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G
ene set enrichment (GSE) analysis al-
lows researchers to efficiently extract
biological insight from long lists of dif-

ferentially expressed genes by interrogating
them at a systems level. In recent years,
there has been a proliferation of GSE analy-
sis methods and hence it has become increas-
ingly difficult for researchers to select an op-
timal GSE tool based on their particular data
set. Moreover, the majority of GSE analysis
methods do not allow researchers to simul-
taneously compare gene set level results be-
tween multiple experimental conditions.
Results: The ensemble of genes set enrich-
ment analyses (EGSEA) is a method devel-
oped for RNA-sequencing data that combines
results from twelve algorithms and calculates
collective gene set scores to improve the bio-
logical relevance of the highest ranked gene
sets. redEGSEA’s gene set database con-
tains around 25,000 gene sets from sixteen
collections. It has multiple visualization ca-
pabilities that allow researchers to view gene
sets at various levels of granularity. EGSEA
has been tested on simulated data and on
a number of human and mouse data sets
and, based on biologists’ feedback, consis-

tently outperforms the individual tools that
have been combined. Our evaluation demon-
strates the superiority of the ensemble ap-
proach for GSE analysis, and its utility to
effectively and efficiently extrapolate biolog-
ical functions and potential involvement in
disease processes from lists of differentially
regulated genes.
Availability and Implementation: EGSEA
is available as an R package at http://www.

bioconductor.org/packages/EGSEA/. The gene
sets collections are available in the R package
EGSEAdata from http://www.bioconductor.org/

packages/EGSEAdata/.
Contact: ∗ To whom correspondence should
be addressed: monther.alhamdoosh@csl.com.au,
mritchie@wehi.edu.au

1 Introduction

RNA-sequencing (RNA-seq) is a popular tool that
enables researchers to profile the transcriptomes of
samples of interest across multiple conditions in a
high-throughput manner. The most common anal-
ysis applied to an RNA-seq dataset is to look for
differentially expressed (DE) genes between experi-
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mental conditions. Gene set enrichment (GSE) often
follows this basic analysis with the aim of increasing
the interpretability of gene expression data by inte-
grating a priori biological knowledge of the genes
under study. This knowledge is usually presented
in the form of groups of genes that are related to
each other through biological functions and compo-
nents, for example: genes active in the same cellular
compartment, genes involved in the same signalling
pathway or biological process, and so on. GSE meth-
ods calculate two statistics for a given dataset where
pair-wise comparisons between two groups of samples,
e.g. disease and control, are made: (i) a gene-level
statistic calculated for each gene independently of
other genes to identify DE genes in the dataset, and
(ii) a set-level statistic derived for each gene set using
the gene-level statistics (i) of its elements.

Statistical over-representation tests are the most
commonly used methods for GSE analysis and are
based on the top ranked DE genes obtained at a
particular significance threshold. They suffer from
a number of weaknesses, including the need to pre-
select the threshold and limited power on data sets
with small numbers of DE genes. On the other hand,
gene set tests, or so-called functional class scoring
methods, do not assume a particular significance
cut-off and also include the gene correlation in the
calculation of the set-level statistics (Khatri et al.,
2012). A third category of GSE methods incorporates
the topology of the gene network in the significance
statistics (Tarca et al., 2009). The definition of the
null hypothesis in GSE analysis further categorizes
these methods. Competitive tests assume the genes
in a set do not have a stronger association with the
experimental condition compared to randomly chosen
genes outside the set. A second class of methods test
a self-contained null hypothesis that assumes the
genes in a set do not have any association with the
condition while ignoring genes outside the set. Self-
contained methods tend to detect more gene sets
when run on a large collection of gene signatures
due to their efficiency in detecting subtle expression
changes (Goeman and Bühlmann, 2007).

In practice, GSE is applied on a large collection of
gene sets and ranks them based on their relevance
to the conditions under study. Various significance
scores are used to assign gene set ranks. Most gene
set tests are not robust to changes in sample size,
gene set size, experimental design and fold-change
biases (Tarca et al., 2013; Maciejewski, 2014). Given
the diversity of approaches taken by different GSE
analysis methods, reliance on any one method across
different types of RNA-seq experiments, that may

vary in scale (from large disease studies to small-
scale experiments), complexity (simple two group
comparisons through to more complex experimental
designs) and noise level (patient samples versus more
controlled samples obtained from model organisms),
is bound to be sub-optimal. This issue has been
widely discussed in the field of machine learning and
several ensembling approaches have been proposed
over the last three decades (Alhamdoosh and Wang,
2014). Ensemble methods have been shown to out-
perform individual methods in a number of studies,
for example, PANDORA integrates multiple analysis
algorithms to find a more accurate list of DE genes
(Moulos and Hatzis, 2015).

To overcome this uncertainty problem in gene set
ranking we propose a new GSE method, Ensemble of
Gene Set Enrichment Analyses (EGSEA), which uti-
lizes the gene set ranking of multiple prominent GSE
methods to produce a new ranking that is more bio-
logically meaningful than the results from individual
methods. EGSEA is demonstrated to be useful in car-
rying out downstream analysis on RNA-seq data. It
generates a dynamic web-based report that displays
the enrichment analysis results of all selected algo-
rithms along with several ensemble scores. The gene
sets can be ranked based on any of the individual
or ensemble scores. EGSEA also provides powerful
capabilities to visualize results at different levels of
granularity. Comparative analysis is also featured in
EGSEA, allowing gene sets to be identified across
multiple experimental conditions. Finally, although
EGSEA has mainly been developed to analyze RNA-
seq data generated from human and mouse samples,
it can be easily extended to other organisms.

The remainder of this paper is organised as fol-
lows: first we provide a brief review of existing GSE
methods. Next we describe the EGSEA approach
and implementation details, the gene signature col-
lections that have been compiled and the data sets
that EGSEA is demonstrated on. Finally, results are
presented and future directions for the project are
laid out.

1.1 A review of current GSE methods

As EGSEA combines multiple gene set testing algo-
rithms, we begin with an overview of current GSE
methods. Some technical aspects of these methods
are highlighted, with an emphasis on their similarities
and differences.

Over-representation analysis (ora) methods per-
form Fisher’s hypergeometric test on each gene set
to examine the significance of the overlap between a
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list of DE genes and the elements from a reference
list of genes (Tavazoie et al., 1999). The set of DE
genes is obtained by applying cut-off thresholds of
gene-specific scores (e.g. false discovery rates (FDRs)
and/or fold-changes). However, these gene-specific
scores are not used in the calculation of the gene
set scores which can lead to a number of limitations
(Khatri et al., 2012) (e.g. strongly and weakly ex-
pressed genes are considered equally). On the other
hand, enrichment score-based methods use gene fold-
changes or other test statistics to order the list of
DE genes. A random walk is then used to find the
maximum deviation from a reference value (usually
0) and calculate enrichment scores, as in the GSEA
algorithm (Mootha et al., 2003; Subramanian et al.,
2005). Sample-based permutation is then applied
to estimate the significance of the gene set scores.
These methods assume that gene sets related to the
experimental condition are dominant at the top or
bottom of the gene list. Variants on this approach
that use the absolute values of gene scores to rank
genes before performing a random walk have also
been suggested (e.g. ssgsea Barbie et al. (2009)).

Other approaches tend to summarize the gene
statistics for each set using global statistics and then
test for significance using a permutation test, e.g.
safe (Barry et al., 2005), Category (Jiang and Gen-
tleman, 2007), zscore (Lee et al., 2008), gage (Luo
et al., 2009) and padog (Tarca et al., 2012). Although
permuting phenotype labels maintains the relation-
ship between genes, it requires a large sample size in
each experimental condition to accurately estimate
the statistical significance. Alternatively, gene per-
mutation can be used to lessen the effect of sample
size in spite of its gene independence assumption
(Subramanian et al., 2005). The camera method esti-
mates the inter-gene correlation for each gene set and
adjusts the gene set statistic for this effect (Wu and
Smyth, 2012). Rotation can also be used to carry
out gene set testing on small data sets, as in the
roast and fry methods (Wu et al., 2010). The roast
algorithm allows for gene-wise correlation and can be
applied in any experimental design. Since it utilizes
a Monte Carlo simulation technique, it can be quite
slow when run on a large collection of gene sets. Fry
is a fast approximation that assumes equal gene-wise
variances across samples, producing similar p-values
to a roast analysis run with an infinite number of
rotations.

Gene set statistics can be estimated in a variety of
ways using simple statistics (e.g. the mean or sum
of the statistics across all genes in a set) or more
complicated approaches. Linear models are widely

used for this purpose (Smyth, 2004), as in globaltest
(Goeman et al., 2004), camera (Wu and Smyth, 2012),
fry and roast (Wu et al., 2010), and allow multiple
covariates to be included in the analysis. Several
methods quantify gene set scores for each sample
independently rather than for each experimental con-
dition and then incorporate these scores into complex
linear models to estimate the significance of a gene
set in an experimental comparison. In other words,
the gene expression data is transformed from the
gene space into the gene set space. For example, the
plage algorithm uses singular value decomposition
(SVD) of the expression matrix for a set of genes
to calculate pathway scores (Tomfohr et al., 2005).
Similarly, gsva calculates a Kolmogorov-Smirnov-like
rank statistic for every gene set in each sample and
uses linear modelling to estimate the gene set signifi-
cance for each experimental condition (Hänzelmann
et al., 2013).

A relatively new trend that has emerged in GSE
analysis incorporates the topology of the gene set
(i.e. the interactions between gene products) into
the gene set scoring functions and significance tests,
e.g. SPIA (Tarca et al., 2009). It has recently been
shown by Bayerlová et al. (2015) that such methods
do not always outperform simple gene set testing
methods. Namely, when a particular group of genes
appears in many of the gene sets tested, they are
unlikely to be influential in the gene set significance
test. Tarca et al. (2012) showed that results from
padog can be improved by emphasizing the genes
that appear in a smaller number of gene sets in the
gene set test. All GSE methods mentioned above
perform p-value adjustments to account for multiple
hypothesis testing.

2 Materials and Methods

2.1 Ensemble of gene set enrichment
analyses

By extending the concept of ensemble modelling into
GSE analysis, we propose a new method that com-
bines multiple GSE analyses in order to generate a
robust gene set ranking that offers an improvement
over the ranking obtained by individual methods.
EGSEA, an acronym for Ensemble of Gene Set En-
richment Analyses, utilizes the analysis results of
twelve prominent GSE algorithms in the literature
to calculate collective significance scores for each
gene set. These methods include: ora (Tavazoie
et al., 1999), globaltest (Goeman et al., 2004), plage
(Tomfohr et al., 2005), safe (Barry et al., 2005), zs-
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Figure 1: A schematic overview of the EGSEA pipeline for gene set enrichment analysis.

core (Lee et al., 2008), gage (Luo et al., 2009), ssgsea
(Barbie et al., 2009), roast, fry (Wu et al., 2010),
padog (Tarca et al., 2012), camera (Wu and Smyth,
2012) and gsva (Hänzelmann et al., 2013). The ora,
gage, camera and gsva methods test a competitive
null hypothesis while the remaining seven methods
test a self-contained hypothesis. Conveniently, the
algorithm proposed here is not limited to these eleven
GSE methods and new GSE tests can be easily inte-
grated into the framework. Figure 1 illustrates the
general framework of EGSEA that can be seen as an
extension of a popular RNA-seq analysis pipeline.

RNA-seq reads are first aligned to the reference
genome and mapped reads are assigned to annotated
genomic features to obtain a summarized count ma-
trix. Most of the GSE methods were intrinsically
designed to work with microarray expression values
and not with RNA-seq counts, hence the limma-
voom transformation is applied to the count matrix
to generate an expression matrix (Law et al., 2014)
applicable for use with these methods as has recently
been shown (Rahmatallah et al., 2015). Since gene
set tests are most commonly applied when two experi-

mental conditions are compared, a design matrix and
a contrast matrix are used to construct the experi-
mental comparisons of interest. The target collection
of gene sets is indexed so that the gene identifiers
can be substituted with the indices of genes in the
rows of the count matrix. The GSE analysis is then
carried out by each of the selected methods indepen-
dently and an FDR value is assigned to each gene
set. Lastly, the ensemble functions are invoked to
calculate collective significance scores for each gene
set.

2.2 Problem formulation

Given an RNA-seq dataset D of samples from N
experimental conditions, K annotated genes gk(k =
1, · · · ,K), L experimental comparisons of interest
Cl(l = 1, · · · , L), a collection of gene sets Γ and M
methods for gene set enrichment analysis, the objec-
tive of a GSE analysis is to find the most relevant
gene sets in Γ which explain the biological processes
and/or pathways that are perturbed in expression in
individual comparisons and/or across multiple con-
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trasts simultaneously. Numerous statistical gene set
enrichment analysis methods have been proposed in
the literature over the past decade. Each method
has its own characteristics and assumptions on the
analyzed dataset and gene sets tested. In principle,
gene set tests calculate a statistic for each gene indi-
vidually f(gk) and then integrate these significance
scores in a framework to estimate a set significance
score h(γi).

2.2.1 Ensemble scoring functions

We propose seven statistics to combine the individual
gene set statistics across multiple methods, and to
rank and hence identify biologically relevant gene
sets. Assume a collection of gene sets Γ, a given gene
set γi ∈ Γ, and that the GSE analysis results of M
methods on γi for a specific comparison (represented
by ranks Rmi and statistical significance scores pmi ,
where m = 1, · · · ,M and i = 1, · · · , |Γ|) are given.
The ranks Rmi are calculated based on the order of
p-values. When a tie occurs, the other test statistics
of each individual method are used to break them.
The EGSEA scores can then be devised, for each
experimental comparison, as follows:

• The p-value score is the combination of p-values
assigned to γi and can be calculated in EGSEA
using six different methods, which are described
in Becker (1994) and Sutton et al. (2000), as
follows:

1. Fisher’s method (FP) assumes that

Sfp(γi) = −2

M∑
m=1

log pmi (1)

is a χ2 distribution with 2M degrees of
freedom (df).

2. The Logit method (LP) assumes that

Slp(γi) = −

∑M
m=1 log

pmi
1−pmi

C
(2)

is a Student’s t distribution with df = 5M+

4, where C =
√

kπ2(5M+2)
3(5M+4) .

3. The Summation of Z method (SZ) uses the
weighted Z-test to calculate the combined
p-value

Ssz(γi) = 1− φ(

∑M
m=1wmZ

m
i√∑M

m=1w
2
m

) (3)

where Zmi = φ−1(1− pmi ), wm are weights,
φ and φ−1 are the standard normal and its
inverse. Equal weights are assigned for all
base methods.

4. The Average method (MP) assumes that

Smp(γi) = (0.5− 1

M

M∑
m=1

pmi )
√

12M (4)

is a standard normal.

5. The Summation method (SP) sums the fol-
lowing series until the numerator becomes
negative in order to estimate the combined
p-value

Ssp(γi) =
(
∑M

m=1 p
m
i )M

M !
−(

M − 1

1

)
(
∑M

m=1 p
m
i − 1)M

M !
+(

M − 2

2

)
(
∑M

m=1 p
m
i − 2)M

M !
− . . .

(5)

6. Wilkinson’s method (WP) calculates the
probability of obtaining one or more signif-
icant p-values by chance in a group of M
p-values.

Note that the first three methods transform the
p-values and then combine them. Finally, the
Benjamini-Hochberg (BH) algorithm was ap-
plied to each p-value combining method (pCMs)
to take into account the large number of tests
being performed in parallel (Benjamini and
Hochberg, 1995). It is worth noting that the
p-value score assumes independence of the in-
dividual gene set tests, which is not a valid
assumption here, hence they are not an accurate
estimate of the ensemble gene set significance,
but can still be useful for ranking results.

• The minimum p-value score is the smallest p-
value calculated for γi

SminP (γi) = min(p1
i , p

2
i , · · · , pMi ) (6)

where pmi is the p-value calculated for the gene
set γi by the m-th GSE method.

• The minimum rank score of γi is the smallest
rank assigned to γi

SminR(γi) = min(R1
i , R

2
i , · · · , RMi ) (7)

where Rmi is the rank assigned by the m-th GSE
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method to the gene set γi.

• The average ranking score is the mean rank
across the M ranks

SavgR(γi) =
1

M

M∑
m=1

Rmi (8)

• The median ranking score is the median rank
across the M ranks

SmedR(γi) = median(R1
i , R

2
i , · · · , RMi ) (9)

where median is the classical median commonly
used in statistics.

• The majority voting score is the most commonly
assigned bin ranking

SvoteR(γi) = argmaxR∈{1,··· ,|Γ|}

M∑
m=1

I(Rbinim , R)

(10)
where Rbinim is the bin ranking of the gene set
γi that is assigned by the m-th method and is
calculated using the following formula

Rbinim = bR
m
i − 1

w
+ 1c × w

where w is the bin width. The bin ranking is
used to obtain consensus ranking from multiple
methods and thus a majority rank can be found.

• The significance score assigns high scores to
the gene sets with strong fold-changes and high
statistical significance

Ssig(γi) = − log10(SavgP (γi))×
1

|γi|

|γi|∑
j=1

|logFCj |

(11)
where SavgP (γi) is the combined p-value and
logFCj is the log2 of the fold-change of the j-th
gene in γi. The significance score is scaled on
the [0, 100] range for each gene set collection.

2.2.2 Comparative analysis

Unlike most GSE methods that calculate a gene set
enrichment score for a given gene set under a sin-
gle experimental contrast (e.g. disease vs. control),
the comparative analysis proposed here allows re-
searchers to estimate the significance of a gene set
across multiple experimental contrasts. This analysis
helps in the identification of biological processes that

are perturbed by multiple experimental conditions
simultaneously. For example, given three experimen-
tal conditions A, B and C, three pair-wise contrasts
can be constructed (A versus B, A versus C and
B versus C) and an EGSEA comparative analysis
performed to find gene sets that are perturbed across
two or three conditions simultaneously. Comparative
significance scores are calculated for a gene set using
Eqs. 1- 10 where the corresponding ensemble scores
of individual pair-wise contrasts are substituted into
these equations. In other words, the comparative
ensemble scores for a given gene set γi is calculated
by replacing Rmi and pmi with the ensemble scores
that are calculated for the ith experimental contrast.

An interesting application of the comparative anal-
ysis would be finding pathways or biological processes
that are activated by a stimulation with a particu-
lar cytokine yet are completely inhibited when the
cytokine’s receptor is blocked by an antagonist, re-
vealing the functions uniquely associated with the
signaling of that particular receptor as in the experi-
ment below.

2.3 Gene set collections

The Molecular Signatures Database (MSigDB)
(Subramanian et al., 2005) v5.0 was down-
loaded from http://www.broadinstitute.org/

gsea/msigdb (05 July 2015, date last accessed) and
the human gene sets were extracted for each col-
lection (h, c1, c2, c3, c4, c5, c6, c7). Mouse
orthologous gene sets of these MSigDB collec-
tions were adopted from http://bioinf.wehi.edu.

au/software/MSigDB/index.html (Wu and Smyth,
2012). EGSEA uses Entrez Gene identifiers (Maglott
et al., 2005) and alternate gene identifiers must be
first converted into Entrez IDs. KEGG pathways
(Kanehisa and Goto, 2000) for mouse and human
were downloaded using the gage package. To ex-
tend the capabilities of EGSEA, a third database
of gene sets was downloaded from the GeneSetDB
(Araki et al., 2012) http://genesetdb.auckland.

ac.nz/sourcedb.html project. In total, more than
25,000 gene sets have been collated and stored as R
objects within the EGSEAdata package along with
annotation information for each set (where available).
Additional custom collections of gene sets can be eas-
ily added and tested using EGSEA. Supplementary
Table 1 shows the number of gene sets in each collec-
tion and provides statistics on the set cardinalities
and the overlap between gene sets. The Jaccard
index is used to measure the similarity between two
sets (Jaccard, 1912) and we calculate the third quar-

Page 6 of 16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 8, 2016. ; https://doi.org/10.1101/042580doi: bioRxiv preprint 

https://doi.org/10.1101/042580


tile and maximum overlap ratio between all possible
pairs of gene sets in a collection. This analysis re-
vealed that some collections contain many large gene
sets. For example, the c2 collection from MSigDB
contains 3,750 human gene sets with a median size of
37 and maximum size of 1,839. The Drug collection
from GeneSetDB contains 7,032 human gene sets
with a median size of 19. The overlap analysis shows
that while some gene sets are very similar, the 3rd
quartile of the Jaccard index is less than 2% for most
of the collections.

2.4 Software implementation

EGSEA is implemented as an R package in the Bio-
conductor project (Gentleman et al., 2004) with par-
allel computation enabled using the parallel package.
There are two levels of parallelism in EGSEA: (i)
parallelism at the method-level and (ii) parallelism
at the experimental contrast level. The results of an
EGSEA analysis is stored in an object of S4 class
named EGSEAResults. Several S4 generic meth-
ods were implemented to facilitate the integration
of EGSEA in existing RNA-seq analysis pipelines
as described in the software vignette (Alhamdoosh
et al., 2016). A wrapper function was written for each
individual GSE method to utilize existing R pack-
ages and create a universal interface for all methods.
The ora method was implemented using the phyper
function from the stats package, which estimates the
hypergeometric distribution for a 2× 2 contingency
table. Statistical tests using limma were conducted
in order to obtain the DE genes for ora. The im-
plementation of roast, fry and camera was adopted
from the limma package (Ritchie et al., 2015). Simi-
larly, the GSE analysis methods of plage, zscore, gsva
and ssgsea were available in the gsva package from
Bioconductor. The gage, safe, globaltest and padog
methods were implemented in the gage, safe, global-
test and padog Bioconductor packages, respectively
(Gentleman et al., 2004). EGSEA can be extended to
include additional GSE methods through the imple-
mentation of new wrapper functions that the authors
are happy to add on request. The p-value combin-
ing methods implementation was adapted from the
metap package (Dewey, 2016).

Prior to running the EGSEA algorithm, an in-
dexing mechanism is applied to the gene sets to
transform gene identifiers into gene indexes that re-
fer to the position of each gene in the count matrix.
Finally, Jaccard coefficients were calculated for all
possible pairs of gene sets using a parallel procedure
with an exhaustive combinatorial calculation.

2.4.1 Reporting capabilities of the software

Since the number of annotated gene set collections
in public databases continuously increases and there
is a growing trend towards generating dynamic an-
alytical tools, our software tool was developed to
enable users to interactively navigate through the
analysis results by generating an HTML EGSEA
Report. The report presents the results in different
ways. For example, the Stats table displays the top
n gene sets (where n is selected by the user) for each
experimental comparison and includes all calculated
statistics. Hyperlinks are enabled wherever possible,
to access additional information on the gene sets
such as annotation information. The gene expres-
sion fold-changes can be visualized using heat maps
for individual gene sets or projected onto pathway
maps where available (e.g. KEGG gene sets). The
most significant Gene Ontology (GO) terms for each
comparison can be viewed in a GO graph that shows
their relationships. Similar reporting capabilities are
also provided for the comparative analysis results of
EGSEA.

Additionally, EGSEA creates summary plots for
each gene set collection to visualize the overall statis-
tical significance of gene sets. Two types of summary
plots are generated: (i) a plot that emphasizes the
gene regulation direction and the significance score
(given in Eq. 11) of a gene set and (ii) a plot that
emphasizes the set cardinality and its rank. EGSEA
also generates a multidimensional scaling (MDS) plot
that shows how various GSE methods rank a collec-
tion of gene sets. This plot gives insights into the
similarity of different methods on a given dataset.
Finally, the reporting capabilities of EGSEA can be
used to extend any existing or newly developed GSE
method by simply using only that method.

2.5 Simulated data

Simulated datasets were generated to evaluate the
performance of EGSEA in various scenarios. First, a
design matrix was defined for 5 case (Group 1) and
5 control (Group 0) samples, and a contrast matrix
was created to compare Group 1 versus Group 0. In
each simulation, expression matrices were generated
with 15,000 genes of which 1,000 genes were selected
to be DE and up-regulated and 1,000 genes were
selected to be DE and down-regulated. The level
of differential expression was defined in terms of
log2 fold-changes so that the expression values of
the DE genes were increased or decreased for the
samples of Group 1 only by a particular amount.
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To achieve this, log2 fold-changes were assumed to
be normally distributed with mean 0 and gene-wise
variances coming from a scaled-inverse chi squared
distribution with 4 degrees of freedom. For the DE
genes, the mean in Group 1 was systematically varied
either up or down by a particular amount (between
log2(1.3) and log2(2.3)) in order to simulate changes
that ranged from subtle (30%) thorough to large (2.3
fold) differences. A prior standard deviation of 0.3
was used, i.e., the standard deviation of the gene-wise
expression levels was drawn from 0.3

√
4/χ2(df = 4).

A total of 100 matrices were randomly generated for
each simulation setting. A collection of 150 gene sets
were generated such that 20 sets were composed of up-
regulated genes only and a further 20 sets contained
down-regulated genes only while the remaining sets
were composed of non-DE genes. The gene sets were
non-overlapping and the size was fixed to 50 genes
for all sets.

2.6 Human IL-13 experiment

This experiment aims to identify the biological path-
ways and diseases associated with the cytokine In-
terleukin 13 (IL-13) using gene expression measured
in peripheral blood mononuclear cells (PBMCs) ob-
tained from 3 healthy donors. The expression pro-
files of in vitro IL-13 stimulation were generated
using RNA-seq for 3 PBMC samples at 24 hours.
The transcriptional profiles of PBMCs without IL-
13 stimulation were also generated to be used as
controls. Finally, an IL-13Rα1 antagonist (Redpath
et al., 2013) was introduced into IL-13 stimulated
PBMCs and the gene expression levels after 24h were
profiled to examine the neutralization of IL-13 signal-
ing by the antagonist. Single-end 100bp reads were
obtained via RNA-seq from total RNA using a HiSeq
2000 Illumina sequencer. TopHat (Trapnell et al.,
2009) was used to map the reads to the human refer-
ence genome (GRCh37.p10). HTSeq was then used
to summarize reads into a gene-level count matrix
(Anders et al., 2014). The TMM method (Robinson
and Oshlack, 2010) from the edgeR package (Robin-
son et al., 2010) was used to normalize the RNA-seq
counts. Data are available from the GEO database
www.ncbi.nlm.nih.gov/geo/ as series GSE79027.

2.7 Mouse mammary cell experiment

Epithelial cells from the mammary glands of female
virgin 8-10 week-old mice were sorted into three
populations of basal, luminal progenitor (LP) and

Figure 2: Multidimensional scaling plot based on the
gene set rankings of the KEGG signalling and
disease collections for ten GSE methods ap-
plied to the Human IL-13 vs. control dataset.
Methods that perform similarly on this dataset
cluster together.

mature luminal (ML) cells as described in Sheri-
dan et al. (2015). Three independent samples from
each population were profiled via RNA-seq on to-
tal RNA using an Illumina HiSeq 2000 to generate
100bp single-end reads. The Subread aligner (Liao
et al., 2013) was used to align these reads to the
mouse reference genome (mm10 ) and mapped reads
were summarized into gene-level counts using feature-
Counts (Liao et al., 2014) with default settings. The
raw counts were normalized using the TMM method
(Robinson and Oshlack, 2010). Data are available
from the GEO database as series GSE63310. This
dataset was first published in Sheridan et al. (2015),
although no differential expression or GSE analysis
was reported in this earlier study.

3 Results and Discussion

The performance of the EGSEA method was evalu-
ated using RNA-seq datasets that were either simu-
lated or generated in the course of our research using
either human or mouse samples (see Materials and
Methods).

3.1 Performance on simulated data

To compare the performance of EGSEA and other
methods in different settings, a cut-off threshold
of 0.05 was used for the adjusted p-value in order
to evaluate each algorithms’ retrieval power. Simi-
larly, a cut-off threshold of 40 (top-ranked DE gene
sets) was used to evaluate EGSEA’s vote, average
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and median ranking methods. The false discovery
rate (FDR), true positive rate (Recall) and the F1-
measure were calculated to measure the performance
of EGSEA and the average over 100 simulated data
sets of each configuration was reported along with the
standard deviation. The F1-measure is the harmonic
mean of recall and precision (1 - FDR). The perfor-
mance indexes were calculated for each experiment
using the six p-value combining methods (pCMs)
and the EGSEA ranking scores. Eleven base meth-
ods, namely, camera, safe, gage, padog, plage, zscore,
gsva, ssgsea, globaltest, ora and fry, were used in the
following simulations unless otherwise stated.

First, the effect of the fold-change level on the per-
formance of EGSEA was investigated. The level of
differential expression simulated was varied between
1.3 and 2.3 fold and the performance indexes were
calculated each time (Supplementary Table 3 and
Table 1). As expected, the performance of EGSEA
improves with increasing DE level, as most of the
base methods tend to become more precise (Supple-
mentary Table 4). At the lowest FC difference of
1.3, EGSEA gives an FDR as low as 1.61% and an
F1-measure as high as 99.18% (both from Wilkin-
son’s method), and recall is 100% regardless of the
pCM used (Table 1). EGSEA outperforms the ma-
jority of base methods at this FC level, with only
two methods (safe and camera) performing slightly
better in terms of their F1-measure (Supplementary
Table 4). For simulated FC levels of 1.5 and 1.8, the
true positive rate of 100% is maintained by EGSEA
regardless of the pCM method while an FDR below
1% was obtained using the Average method (MP)
and Summation methods (SP) at a FC of 1.8 (Table
1). For higher FC levels (≥ 1.5), while most of the
individual GSE methods perform well, EGSEA is
consistently amongst the top 4 methods (Supplemen-
tary Table 4). EGSEA generally controls the FDR
for all of the pCMs except Fisher’s method which
produces slightly more false positives (Table 1). The
performance indexes from EGSEA’s ranking func-
tions clearly show the advantage of using gene set
rank rather than adjusted p-value when combining
multiple GSE methods. The median rank is more
robust than the vote and average ranks at low and
high levels of simulated differential expression (Table
1). As the FC level increases, all EGSEA ranking
scores achieve an F1-measure of 100%.

Second, the role of the number of base methods
combined in EGSEA was investigated. Five exper-
iments were designed for this purpose. The differ-
ential expression level was fixed at 1.3 in the five
experiments and only the performance of EGSEA

using Wilkinson’s method is shown here. The perfor-
mance of EGSEA using the other pCMs is presented
in Supplementary Table 2. The first experiment
(E1) combined eleven methods: camera, safe, gage,
padog, plage, zscore, gsva, ssgsea, globaltest, ora and
fry, and aimed at highlighting the performance of
EGSEA when all base methods are used. The second
experiment (E2) excluded the ora method since it
failed at retrieving any of the true positive gene sets.
The third experiment (E3) excluded the worst per-
forming methods (ora, gage and padog). The fourth
experiment (E4) combined only the best five perform-
ing methods (safe, camera, fry, zscore, ssgsea). The
fifth experiment (E5) included the best two meth-
ods of each style of test: the competitive methods
camera and gsva and the self-contained methods zs-
core and fry. These simulation results clearly show
that increasing the number of base methods benefits
the ensemble performance even when a few weak
methods are included in the ensemble (Table 2). Re-
stricting EGSEA to the best performing methods,
still gives FDR greater than those obtained from
EGSEA based on all 11 methods (compare E1 with
E4 and E5 in Table 2). Similarly, the performance of
EGSEA drops only slightly when weak methods are
removed (see E2 and E3 in Table 2). This observation
is well addressed in the ensemble learning literature,
where it has been shown that the performance of
weak algorithms can be boosted dramatically by the
majority (Freund, 1995).

3.2 Different methods produce different
rankings

Our primary motivation was to improve the ranking
of gene sets that are relevant to the experimental
condition under study and thus improve the recall
and precision of a GSE analysis. Various gene set
tests assign different rankings to a collection of gene
sets. To investigate this issue, the rankings assigned
by ten GSE methods (camera, safe, gage, padog,
plage, zscore, gsva, ssgsea, globaltest and ora) were
obtained for the human IL-13 vs. control comparison.
A multidimensional scaling (MDS) plot was gener-
ated using the ranks assigned by these ten methods
to the 203 pathway maps in the KEGG signalling and
disease collections. Fig. 2 clearly shows that some
GSE methods perform more similarly on this partic-
ular collection and dataset than others. For example,
camera, zscore and gsva seems to cluster together on
the MDS plot. The Kendall rank correlation between
zscore and gsva rankings was 0.62, between gage and
ora was 0.56 and between camera and gsva was 0.49.
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Table 1: EGSEA’s performance at different levels of differential expression. FC is the differential expression level.
FP, LP, MP, SP, SZ and WP stand for the Fisher, logitp, average, summation, summation of Z and
Wilkinson p-value combining methods (pCMs), respectively. The best performing pCM is highlighted in bold
for each FC configuration.

FC pCM
FDR Recall F1-measure
Mean Std Mean Std Mean Std

1.3

FP 0.1144 0.0442 1.0000 0.0000 0.9387 0.0250
LP 0.0164 0.0181 1.0000 0.0000 0.9917 0.0093
MP 0.0533 0.0282 1.0000 0.0000 0.9724 0.0149
SP 0.0550 0.0291 1.0000 0.0000 0.9715 0.0154
SZ 0.0257 0.0244 1.0000 0.0000 0.9868 0.0127
WP 0.0161 0.0200 1.0000 0.0000 0.9918 0.0102
vote 0.0003 0.0025 0.9998 0.0025 0.9998 0.0025
avg 0.0005 0.0035 0.9995 0.0035 0.9995 0.0035
med 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000

1.5

FP 0.0992 0.0422 1.0000 0.0000 0.9473 0.0234
LP 0.0202 0.0201 1.0000 0.0000 0.9897 0.0103
MP 0.0318 0.0237 1.0000 0.0000 0.9837 0.0123
SP 0.0334 0.0245 1.0000 0.0000 0.9828 0.0127
SZ 0.0262 0.0237 1.0000 0.0000 0.9866 0.0123
WP 0.0212 0.0224 1.0000 0.0000 0.9891 0.0115
vote 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000
avg 0.0010 0.0049 0.9990 0.0049 0.9990 0.0049
med 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000

1.8

FP 0.0869 0.0416 1.0000 0.0000 0.9541 0.0229
LP 0.0157 0.0171 1.0000 0.0000 0.9920 0.0087
MP 0.0087 0.0131 1.0000 0.0000 0.9956 0.0067
SP 0.0095 0.0137 1.0000 0.0000 0.9952 0.0070
SZ 0.0159 0.0171 1.0000 0.0000 0.9919 0.0087
WP 0.0235 0.0245 1.0000 0.0000 0.9879 0.0127
vote 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000
avg 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000
med 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000

Table 2: EGSEA’s performance using a variable number of base methods with simulated FCs at the level of 1.3.
Wilkinson’s method is used to combine p-values. The experiment E1 combines the eleven methods, E2
excludes ora, E3 excludes ora, gage and padog, E4 includes only camera, safe, zscore, ssgsea and fry, and
E5 includes only camera, gsva, zscore and fry. The best performing configuration is highlighted in bold.

ID
FDR Recall F1-measure

Mean Std Mean Std Mean Std

E1 0.0161 0.0200 1.0000 0.0000 0.9918 0.0102
E2 0.0175 0.0210 1.0000 0.0000 0.9911 0.0108
E3 0.0219 0.0231 1.0000 0.0000 0.9888 0.0119
E4 0.0191 0.0221 1.0000 0.0000 0.9902 0.0114
E5 0.0184 0.0212 1.0000 0.0000 0.9906 0.0109
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Safe, padog and plage showed correlations with one
and other of between 0.4 and 0.47 and globaltest and
padog had a correlation of 0.42. Finally, the rank-
ing produced by ssgsea was most dissimilar to the
other methods, with correlations ranging between
0.12 and 0.32. Multidimensional scaling plots ob-
tained using different gene set collections and data
sets (Supplementary Figures S1-S9) were broadly
similar, suggesting that the relationships between
the different methods is consistent.

3.3 Performance on Human IL-13
experiment

Two experimental comparisons (IL-13 stimulated vs.
control PBMCs, and IL-13R antagonist vs IL-13 stim-
ulated PBMCs) were studied at the gene set level
using EGSEA. Ten GSE methods, namely, camera,
safe, gage, padog, plage, zscore, gsva, ssgsea, glob-
altest and ora, were used to calculate the collective
EGSEA scores, and the average rank was used to
identify significant gene sets. The vote rank was
calculated using a bin width of 5. The analysis was
conducted on the 203 signaling and disease KEGG
pathways using a MacBook Pro machine that had a
2.8 GHz Intel Core i7 CPU and 16 GB of RAM. The
execution time varied between 23.1 seconds (single
thread) to 7.9 seconds (16 threads) when the HTML
report generation was disabled. The execution time
took 145.5 seconds when the report generation was
enabled using 16 threads.

Table 3 shows the top ten pathways retrieved from
the KEGG collections for these two experimental
contrasts. Interestingly, the Asthma pathway was
ranked as the first relevant pathway in the compari-
son between IL-13 stimulated PBMCs and control
PBMCs. It has been shown that IL-13 is a key
cytokine involved in the airway inflammation of pa-
tients with allergic asthma and IL-13 antagonists
are successfully progressing through clinical devel-
opment (Ingram and Kraft, 2012). It can be seen
that the minimum ranking score assigned to Asthma
by the ten GSE methods was nine and five methods
assigned a rank higher than 13 to this pathway map.
Supplementary Table 5 shows the ranks assigned by
individual methods. The results also identified IL-
13’s role in stimulating the intestinal immune network
for IgA production (Cocks et al., 1993), which was
retrieved as the second relevant pathway (Table 3).
Although more than half of the testing GSE meth-
ods ranked this pathway higher than 25, EGSEA
ranked it in the top 5 relevant pathways for IL-13
stimulated PBMCs. Similarly, Viral myocarditis dis-

ease appeared in the third position based on EGSEA
ranking while most of the base GSE methods ranked
it higher than 20. It has been found that IL-13
protects against myocarditis by modulating mono-
cyte/macrophage populations (Cihakova et al., 2008).
Moreover, the summary plot generated by EGSEA
showed three pathways with very high significance
scores (Fig. 3.A). They were the hematopoietic cell
lineage signalling (hsa04640), the cytokine-cytokine
receptor interaction (hsa04060) and the Staphylo-
coccus aureus infection (hsa05150) pathways. The
hsa04640 and hsa04060 were ranked 18th and 20th in
the EGSEA results, respectively, while the hsa05150
pathway rank was higher than 20. The significance
score Ssig of these three pathways was greater than
80%. This means that these pathways are statis-
tically significant and have a large number of DE
genes for this contrast. It has been reported that the
Staphylococcus aureus infection causes an increase
in various cytokines including IL-13 (Wang et al.,
2010).

EGSEA analysis of the gene expression profiles
comparing IL-13 stimulated PBMCs in the presence
or absence of IL-13R antagonist retrieved Asthma
as the third top pathway from the KEGG database
(Table 3). Interestingly, only the CAMERA and ZS-
CORE methods ranked this pathway lower than 10
and its median rank across the ten methods was 17.
This highlights the advantage of using an ensemble
approach rather than relying on a single GSE method.
The viral myocarditis pathway was ranked 6th for
this contrast. The summary plot of IL-13R Antag-
onist vs IL-13 identified 4 gene sets: the cytokine-
cytokine receptor interaction (hsa04060); Rheuma-
toid arthritis (hsa05323); Leishmaniasis (hsa05140)
and; Staphylococcus aureus infection (hsa05150)
with high significance score Ssig (highlighted in blue
in Fig. 3.A) that were not ranked in the top 10 gene
sets (Table 3). Some of the base GSE methods as-
signed high rank to these pathways and therefore the
average rank scores tend to be high. This shows the
versatility of our proposed method, and also demon-
strates how several ensemble scores can capture new
knowledge about the investigated dataset. It is ev-
ident from the literature that IL-13 is increased in
Rheumatoid arthritis serum (Tokayer et al., 2002)
and plays a key role in the cutaneous Leishmaniasis
(Hurdayal and Brombacher, 2014).

Finally, the EGSEA comparative analysis was per-
formed on the two contrasts of this experiment, i.e.,
“IL-13 vs Control” and “IL-13R Antagonist vs IL-13”.
This analysis retrieves gene sets that are perturbed in
both contrasts and thus increases the power of gene
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Figure 3: Visualization of the gene sets retrieved by EGSEA at different levels. (A) Summary plots of EGSEA on
the human dataset. The IDs of the top ten pathways based on EGSEA average rank are highlighted in
black font and the top five pathways based on EGSEA significance score whose average ranks are not in the
top ten ranks are highlighted in blue font. The bubble size indicates the level of pathway significance. The
red and blue colours indicate that the majority of gene set genes are up- or down-regulated, respectively.
(B) Heat maps of the gene expression fold-changes in three selected gene sets.

set tests enabling an experiment-wide analysis. Here,
the comparative analysis helped with investigating
the neutralizing power of the IL-13R antagonist. Ta-
ble 3 shows the rank of KEGG pathways (numbers
in brackets) as assigned by the comparative analysis.
The first two pathways discovered by this compar-
ative analysis were Asthma and Viral myocarditis,
respectively. Even though the cytokine-cytokine re-
ceptor interaction pathway did not appear in the top
ten sets when IL-13 stimulated PBMCs were com-
pared with control cells, it was assigned the twelfth
rank in this analysis. The summary plot of the com-
parative analysis in Fig. 3.A shows KEGG gene sets
coloured based on the average dominant regulation
direction of genes and scaled based on the average
significance score between the two contrasts. It is ap-
parent that most of the pathways that were perturbed
by IL-13 stimulation were inhibited by the IL-13R
antagonist (coloured in purple). This gives an indica-
tion of the efficacy of the antagonist and highlights
the utility of the comparative analysis. The Cytokine-
cytokine receptor interaction (has04060), hematopoi-
etic cell lineage signalling (hsa04640), Staphylococ-
cus aureus infection (hsa05150) and Rheumatoid
arthritis (hsa05323) pathways are all highly ranked

(highlighted in blue). To further highlight the ef-
ficacy of the IL-13R Antagonist, Fig. 3.B displays
heat maps of the fold-changes of gene expression in
three exemplary pathways, namely, Asthma, Viral
myocarditis and the cytokine-cytokine receptor in-
teraction pathway. It can be clearly seen that the
expression of individual genes is reversed in the dif-
ferent experimental conditions.

3.4 Performance on Mouse mammary cell
experiment

Three experimental contrasts were studied from the
mouse mammary cell experiment, i.e., basal versus
luminal progenitor (LP) cells, basal versus mature
luminal (ML) cells and ML versus LP. The median
rank was used as a scoring function and a bin width
of 5 was used for the vote ranking. Eight GSE
methods were used as base methods for the EGSEA
analysis: camera, safe, gage, padog, zscore, gsva,
globaltest and ora. The analysis was conducted on
the MSigDB c2 collection (of 4,722 gene sets) using
the same machine that was mentioned earlier. The
execution time varied between 182.1 seconds (single
thread) to 72.9 seconds (16 threads) when the HTML
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report generation was disabled. The execution time
took 147.5 seconds when the report generation was
enabled using 16 threads.

In this experiment, the usefulness of the EGSEA
comparative analysis was highlighted by analysing
all three contrasts together. Table 4 shows the top
ten gene sets retrieved from the c2 Curated Gene Set
Collection of the MSigDB database. The LIM gene
sets were generated previously by the same group
on the same cell populations using microarrays (Lim
et al., 2010) instead of RNA-seq. Five, out of six, of
these earlier signatures, available in MSigDB were
successfully retrieved by EGSEA using the RNA-
seq data indicating that the current data is most
similar to this earlier experiment, which is indeed
the case. The average rank of the gene sets in Table
4 is relatively high which indicates that not all of the
base GSE methods rank these signatures highly. We
found that safe, padog and globabltest tend to assign
very high ranks to the LIM gene sets, especially to
the LIM Mammary Luminal Progenitor DN (M2576),
which did not appear in this list of the top ten gene
sets.

4 Conclusion

Performing GSE analysis using a single method can
be inefficient as determining which testing procedure
is optimal for a given RNA-seq data set is a non-
trivial task. Our results have shown that some meth-
ods may completely miss biologically meaningful
associations in the data. To circumvent this problem,
we developed a new approach, named EGSEA, that
integrates multiple GSE tests into a single ensemble
framework to improve the relevance of the biologi-
cal processes identified for an experimental contrast.
The analyses performed on RNA-seq datasets gen-
erated from human and mouse samples showed the
advantage of our ensemble approach over using in-
dividual methods, with sensible results recovered
in each example. EGSEA’s ability to perform a
comparative analysis across multiple experimental
contrasts simultaneously also helps overcome a lim-
itation intrinsic to most GSE methods, which can
only accommodate pair-wise comparisons one at a
time.

EGSEA introduces an efficient solution to mine
large databases of annotated gene sets. Our cur-
rent implementation does not include topology-based
GSE methods or support for microarray data, which
we plan on adding in future releases of our software,
along with interactive summary plots to enhance the

user experience. Future research into the EGSEA
approach will include an algorithm to select the ap-
propriate number of methods to combine and the
ability to assign variable weights to the different
methods in a sensible way so that the results from
less reliable GSE methods can be down-weighted in
the analysis.

Since initiating this project, the Enrichment-
Browser (EB) (Geistlinger et al., 2016) software,
which takes a similar approach to EGSEA, has also
been published. Compared to this approach, EGSEA
combines twelve gene set testing methods and has
been designed and tested specifically with RNA-seq
data in mind, whereas EB combines four set-based
methods and has been benchmarked primarily with
microarray data. Our simulation results have shown
that combining more methods is beneficial to the
ensemble performance. Moreover, two of the four
set-based methods (ora and safe) in EB fail when the
expression signal is weak as shown in our simulations.
An advantage of EB is that it includes four network-
based methods, which as mentioned above we have
yet to incorporate into EGSEA. Use of network-based
methods is however limited to KEGG pathways at
present and recent work by Bayerlová et al. (2015)
has shown that network-based methods do not in-
troduce a significant improvement on the retrieval
performance relative to regular set-based methods
that EGSEA currently focuses on. EGSEA also of-
fers many more visualization options compared to
EB. Finally, the various ensemble scores of EGSEA
allow the ranking of gene sets in multiple ways to
efficiently and effectively extract biological insights
from large gene set collections.
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