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Abstract

Motivation: Gene set enrichment (GSE) analysis allows researchers to efficiently
extract biological insight from long lists of differentially expressed genes by interrogating
them at a systems level. In recent years, there has been a proliferation of GSE analysis
methods and hence it has become increasingly difficult for researchers to select an
optimal GSE tool based on their particular data set. Moreover, the majority of GSE
analysis methods do not allow researchers to simultaneously compare gene set level
results between multiple experimental conditions.
Results: The ensemble of genes set enrichment analyses (EGSEA) is a method
developed for RNA-sequencing data that combines results from multiple algorithms
and calculates collective gene set scores to improve the biological relevance of the
highest ranked gene sets. EGSEA has multiple visualization capabilities that allow
researchers to view gene sets at various levels of granularity. EGSEA has been tested on
a number of human and mouse data sets and, based on biologists’ feedback, consistently
outperforms the individual tools that have been combined. Our evaluation demonstrates
the superiority of the ensemble approach for GSE analysis, and its utility to effectively
and efficiently extrapolate biological functions and potential involvement in disease
processes from lists of differentially regulated genes.
Availability and Implementation: EGSEA is available as an R package at http:

//www.bitbucket.org/malhamdoosh/egsea

Contact: monther.alhamdoosh@csl.com.au, mritchie@wehi.edu.au
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1 Introduction

RNA-sequencing (RNA-seq) is a popular tool that enables researchers to profile the
transcriptomes of samples of interest across multiple conditions in a high-throughput
manner. The most common analysis applied to an RNA-seq dataset is to look for
differentially expressed (DE) genes between experimental conditions. Gene set enrichment
(GSE) often follows this basic analysis with the aim of increasing the interpretability of
gene expression data by integrating a priori biological knowledge of the genes under study.
This knowledge is usually presented in the form of groups of genes that are related to each
other through biological functions and components, for example: genes active in the same
cellular compartment, genes involved in the same signalling pathway or biological process,
etc. GSE methods calculate two statistics for a given dataset where pair-wise comparisons
between two groups of samples, e.g. disease and control, are made: (i) a gene-level statistic
calculated for each gene independently of other genes to identify DE genes in the dataset,
and (ii) a set-level statistic derived for each gene set using the gene-level statistics (i) of its
elements.

Statistical over-representation tests are the most commonly used methods for GSE analysis
and are based on the top ranked DE genes obtained at a particular significance threshold.
They suffer from a number of weaknesses, including the need to pre-select the threshold and
limited power on data sets with small numbers of DE genes. On the other hand, gene set
tests, or so-called functional class scoring methods, do not assume a particular significance
cut-off and also include the gene correlation in the calculation of the set-level statistics
(Khatri et al., 2012). A third category of GSE methods incorporates the topology of the
gene network in the significance statistics (Tarca et al., 2009). The definition of the null
hypothesis in GSE analysis further categorizes these methods. Competitive tests assume the
genes in a set do not have a stronger association with the experimental condition compared
to random genes outside the set. A second class of methods test a self-contained null
hypothesis that assumes the genes in a set do not have any association with the condition
while ignoring genes outside the set. Self-contained methods tend to detect more gene sets
when run on a large collection of gene signatures due to their efficiency in detecting subtle
expression changes (Goeman and Bühlmann, 2007).

In practice, GSE is applied on a large collection of gene sets and ranks them based on
their relevance to the conditions under study. Various significance scores are used to assign
gene set ranks. Most gene set tests are not robust to changes in sample size, gene set
size, experimental design and fold-change biases (Tarca et al., 2013; Maciejewski, 2014).
To overcome this uncertainty problem in gene set ranking we propose a new GSE method,
Ensemble of Gene Set Enrichment Analyses (EGSEA), which utilizes the gene set ranking
of multiple prominent GSE methods to produce a new ranking that is more biologically
meaningful than the results from individual methods. EGSEA is demonstrated to be useful
in carrying out downstream analysis on RNA-seq data. It generates a dynamic web-based
report that displays the enrichment analysis results of all selected algorithms along with
several ensemble scores. The gene sets can be ranked based on any of the individual or
ensemble scores. EGSEA also provides powerful capabilities to visualize results at different
levels of granularity. Comparative analysis is also featured in EGSEA, allowing gene sets to
be identified across multiple experimental conditions. Finally, although EGSEA has mainly
been developed to analyze RNA-seq data generated from human and mouse samples, it can
be easily extended to other organisms.
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2 Materials and Methods

2.1 Problem formulation

Given an RNA-seq dataset D of samples from N experimental conditions, K annotated
genes gk(k = 1, · · · ,K), L experimental comparisons of interest Cl(l = 1, · · · , L), a
collection of gene sets Γ and M methods for gene set enrichment analysis, the objective
of a GSE analysis is to find the most relevant gene sets in Γ which explain the biological
processes and/or pathways that are perturbed in expression in individual comparisons
and/or across multiple contrasts simultaneously. Numerous statistical gene set enrichment
analysis methods have been proposed in the literature over the past decade. Each method
has its own characteristics and assumptions on the analyzed dataset and gene sets tested.
In principle, gene set tests calculate a statistic for each gene individually f(gk) and then
integrate these significance scores in a framework to estimate a set significance score h(γi).

2.2 Current GSE methods

Over-representation analysis (ora) methods perform Fisher’s hypergeometric test on each
gene set to examine the significance of the overlap between a list of DE genes and the
elements from a reference list of genes (Tavazoie et al., 1999). The set of DE genes is
obtained by applying cut-off thresholds of gene-specific scores (e.g. false discovery rates
(FDRs) and/or fold changes). However, these gene-specific scores are not used in the
calculation of the gene set scores which can lead to a number of limitations (Khatri et al.,
2012) (e.g. strongly and weakly expressed genes are considered equally). On the other hand,
enrichment score-based methods use gene fold-changes or other test statistics to order the
list of DE genes. A random walk is then used to find the maximum deviation from a reference
value (usually 0) and calculate enrichment scores, as in the GSEA algorithm (Mootha et al.,
2003; Subramanian et al., 2005). Sample-based permutation is then applied to estimate the
significance of the gene set scores. These methods assume that gene sets related to the
experimental condition are dominant at the top or bottom of the gene list. Variants on
this approach that use the absolute values of gene scores to rank genes before performing a
random walk have also been suggested (e.g. ssgsea (Barbie et al., 2009)).

Other approaches tend to summarize the gene statistics for each set using global statistics
and then test for significance using a permutation test, e.g. safe (Barry et al., 2005),
Category (Jiang and Gentleman, 2007), zscore (Lee et al., 2008), gage (Luo et al., 2009) and
padog (Tarca et al., 2012). Although permuting phenotype labels maintains the relationship
between genes, it requires a large sample size in each experimental condition to accurately
estimate the statistical significance. Alternatively, gene permutation can be used to lessen
the effect of sample size in spite of its gene independence assumption (Subramanian et al.,
2005). Rotation can also be used to carry out gene set testing on small data sets, as in
the roast method (Wu et al., 2010). The roast algorithm allows for gene-wise correlation
and can be applied in any experimental design. Since it utilizes a Monte Carlo simulation
technique, it can be quite slow when run on a large collection of gene sets. Recently, camera
was proposed to estimate the inter-gene correlation from the gene expression data and adjust
the gene set statistic for this effect (Wu and Smyth, 2012).

Gene set statistics can be estimated in a variety of ways using simple statistics (e.g. the
mean or sum of the statistics across all genes in a set) or more complicated approaches.
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Figure 1: A schematic overview of the EGSEA pipeline for gene set enrichment analysis.

Linear models are widely used for this purpose (Smyth, 2004), as in globaltest (Goeman
et al., 2004), camera (Wu and Smyth, 2012) and roast (Wu et al., 2010), and allow multiple
covariates to be included in the analysis. Several methods quantify gene set scores for each
sample independently rather than for each experimental condition and then incorporate
these scores into complex linear models to estimate the significance of a gene set in an
experimental comparison. In other words, the gene expression data is transformed from
the gene space into the gene set space. For example, the plage algorithm uses singular
value decomposition (SVD) of the expression matrix for a set of genes to calculate pathway
scores (Tomfohr et al., 2005). Similarly, gsva calculates a Kolmogorov-Smirnov-like rank
statistic for every gene set in each sample and uses linear modelling to estimate the gene
set significance for each experimental condition (Hänzelmann et al., 2013).

A relatively new trend that has emerged in GSE analysis incorporates the topology of the
gene set (i.e. the interactions between gene products) into the gene set scoring functions and
significance tests, e.g. SPIA (Tarca et al., 2009). It has recently been shown by Bayerlová
et al. (2015) that such methods do not always outperform simple gene set testing methods.
Namely, when a particular group of genes appears in many of the gene sets tested, they
are unlikely to be influential in the gene set significance test. Tarca et al. (2012) showed
that results from padog can be improved by emphasizing the genes that appear in a smaller
number of gene sets in the gene set test. Finally, all GSE methods adjust significance scores
for multiple hypothesis testing to control the false discovery rate.
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2.3 Ensemble of gene set enrichment analyses

Given the diversity of characteristics of different GSE analysis methods, reliance on any
one method across different types of RNA-seq experiments, that may vary in scale (from
large disease studies to small-scale experiments), complexity (simple two group comparisons
through to more complex experimental designs) and noise level (patient samples versus more
controlled samples obtained from model organisms), is bound to be sub-optimal. This issue
has been widely discussed in the field of machine learning and several ensembling approaches
have been proposed over the last three decades (Alhamdoosh and Wang, 2014). Ensemble
methods have been shown to outperform individual methods in a number of studies, for
example, PANDORA integrates multiple analysis algorithms to find a more accurate list
of DE genes (Moulos and Hatzis, 2015). By extending the concept of ensemble modelling
into GSE analysis, we propose a new method that combines multiple GSE analyses in
order to generate a robust gene set ranking that offers an improvement over the ranking
obtained by individual methods. EGSEA, an acronym for Ensemble of Gene Set Enrichment
Analyses, utilizes the analysis results of eleven prominent GSE algorithms in the literature
to calculate collective significance scores for each gene set. These methods include: ora
(Tavazoie et al., 1999), globaltest (Goeman et al., 2004), plage (Tomfohr et al., 2005), safe
(Barry et al., 2005), zscore (Lee et al., 2008), gage (Luo et al., 2009), ssgsea (Barbie et al.,
2009), roast (Wu et al., 2010), padog (Tarca et al., 2012), camera (Wu and Smyth, 2012)
and gsva (Hänzelmann et al., 2013). The ora, gage, camera and gsva methods depend on a
competitive null hypothesis while the remaining seven methods are based on a self-contained
hypothesis. Conveniently, the algorithm proposed here is not limited to these eleven GSE
methods and new GSE tests can be easily integrated into the framework. Figure 1 illustrates
the general framework of EGSEA that can be seen as an extension of a popular RNA-seq
analysis pipeline.

RNA-seq reads are first aligned to the reference genome and mapped reads are assigned
to annotated genomic features to obtain a summarized count matrix. Most of the GSE
methods were intrinsically designed to work with microarray expression values and not
with RNA-seq counts, hence the limma-voom transformation is applied to the count matrix
to generate an expression matrix (Law et al., 2014) applicable for use with these methods as
has recently been shown to be beneficial (Rahmatallah et al., 2015). Since gene set tests are
most commonly applied when two experimental conditions are compared, a design matrix
and a contrast matrix are used to construct the experimental comparisons of interest. The
target collection of gene sets is indexed so that the gene identifiers can be substituted with
the indices of genes in the rows of the count matrix. The GSE analysis is then carried out
by each of the selected methods independently and an FDR value is assigned to each gene
set. Lastly, the ensemble functions are invoked to calculate collective significance scores for
each gene set.

2.3.1 Ensemble scoring functions

We propose seven statistics to combine the individual gene set statistics across multiple
methods, and to rank and hence identify biologically relevant gene sets. Assume a collection
of gene sets Γ, a given gene set γi ∈ Γ, and that the GSE analysis results of M methods
on γi for a specific comparison (represented by ranks Rmi and statistical significance scores
pmi , where m = 1, · · · ,M and i = 1, · · · , |Γ|) are given. The EGSEA scores can then be
devised, for each experimental comparison, as follows:
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• The p-value score is the average p-value assigned to γi

SavgP (γi) = −2

M∑
m=1

log pmi (1)

• The minimum p-value score is the smallest p-value calculated for γi

SminP (γi) = min(p1
i , p

2
i , · · · , pMi ) (2)

where pmi is the p-value calculated for the gene set γi by the m-th GSE method.

• The minimum rank score of γi is the smallest rank assigned to γi

SminR(γi) = min(R1
i , R

2
i , · · · , RMi ) (3)

where Rmi is the rank assigned by the m-th GSE method to the gene set γi.

• The average ranking score is the mean rank across the M ranks

SavgR(γi) =
1

M

M∑
m=1

Rmi (4)

• The median ranking score is the median rank across the M ranks

SmedR(γi) = median(R1
i , R

2
i , · · · , RMi ) (5)

where median is the classical median commonly used in statistics.

• The majority voting score is the most commonly assigned bin ranking

SvoteR(γi) = argmaxR∈{1,··· ,|Γ|}

M∑
m=1

I(Rbinim , R) (6)

where Rbinim is the bin ranking of the gene set γi that is assigned by the m-th method
and is calculated using the following formula

Rbinim = bR
m
i − 1

w
+ 1c × w

where w is the bin width. The bin ranking is used to obtain consensus ranking from
multiple methods and thus a majority rank can be found.

• The significance score assigns high scores to the gene sets with strong fold changes
and high statistical significance

Ssig(γi) = − log10(SavgP (γi))×
1

|γi|

|γi|∑
j=1

|logFCj | (7)

where logFCj is the log2 of the fold change of the j-th gene in γi.

It is worth noting that the p-value score can only be calculated under the independence
assumption of individual gene set tests, and thus it is not an accurate estimate of the
ensemble gene set significance, but can still be useful for ranking results. The significance
score is scaled on the [0, 100] range for each gene set collection.
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2.3.2 Comparative analysis

Unlike most GSE methods that calculate a gene set enrichment score for a given gene set
under a single experimental contrast (e.g. disease vs. control), the comparative analysis
proposed here allows researchers to estimate the significance of a gene set across multiple
experimental contrasts. This analysis helps in the identification of biological processes that
are perturbed by multiple experimental conditions simultaneously. Comparative significance
scores are calculated for a gene set using Eqs. 1- 6 where the corresponding ensemble scores
of individual contrasts are substituted into these equations.

An interesting application of the comparative analysis would be finding pathways or
biological processes that are activated by a stimulation with a particular cytokine yet are
completely inhibited when the cytokine’s receptor is blocked by an antagonist, revealing
the functions uniquely associated with the signaling of that particular receptor as in the
experiment below.

2.4 Human IL-13 experiment

This experiment aims to identify the biological pathways and diseases associated with
the cytokine Interleukin 13 (IL-13) using gene expression measured in peripheral blood
mononuclear cells (PBMCs) obtained from 3 healthy donors. The expression profiles of in
vitro IL-13 stimulation were generated using RNA-seq for 3 PBMC samples at 24 hours. The
transcriptional profiles of PBMCs without IL-13 stimulation were also generated to be used
as controls. Finally, an IL-13Rα1 antagonist (Redpath et al., 2013) was introduced into IL-
13 stimulated PBMCs and the gene expression levels after 24h were profiled to examine the
neutralization of IL-13 signaling by the antagonist. Single-end 100bp reads were obtained
via RNA-seq from total RNA using a HiSeq 2000 Illumina sequencer. TopHat (Trapnell
et al., 2009) was used to map the reads to the human reference genome (GRCh37.p10).
HTSeq was then used to summarize reads into a gene-level count matrix (Anders et al.,
2014). The TMM method (Robinson and Oshlack, 2010) from the edgeR package (Robinson
et al., 2010) was used to normalize the RNA-seq counts. Data are available from the GEO
database www.ncbi.nlm.nih.gov/geo/ as series GSE79027.

2.5 Mouse mammary cell experiment

Epithelial cells from the mammary glands of female virgin 8-10 week-old mice were sorted
into three populations of basal, luminal progenitor (LP) and mature luminal (ML) cells as
described in Sheridan et al. (2015). Three independent samples from each population were
profiled via RNA-seq on total RNA using an Illumina HiSeq 2000 to generate 100bp single-
end read libraries. The Subread aligner (Liao et al., 2013) was used to align these reads to
the mouse reference genome (mm10 ) and mapped reads were summarized into gene-level
counts using featureCounts (Liao et al., 2014) with default settings. The raw counts were
normalized using the TMM method. Data are available from the GEO database as series
GSE63310.

2.6 Gene set collections

The Molecular Signatures Database (MSigDB) (Subramanian et al., 2005) v5.0 was
downloaded from http://www.broadinstitute.org/gsea/msigdb (05 July 2015, date last
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accessed) and the human gene sets were extracted for each collection (h, c1, c2, c3, c4, c5,
c6, c7). Mouse orthologous gene sets of these MSigDB collections were adopted from http:

//bioinf.wehi.edu.au/software/MSigDB/index.html (Wu and Smyth, 2012). EGSEA
uses Entrez Gene identifiers (Maglott et al., 2005) and alternate gene identifiers must be
first converted into Entrez IDs. KEGG pathways (Kanehisa and Goto, 2000) for mouse and
human were downloaded using the gage package. To extend the capabilities of EGSEA,
a third database of gene sets was downloaded from the GeneSetDB (Araki et al., 2012)
http://genesetdb.auckland.ac.nz/sourcedb.html project. In total, more than 20,000
gene sets have been collated and stored as R objects within the EGSEA package along
with annotation information for each set (where available). Additional custom collections
of gene sets can be easily added and tested using EGSEA. Supplementary Table 1 shows
the number of gene sets in each collection and provides statistics on the set cardinalities
and the overlap between gene sets. The Jaccard index is used to measure the similarity
between two sets (Jaccard, 1912) and we calculate the third quartile and maximum overlap
ratio between all possible pairs of gene sets in a collection. This analysis revealed that
some collections contain many large gene sets. For example, the c2 collection from MSigDB
contains 3,750 human gene sets with a median size of 37 and maximum size of 1,839. The
Drug collection from GeneSetDB contains 7,032 human gene sets with a median size of 19.
The overlap analysis shows that while some gene sets are very similar, the 3rd quartile of
the Jaccard index is less than 2% for most of the collections.

2.7 Software implementation

EGSEA is implemented as an R package with parallel computation enabled using the
parallel package. There are two levels of parallelism in EGSEA: (i) parallelism at the
method-level and (ii) parallelism at the experimental contrast level. A wrapper function
was written for each individual GSE method to utilize existing R packages and create a
universal interface for all methods. The ora method was implemented using the phyper
function from the stats package, which estimates the hypergeometric distribution for a
2 × 2 contingency table. The implementation of roast and camera was adopted from the
limma Bioconductor package (Ritchie et al., 2015). Similarly, the GSE analysis of plage,
zscore, gsva and ssgsea was implemented using the gsva package. The gage, safe, globaltest
and padog methods were implemented in the Bioconductor gage, safe, globaltest and padog
packages, respectively. EGSEA can be easily extended to include additional GSE methods
through the implementation of new wrapper functions.

Prior to running the EGSEA algorithm, an indexing mechanism is applied to the gene sets to
transform gene identifiers into gene indexes according to the count matrix. Finally, Jaccard
coefficients were calculated for all possible pairs of gene sets using a parallel procedure with
an exhaustive combinatorial calculation.

2.7.1 Reporting capabilities of the software

Since the number of annotated gene set collections in public databases continuously increases
and there is a growing trend towards generating dynamic analytical tools, our software tool
was developed to enable users to interactively navigate through the analysis results by
generating an HTML EGSEA Report. The report presents the results in different ways.
For example, the Stats table displays the top n gene sets (where n is selected by the
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Figure 2: Multidimensional scaling plot based on the gene set rankings of the KEGG
signalling and disease collections for ten GSE methods applied to the Human IL-13 vs.
control dataset. Methods that perform similarly on this dataset cluster together.

user) for each experimental comparison and includes all calculated statistics. Hyperlinks
are enabled wherever possible, to access additional information on the gene sets such as
annotation information. The gene expression fold changes can be visualized using heat
maps for individual gene sets or projected onto pathway maps where available (e.g. KEGG
gene sets). The most significant Gene Ontology (GO) terms for each comparison can be
viewed in a GO graph that shows their relationships. Similar reporting capabilities are also
provided for the comparative analysis results of EGSEA.

Additionally, EGSEA creates summary plots for each gene set collection to visualize the
overall statistical significance of gene sets. Two types of summary plots are generated: (i)
a plot that emphasizes the gene regulation direction and the significance score (given in
Eq. 7) of a gene set and (ii) a plot that emphasizes the set cardinality and its rank. EGSEA
also generates a multidimensional scaling (MDS) plot that shows how various GSE methods
rank a collection of gene sets. This plot gives insights into the similarity of different methods
on a given dataset. Finally, the reporting capabilities of EGSEA can be used to extend any
existing or newly developed GSE method by simply using only that method.

3 Results and Discussion

The performance of the EGSEA method was evaluated using RNA-seq datasets generated
on both human and mouse samples (see Materials and Methods).
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3.1 Rankings differ between GSE analysis methods

Our primary motivation was to improve the ranking of gene sets that are relevant to the
experimental condition under study and thus increase the recall and precision of a GSE
analysis. Various gene set tests assign different rankings to a collection of gene sets. To
investigate this issue, the rankings assigned by ten GSE methods (camera, safe, gage, padog,
plage, zscore, gsva, ssgsea, globaltest and ora) were obtained for the human IL-13 vs.
control comparison. A multidimensional scaling (MDS) plot was generated using the ranks
assigned by these ten methods to the 203 pathway maps in the KEGG signalling and disease
collections. Fig. 2 clearly shows that some GSE methods perform more similarly on this
particular collection and dataset than others. For example, camera, zscore and gsva seems
to cluster together on the MDS plot. The Kendall rank correlation between zscore and gsva
rankings was 0.62, between gage and ora was 0.58 and between camera and gsva was 0.46.
Safe, padog and plage showed correlations with one and other of between 0.4 and 0.47 and
globaltest and padog had a correlation of 0.42. Finally, the ranking produced by ssgsea was
most dissimilar to the other methods, with correlations ranging between 0.11 and 0.31.

3.2 Performance on Human IL-13 experiment

Two experimental comparisons (IL-13 stimulated vs. control PBMCs, and IL-13R
antagonist vs IL-13 stimulated PBMCs) were studied at the gene set level using EGSEA.
Ten GSE methods, namely, camera, safe, gage, padog, plage, zscore, gsva, ssgsea, globaltest
and ora, were used to calculate the collective EGSEA scores, and the average rank was used
to identify significant gene sets. The vote rank was calculated using a bin width of 5.

Table 1 shows the top ten pathways retrieved from the KEGG collections for these two
experimental contrasts. Interestingly, the Asthma pathway was ranked as the first relevant
pathway in the comparison between IL-13 stimulated PBMCs and control PBMCs. It has
been shown that IL-13 is a key cytokine involved in the airway inflammation of patients
with allergic asthma and IL-13 antagonists are successfully progressing through clinical
development (Ingram and Kraft, 2012). It can be seen that the minimum ranking score
assigned to Asthma by the ten GSE methods was nine and five methods assigned a rank
higher than 13 to this pathway map. The results also identified IL-13’s role in stimulating
the intestinal immune network for IgA production (Cocks et al., 1993), which was retrieved
as the second relevant pathway (Table 1). Although more than half of the testing GSE
methods ranked this pathway higher than 25, EGSEA ranked it in the top 5 relevant
pathways for IL-13 stimulated PBMCs. Similarly, Viral myocarditis disease appeared
in the fourth position based on EGSEA ranking while most of the base GSE methods
ranked it higher than 15. It has been found that IL-13 protects against myocarditis by
modulating monocyte/macrophage populations (Cihakova et al., 2008). Moreover, the
summary plot generated by EGSEA showed three pathways with very high significance
scores (Fig. 3.A). They were the hematopoietic cell lineage signalling (hsa04640), the
cytokine-cytokine receptor interaction (hsa04060) and the Staphylococcus aureus infection
(hsa05150) pathways. The hsa04640 and hsa04060 were ranked 11th and 12th in the EGSEA
results, respectively, while the hsa05150 pathway rank was higher than 20. The significance
score Ssig of these three pathways was greater than 80%. This means that these pathways
are statistically significant and have a large number of DE genes for this contrast. It has been
reported that the Staphylococcus aureus infection causes an increase in various cytokines
including IL-13 (Wang et al., 2010).
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Figure 3: Visualization of the gene sets retrieved by EGSEA at different levels. (A)
Summary plots of EGSEA on the human dataset. The IDs of the top ten pathways based
on EGSEA average rank are highlighted in black font and the top five pathways based on
EGSEA significance score whose average ranks are not in the top ten ranks are highlighted
in blue font. The bubble size indicates the level of pathway significance. The red and blue
colours indicate that the majority of gene set genes are up- or down-regulated, respectively.
(B) Heat maps of the gene expression fold changes in three selected gene sets.

EGSEA analysis of the gene expression profiles comparing IL-13 stimulated PBMCs in the
presence or absence of IL-13R antagonist retrieved Asthma as the second top pathway
from the KEGG database (Table 1). Interestingly, only the ZSCORE method ranked
this pathway lower than 10 and its median rank across the ten methods was 17. This
highlights the advantage of using an ensemble approach rather than relying on a single GSE
method. The Cytokine-cytokine receptor interaction signalling pathway was ranked 6th for
this contrast. The summary plot of IL-13R Antagonist vs IL-13 identified 3 gene sets:
Rheumatoid arthritis (hsa05323); Leishmaniasis (hsa05140) and; Staphylococcus aureus
infection (hsa05150) with high significance score Ssig (highlighted in blue in Fig. 3.A) that
were not ranked in the top 10 gene sets (Table 1). Some of the base GSE methods assigned
high rank to these pathways and therefore the average rank scores tend to be high. This
shows the versatility of our proposed method, and also demonstrates how several ensemble
scores can capture new knowledge about the investigated dataset. It is evident from the
literature that IL-13 is increased in Rheumatoid arthritis serum (Tokayer et al., 2002) and
plays a key role in the cutaneous Leishmaniasis (Hurdayal and Brombacher, 2014).

Finally, the EGSEA comparative analysis was performed on the two contrasts of this
experiment, i.e., “IL-13 vs Control” and “IL-13R Antagonist vs IL-13”. This analysis
retrieves gene sets that are perturbed in both contrasts and thus increases the power of
gene set tests enabling an experiment-wide analysis. Here, the comparative analysis helped
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with investigating the neutralizing power of the IL-13R antagonist. Table 1 shows the
rank of KEGG pathways (numbers in brackets) as assigned by the comparative analysis.
The first two pathways discovered by this comparative analysis were Asthma and Viral
myocarditis, respectively. Even though the cytokine-cytokine receptor interaction pathway
did not appear in the top ten sets when IL-13 stimulated PBMCs were compared with
control cells, it was assigned the eighth rank in this analysis. The summary plot of the
comparative analysis in Fig. 3.A shows KEGG gene sets coloured based on the average
dominant regulation direction of genes and scaled based on the average significance score
between the two contrasts. It is apparent that most of the pathways that were perturbed
by IL-13 stimulation were inhibited by the IL-13R antagonist (coloured in purple). This
gives an indication of the efficacy of the antagonist and highlights the utility of the
comparative analysis. The hematopoietic cell lineage signalling (hsa04640), Staphylococcus
aureus infection (hsa05150) and Leishmaniasis (hsa05140) pathways are all highly ranked
(highlighted in blue). To further highlight the efficacy of the IL-13R Antagonist, Fig. 3.B
displays heat maps of the fold changes of gene expression in three exemplary pathways,
namely, Asthma, Viral myocarditis and the cytokine-cytokine receptor interaction pathway.
It can be clearly seen that the expression of individual genes is reversed in the different
experimental conditions.

3.3 Performance on Mouse mammary cell experiment

Three experimental contrasts were studied from the mouse mammary cell experiment, i.e.,
basal versus luminal progenitor (LP) cells, basal versus mature luminal (ML) cells and
ML versus LP. The median rank was used as a scoring function and a bin width of 5
was used for the vote ranking. Nine GSE methods were used as base methods for the
EGSEA analysis: camera, safe, gage, padog, zscore, gsva, ssgsea, globaltest and ora. In
this experiment, the usefulness of the EGSEA comparative analysis was highlighted by
analysing all three contrasts together. Table 2 shows the top ten gene sets retrieved from
the c2 Curated Gene Set Collection of the MSigDB database. The LIM gene sets were
generated previously by the same group on the same cell populations using microarrays
(Lim et al., 2010) instead of RNA-seq. Five, out of six, of these earlier signatures, available
in MSigDB were successfully retrieved by EGSEA indicating that the current data is most
similar to this earlier experiment, which is indeed the case. The average rank of the gene
sets in Table 2 is relatively high which indicates that not all of the base GSE methods rank
these signatures highly. We found that safe, padog and globabltest tend to assign very
high ranks to the LIM gene sets, especially to the LIM Mammary Luminal Progenitor DN
(M2576), which did not appear in this list of the top ten gene sets.

4 Conclusion

Performing GSE analysis using a single method can be inefficient as determining which
testing procedure is optimal for a given RNA-seq data set is a non-trivial task. Our results
have shown that some methods may completely miss biologically meaningful associations in
the data. To circumvent this problem, we developed a new approach, named EGSEA, that
integrates multiple GSE tests into a single ensemble framework to improve the relevance of
the biological processes identified for an experimental contrast. The analyses performed on
RNA-seq datasets generated from human and mouse samples showed the advantage of our

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 11, 2016. ; https://doi.org/10.1101/042580doi: bioRxiv preprint 

https://doi.org/10.1101/042580


ensemble approach over using individual methods, with sensible results recovered in each
example. EGSEA’s ability to perform a comparative analysis across multiple experimental
contrasts simultaneously also helps overcome a limitation intrinsic to most GSE methods,
which can only accommodate pair-wise comparisons one at a time.

EGSEA introduces an efficient solution to mine large databases of annotated gene sets. Our
current implementation does not include topology-based GSE methods, which we plan on
adding in future releases of our software, along with interactive summary plots to enhance
the user experience.
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