ-
ation between the chlorophyll and Cope-1, which is consistent with the results in a study by Hafferssas and
Seridji (2010) [25], in which the association between the chlorophyll and the Copepod structure was found.

Cope-1 is also positively associated with the depth of maximum Brunt − V äisälä frequency and the
predictability of the depth of maximum Brunt − V äisälä frequency to Cope-1 was found by Irigoien et
al. (2011) [26]. The relationships between the depth of chlorophyll maximum and Cope-2 and between the
moon phase and Cope-7 were also studied in other projects [34, 36].

Table 5. Top 10 OTU-OTU and EF-OTU associations on the West English channel data. Associations are
sorted in decreasing order according to the weights. ’Sign’ records the positive ’+’ or negative ’-’ associa-
tions. Relevant studies are listed in ’Literature’.

OTU-OTU Sign Literature EF-OTU Sign Literature
Alphap17(Rhodospirillaceae) - Gammap47(SAR86) + Daylength - Alphap 17(Rhodospirillaceae) +
Alphap17(Rhodospirillaceae) - Gammap76(SAR86) + Temp - Alphap16(Rhodobacteraceae) + [30]

Alphap17(Rhodospirillaceae) - Alphap2(SAR11) + Temp - Gammap58(Gammaproteobacteria) + [12]
Alphap17(Rhodospirillaceae) - Alphap84(Rhodobacteraceae) + Temp - Gammap75(Alteromonadaceae) +

Alphap17(Rhodospirillaceae) - Alphap5(Thalassobacter) - Temp - Gammap115(Alteromonadaceae) +
Alphap17(Rhodospirillaceae) - Bacter24(Polaribacter) - Temp - Gammap41(SAR86) +

Alphap17(Rhodospirillaceae) - Bacter26(Flavobacteriaceae) + Temp - Gammap50(SAR86) -
Alphap17(Rhodospirillaceae) - Alphap20(Pelagibacter) + Temp - Gammap7(Gammaproteobacteria) -
Alphap17(Rhodospirillaceae) - Alphap14(Pelagibacter) + Daylength - Gammap115(Alteromonadaceae) +

Alphap17(Rhodospirillaceae) - Alphap9(Rhodobacteraceae) + Temp - Actino31(Leucobacter) -
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3.3 West English Channel Data
Finally, we applied mLDM to another marine metagenomic sequencing data to infer the underlying OTU-
OTU associations and EF-OTU associations. In the marine community, huge amounts of marine microbes
exist and play important roles in ocean food chains. However, very little is known about how marine mi-
crobes interact with each other or how they are affected by environmental factors. Gilbert et al. [21] s-
tudied the dynamic of the marine microbial community in the West English Channel by analyzing high-
throughput 16S rRNA data from 2003 to 2008. We downloaded the OTU table from the VAMPS website
(https://vamps.mbl.edu/) and employed the mLDM model to analyze the data. Forty-seven samples from
position L4 (50◦25.18′N, 4◦21.89′W ) were selected for association estimation. We extracted 48 OTUs that
appear in at least 46 samples. The total abundance of these OTUs exceeds 50% of the total read counts. This
dataset has 8 environmental factors, including temperature, daylength, as well as concentrations of salinity,
ammonia, chlorophyll, nitrate, phosphate and silicate, which were used to infer EF-OTU associations.

The OTU-OTU association network for the 48 OTUs is shown in Figure 13(a). In general, the num-
ber of positive associations (orange edges) among OTUs is more than that of the negative associations
(grey edges). The network is clearly dominated by OTUs from proteobacteria, which are colored green.
The OTU Alphap17, which belongs to the family Rhodospirillaceae, plays an important role in the net-
work, as it is the most important hub connected to almost all other OTUs. Rhodospirillaceae is known
to produce energy through photosynthesis, which is critical to the marine microbial community on the
surface of the ocean. Although the OTU Alphap5 from the genus Thalassobacter, the OTU Alphap2
from the family SAR11 and the OTU Alphap17 are from the same class, Alphaproteobacteria, their
associations are different. Alphap5 and Alphap17 have a strong negative association while Alphap2 and
Alphap17 have a positive association. The OTUs Gammap47 and Gammap76 are both from the same
family, SAR86, and have a positive association with OTU Alphap17. It is remarkable that the relative
abundance of Alphap17 is low, but still connects with many big OTUs with high relative abundance levels,
such as Alphap1, Alphap2, Gammap76 and Gammap7, implying that we should pay more attention to
rare OTUs with low abundance in future research.

Figure 13(b) shows the EF-OTU association network between 8 EFs and 48 OTUs. It can be seen that
temperature has the most significant impact on OTUs, especially on the phylum Proteobacteria. This is
consistent with previous observations. Furthermore, the OTU Alphap17, which connects with many other
OTUs, is very strongly and positively associated with day length. This is consistent with the photosynthesis
of OTU Alphap17 and further confirms that the photosynthesis of Alphap17 is critical to the whole marine
microbial community. In addition, the OTU Alphap16 from the family Rhodobacteraceae has a positive
association with temperature. Top 10 OTU-OTU and EF-OTU associations are shown in Table 5. The posi-
tive association between temperature and Alphap16, Gammap58 was reported by Lefort et al. (2013) [30]
and Cho and Giovannoni (2004) [12].

4 Discussions
To discover the underlying associations among microbes from metagenomic samples, we propose a hier-
archical Bayesian model, mLDM, with sparsity constraints to discover associations among microbes and
between microbes and their environmental factors. The mLDM model can infer both conditionally depen-
dent associations among microbes and direct associations between microbes and environmental factors, by
considering both compositional bias and variance of metagenomic data, which have not been studied be-
fore. This newly discovered conditionally dependent association provides more insight into the mechanisms
underlying a microbial community as it can capture the direct relationship underlying each microbial pair
and remove the indirect connection induced from other common factors. The effectiveness of mLDM was
verified on the basis of experiments involving both synthetic and real datasets.

It is worth mentioning that LSA was not utilized for performance comparison in the synthetic experiment
because it works only for time series data, and our synthetic data are not time-related. In fact, the mechanism
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of LSA is quite different from other methods mentioned in this paper in that it detects local time-series
correlations. Finally, one major limitation of mLDM is its scalability and efficiency, essentially because
coordinate descent steps in the hierarchical model consume most of the training time. However, this sacrifice
is necessary to gain better performance, which is crucial. For future work, we are interested in developing
a scalable mLDM model to analyze extremely large microbial network structures with tens of thousands of
microbes by using stochastic gradient descent and parallel computing techniques. For rare OTUs, which only
exist in a small fraction of the samples, the lognormal distribution may be not suitable, and other appropriate
distributions need to be explored. We are also interested in developing dynamic mLDM models to analyze
time series data which is utilized by LSA and learning time-varying network structures.
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