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BAYESIAN LARGE-SCALE MULTIPLE REGRESSION WITH
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ASSOCIATION STUDIES∗
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Bayesian methods for large-scale multiple regression provide
attractive approaches to the analysis of genome-wide association
studies (GWAS). For example, they can estimate heritability of com-
plex traits, allowing for both polygenic and sparse models; and by in-
corporating external genomic data into the priors they can increase
power and yield new biological insights. However, these methods
require access to individual genotypes and phenotypes, which are
often not easily available. Here we provide a framework for perform-
ing these analyses without individual-level data. Specifically, we in-
troduce a “Regression with Summary Statistics” (RSS) likelihood,
which relates the multiple regression coefficients to univariate re-
gression results that are often easily available. The RSS likelihood
requires estimates of correlations among covariates (SNPs), which
also can be obtained from public databases. We perform Bayesian
multiple regression analysis by combining the RSS likelihood with
previously-proposed prior distributions, sampling posteriors by Markov
chain Monte Carlo. In a wide range of simulations RSS performs
similarly to analyses using the individual data, both for estimating
heritability and detecting associations. We apply RSS to a GWAS of
human height that contains 253,288 individuals typed at 1.06 mil-
lion SNPs, for which analyses of individual-level data are practically
impossible. Estimates of heritability (52%) are consistent with, but
more precise, than previous results using subsets of these data. We
also identify many previously-unreported loci that show evidence
for association with height in our analyses. Software implementing
RSS is available at https://github.com/stephenslab/rss.
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2 REGRESSION WITH SUMMARY STATISTICS

1. Introduction. Consider the multiple linear regression model:

(1.1) y = Xβ+ ε,

where y is an n × 1 (centered) vector, X is an n × p (column-centered)
matrix, β is the p× 1 vector of multiple regression coefficients, and ε is
the error term. Assuming the “individual-level” data {X, y} are avail-
able, many methods exist to infer β. Here, motivated by applications in
genetics, we assume that individual-level data are not available, but in-
stead the summary statistics {β̂ j, σ̂2

j } from p simple linear regression are
provided:

β̂ j := (Xᵀ
j Xj)

−1Xᵀ
j y(1.2)

σ̂2
j := (nXᵀ

j Xj)
−1(y− Xj β̂ j)

ᵀ(y− Xj β̂ j)(1.3)

where Xj is the jth column of X, j ∈ {1, . . . , p}. We also assume that
information on the correlation structure among {Xj} is available. With
this in hand, we address the question: how do we infer β using {β̂ j, σ̂2

j }?
Specifically, we derive a likelihood for β given {β̂ j, σ̂2

j }, and combine it
with suitable priors to perform Bayesian inference for β.

This work is motivated by applications in genome-wide association
studies (GWAS), which over the last decade have helped elucidate the
genetics of dozens of complex traits and diseases (Donnelly, 2008; Mc-
Carthy et al., 2008). GWAS come in various flavors – and can involve, for
example, case-control data and/or related individuals – but here we fo-
cus on the simplest case of a quantitative trait (e.g. height) measured on
random samples from a population. Model (1.1) applies naturally to this
setting: the covariates X are the (centered) genotypes of n individuals at
p genetic variants (typically Single Nucleotide Polymorphisms, or SNPs)
in a study cohort; the response y is the quantitative trait whose relation-
ship with genotype is being studied; and the coefficients β are the effects
of each SNP on phenotype, estimation of which is a key inferential goal.

In GWAS individual-level data can be difficult to obtain. Indeed, for
many publications no author had access to all the individual-level data.
This is because many GWAS analyses involve multiple research groups
pooling results across many cohorts to maximize sample size, and shar-
ing individual-level data across groups is made difficult by many factors,
including consent and privacy issues, and the substantial technical bur-
den of data transfer, storage, management and harmonization. In con-
trast, summary data like {β̂ j, σ̂2

j } are much easier to obtain: collaborat-
ing research groups often share such data to perform simple (though
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REGRESSION WITH SUMMARY STATISTICS 3

useful) “single-SNP” analyses on a very large total sample size. Fur-
thermore these summary data are often made freely available on the
Internet (Nature Genetics, 2012). In addition, information on the corre-
lations among SNPs [referred to in population genetics as “linkage dis-
equilibrium”, or LD; see Pritchard and Przeworski (2001)] is also avail-
able through public databases such as 1000 Genomes Project Consor-
tium (2010). Thus, by providing methods for fitting the model (1.1) us-
ing only summary data and LD information, our work greatly facilitates
the “multiple-SNP” analysis of GWAS data. For example, as we describe
later, a single analyst (X.Z.) performed multiple-SNP analyses of GWAS
data on adult height (Wood et al., 2014) involving 253,288 individuals
typed at ∼ 1.06 million SNPs, using modest computational resources.
Doing this for the individual-level data appears impractical.

Multiple-SNP analyses of GWAS compliment standard single-SNP anal-
yses in several ways. Multiple-SNP analyses are particularly helpful
in fine-mapping causal loci, allowing for multiple causal variants in a
region [e.g. Servin and Stephens (2007); Yang et al. (2012)]. In addi-
tion, they can increase power to identify associations [e.g. Hoggart et al.
(2008); Guan and Stephens (2011)]; and can help estimate the overall
proportion of phenotypic variation explained by genotyped SNPs (PVE;
or “SNP heritability”) [e.g. Yang et al. (2010); Zhou, Carbonetto and
Stephens (2013)]. See Sabatti (2013) and Guan and Wang (2013) for
more extensive discussion. Despite these benefits, few GWAS are ana-
lyzed with multiple-SNP methods, presumably, at least in part, because
existing methods require individual-level data that can be difficult to ob-
tain. In addition, most multiple-SNP methods are computationally chal-
lenging for large studies [Peise, Fabregat-Traver and Bientinesi (2015);
Loh et al. (2015)]. Our methods help with both these issues, removing the
need for individual-level data, and reducing computation by exploiting
the banded structure of the estimated LD matrix (Wen and Stephens,
2010).

Because of the importance of this problem for GWAS, many recent
publications have described analysis methods based on summary statis-
tics. These include methods for detecting multiple-SNP associations (Yang
et al., 2012) and allelic heterogeneity (Ehret et al., 2012), single-SNP
analysis with correlated phenotypes (Stephens, 2013) and heterogeneous
subgroups (Wen and Stephens, 2014), gene-level testing of functional
variants (Lee et al., 2015), joint analysis of functional genomic data and
GWAS (Pickrell, 2014; Finucane et al., 2015), imputation of allele fre-
quencies (Wen and Stephens, 2010) and single-SNP association statis-
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4 REGRESSION WITH SUMMARY STATISTICS

tics (Lee et al., 2013), fine mapping of causal variants (Hormozdiari
et al., 2014; Chen et al., 2015), correction of inflated test statistics (Bulik-
Sullivan et al., 2015), estimation of SNP heritability (Palla and Dud-
bridge, 2015), and prediction of polygenic risk scores (Vilhjalmsson et al.,
2015). Together these methods adopt a variety of approaches, many of
them tailored to their specific applications. Our approach, being based
on a likelihood for the multiple regression coefficients β, provides the
foundations for more generally-applicable methods. Having a likelihood
opens the door to a wide range of statistical machinery for inference;
here we illustrate this by using it to perform Bayesian inference for β,
and specifically to estimate SNP heritability and detect associations.

Our work has close connections with recent Bayesian approaches to
this problem, notably Hormozdiari et al. (2014) and Chen et al. (2015).
These methods posit a model relating the observed z-scores {β̂ j/σ̂j} to
“non-centrality” parameters, and perform Bayesian inference on the non-
centrality parameters. Here, we instead derive a likelihood for the re-
gression coefficients β in (1.1), and perform Bayesian inference for β.
These approaches are closely related, but working directly with β seems
preferable to us. For example, the non-centrality parameters depend on
sample size, which means that appropriate prior distributions may vary
among studies depending on their sample size. In contrast, β maintains
a consistent interpretation across studies. And working with β allows us
to exploit previous work developing prior distributions for β for multiple-
SNP analysis [e.g. Guan and Stephens (2011); Zhou, Carbonetto and
Stephens (2013)]. We also give a more rigorous statement and deriva-
tion of the likelihood being used, which provides insight into what ap-
proximations are being made and when they may be valid. Finally, this
previous work focused only on small genomic regions, whereas here we
analyze whole chromosomes.

2. Likelihood based on summary data. We first introduce some
notation. For any vector v, diag(v) denotes the diagonal matrix with di-
agonal elements v. Let β̂ := (β̂1, . . . , β̂p)ᵀ, ŝ := (ŝ1, . . . , ŝp)ᵀ and Ŝ :=
diag(ŝ), where ŝ2

j := σ̂2
j +n−1 β̂2

j and {β̂ j, σ̂2
j } are the single-SNP summary

statistics (1.2,1.3). We denote probability densities as p(·), and rely on
the arguments to distinguish different distributions. LetN (µ, Σ) denote
the multivariate normal distribution with mean vector µ and covariance
matrix Σ, and N (ξ;µ, Σ) denote its density at ξ.

In addition to the summary data {β̂ j, σ̂2
j }, we assume that we have an

estimate, R̂, of the matrix R of LD (correlations) among SNPs in the pop-
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REGRESSION WITH SUMMARY STATISTICS 5

ulation from which the genotypes were sampled. Typically R̂ will come
from some public database of genotypes in a suitable reference popula-
tion; here, we use the shrinkage method from Wen and Stephens (2010)
to obtain R̂ from such a reference. The shrinkage method produces more
accurate results than the sample correlation matrix (Section 4.1), and
has the advantage that it produces a sparse, banded matrix R̂, which
speeds computation for large genomic regions. For our likelihood to be
well-defined, R̂ must be positive definite, and the shrinkage method also
ensures this.

With this in place, the likelihood we propose for β is

(2.1) Lrss(β; β̂, Ŝ, R̂) := N (β̂; ŜR̂Ŝ−1β, ŜR̂Ŝ).

We refer to (2.1) as the “Regression with Summary Statistics” (RSS) like-
lihood. We provide a formal derivation in Section 2.4, but informally the
derivation assumes that i) the correlation of y with any single covariate
(SNP) Xj is small; and ii) the matrix R̂ accurately reflects the correlation
of the covariates (SNPs) in the population from which they were drawn.
It is also important to note the assumption, implicit in the definition (1.2,
1.3), that all summary statistics were computed from the same samples.
We illustrate the importance of this in Section 5.

2.1. Intuition. The RSS likelihood (2.1) is obtained by first deriving
an approximation for p(β̂|S, R,β), where S is the diagonal matrix with
the jth diagonal entry sj ≈ Var1/2(β̂ j), of which Ŝ is an estimate (see
Section 2.4 for details). Specifically, we have

(2.2) β̂|S, R,β ·∼ N (SRS−1β, SRS),

from which Lrss is derived by plugging in the estimates {Ŝ, R̂} for {S, R}.
The distribution (2.2) captures three key features of association test

statistics in GWAS. First, the mean of the single-SNP effect size estimate
β̂ j depends on both its own effect and the effects of all SNPs that it “tags”
(i.e. is highly correlated with):

(2.3) E(β̂ j|S, R,β) = sj ·∑
p
i=1rijs−1

i βi,

where rij is the (i, j)-th entry of R. Second, the likelihood incorporates
the fact that the estimated single-SNP effects are heteroscedastic:

(2.4) Var(β̂ j|S, R,β) = s2
j ≈ ŝ2

j = (nXᵀ
j Xj)

−1yᵀy.
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6 REGRESSION WITH SUMMARY STATISTICS

Since s2
j is roughly proportional to (Xᵀ

j Xj)
−1, the likelihood takes account

of differences in the informativeness of SNPs due to their variation in al-
lele frequency and imputation quality (Guan and Stephens, 2008). Third,
single-SNP test statistics at SNPs in LD are correlated:
(2.5) Corr(β̂ j, β̂k|S, R,β) = rjk,

for any pair of SNP j and k.
Note that SNPs in LD with one another have “correlated” test statis-

tics {β̂ j} for two distinct reasons. First, they share “signal”, which is
captured in the mean term (2.3). This shared signal becomes a correla-
tion if the true effects β are assumed to arise from some distribution and
are then integrated out. Second, they share “noise”, which is captured in
the correlation term (2.5). This latter correlation occurs even in the ab-
sence of signal (β = 0) and is due to the fact that the summary data are
computed on the same samples. If the summary data were computed on
independent sets of individuals, then this latter correlation would dis-
appear (Section 5).

2.2. Connection with the full-data likelihood. When individual-level
data are available the multiple regression model is
(2.6) y|X,β, τ ∼ N (Xβ, τ−1 I).

If we further assume the residual variance τ−1 is known, model (2.6)
specifies a likelihood for β, which we denote Lmvn(β; y, X, τ). The follow-
ing Proposition gives conditions under which this full-data likelihood
and RSS likelihood are equivalent.

Proposition 2.1. Let R̂sam denote the sample LD matrix computed
from the genotypes X of the study cohort, R̂sam := D−1XᵀXD−1 where
D := diag(d), d := (||X1||, . . . , ||Xp||)ᵀ, ||Xj|| := (Xᵀ

j Xj)
1/2.

If n > p, τ−1 = n−1yᵀy and R̂ = R̂sam then
(2.7) log Lrss(β; β̂, Ŝ, R̂)− log Lmvn(β; y, X, τ) = C

where C is some constant that does not depend on β.

When fine mapping a genomic region, it often holds that n > p, and
also that τ−1 ≈ n−1yᵀy since SNPs in a region typically explain a very
small proportion of phenotypic variation. (In contrast, these two condi-
tions do not hold in genome-wide context.) Hence, provided that R̂ =
R̂sam, RSS and its full-data counterpart will produce approximately the
same inferential results in small regions. This is illustrated through sim-
ulations in Section 4.1 (Figure 1); see also Chen et al. (2015).
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REGRESSION WITH SUMMARY STATISTICS 7

2.3. Connection with other summary-data methods. To connect RSS
with previous work, we first assume that ŝj = σ̂j for all SNP j, which is
justified by the fact that {ŝj} and {σ̂j} differ negligibly in most GWAS
due to the large sample size and small trait-SNP correlations (Table 1).

If R̂ is an identity matrix, then β̂|β, Ŝ ∼ N (β, Ŝ2), which is the implied
likelihood based on the standard confidence interval (Efron, 1993). Using
this likelihood, Wakefield (2009) defines an approximate Bayes factor to
link Bayesian with Frequentist inference, and Stephens (2016) proposes
a novel Empirical Bayes method for large-scale hypothesis testing.

If we let z denote the vector of single-SNP z-scores, z := Ŝ−1β̂, and
plug {Ŝ, R̂} into (2.2), then

(2.8) z|Ŝ, R̂,β ∼ N (R̂Ŝ−1β, R̂).

This is analogous to the likelihood proposed in Hormozdiari et al. (2014),
z ∼ N (R̂samν, R̂sam), where they refer to ν as the “non-centrality param-
eter”. If further β = 0, then z ∼ N (0, R̂), a result that has been used for
multiple testing adjustment [e.g. Seaman and Müller-Myhsok (2005);
Lin (2005)] and gene-based association detection [e.g. Liu et al. (2010)].

If β is given a prior distribution that assumes zero mean and indepen-
dence across all j, that is, p(β|Ŝ, R̂) = ∏j p(β j|Ŝ, R̂), E(β j|Ŝ, R̂) = 0, then
integrating β out in (2.8) yields E(z2

j |Ŝ, R̂) = 1 + ∑
p
i=1 r2

ijs
−2
i E(β2

j |Ŝ, R̂).
This is the key idea behind the LD score regression (Bulik-Sullivan et al.,
2015); see Supplement for detailed derivation.

2.4. Derivation. We treat the (unobserved) genotypes of each indi-
vidual, xi (the ith row of X), as being independent and identically dis-
tributed draws from some population. Without loss of generality, assume
these have been centered, by subtracting the mean, so that E(xi) = 0.
Let σx,j > 0 denote the population standard deviation (SD) of xij, and
R denote the p × p positive definite population correlation matrix, so
Var(xi) := Σx := diag(σx) · R · diag(σx), where σx := (σx,1, . . . , σx,p)ᵀ.

We assume that the phenotypes y := (y1, . . . , yn)ᵀ are generated from
the multiple-SNP model (1.1), where E(ε) = 0 and Var(ε) = τ−1 Ip. We
also assume that X, ε and β are mutually independent.

Let c := (c1, . . . , cp)ᵀ denote the vector of (population) correlations be-
tween the phenotype and each SNP:

(2.9) c := σ−1
y diag−1(σx)µxy

where µxy := E(xiyi) = Σxβ and σ2
y := Var(yi) = τ−1 + βᵀΣxβ.
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8 REGRESSION WITH SUMMARY STATISTICS

We first derive the asymptotic distribution of β̂ (with n → ∞ and p
fixed), using the Multivariate Central Limit Theorem and Delta Method.

Proposition 2.2. Let S := n−
1
2 σydiag−1(σx) and Σ := nS(R + ∆(c))S.

(2.10)
√

n(β̂− SRS−1β)
d→ N (0, Σ),

where ∆(c) ∈ Rp×p is a continuous function of c and ∆(c) = O(maxj c2
j ).

Proposition 2.2 suggests that the sampling distribution of β̂ is close to
N (SRS−1β, n−1Σ) for large n. Without additional assumptions, this may
be the best probability statement that can be used to infer β. However, it
is difficult to work with this asymptotic distribution, mainly because of
the complicated form of ∆(c). However, we can justify ignoring this term
in a typical GWAS by the fact that {cj} are typically small in GWAS
(Table 1), and the following proposition:

Proposition 2.3. For each β ∈ Rp,

logN (β̂; SRS−1β, SRS)− logN (β̂; SRS−1β, n−1Σ) = Op(maxjc2
j ).

These propositions justify the approximate asymptotic distribution of
β̂ given in 2.2, provided n is large and {c2

j } close to zero, yielding

(2.11) Lrss(β; β̂, S, R) := N (β̂; SRS−1β, SRS).

Finally, the RSS likelihood (2.1) is obtained by replacing {S, R}with their
estimates {Ŝ, R̂}. Replacing Ŝ with S is motivated by the Weak Law of
Large Numbers, that is,

√
n(Ŝ− S)

p→ 0. However, there remains obvious
potential for errors in the estimates {Ŝ, R̂} to impact inference, and we
assess this impact empirically through simulations (Section 4) and real
data analyses (Section 6).

3. Bayesian inference based on summary data. Using the RSS
likelihood, we perform Bayesian inference for the multiple regression
coefficients.

3.1. Prior specification. If {S, R}were known, then one could perform
Bayesian inference by specifying a prior on β:

(3.1) p(β|β̂, S, R)︸ ︷︷ ︸
Posterior

∝ p(β̂|S, R,β)︸ ︷︷ ︸
Likelihood

· p(β|S, R)︸ ︷︷ ︸
Prior

.
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REGRESSION WITH SUMMARY STATISTICS 9

GWAS Phenotype log10(ĉ
2) log10(n)

Median Mean SD Histogram Median Mean SD
Height (GIANT, 2010) −5.60 −5.77 0.93 5.26 5.26 0
Height (GIANT, 2014) −5.41 −5.57 0.93 5.40 5.37 0.09

BMI (GIANT, 2015) −5.65 −5.83 0.90 5.37 5.34 0.09
HDL (Global Lipids, 2010) −5.25 −5.41 0.96 5.00 4.89 0.33
HDL (Global Lipids, 2013) −5.25 −5.43 0.91 4.97 4.97 0.06
LDL (Global Lipids, 2010) −5.23 −5.39 0.96 4.98 4.87 0.33
LDL (Global Lipids, 2013) −5.24 −5.43 0.91 4.95 4.95 0.06

TC (Global Lipids, 2010) −5.25 −5.41 0.96 5.00 4.89 0.33
TC (Global Lipids, 2013) −5.26 −5.45 0.91 4.98 4.97 0.06
TG (Global Lipids, 2010) −5.24 −5.39 0.96 4.98 4.87 0.33
TG (Global Lipids, 2013) −5.24 −5.42 0.90 4.96 4.96 0.06

Cigarettes per day (TAG, 2010) −5.19 −5.40 0.96 4.87 4.87 0
Smoking age of onset (TAG, 2010) −5.18 −5.36 0.85 4.87 4.87 0

Ever smoked (TAG, 2010) −5.17 −5.37 0.93 4.87 4.87 0
Former smoker (TAG, 2010) −5.19 −5.39 0.94 4.87 4.87 0

Years of education (SSGAC, 2013) −5.30 −5.36 0.66 5.10 5.10 0
College or not (SSGAC, 2013) −1.23 −1.34 0.26 5.10 5.10 0

Schizophrenia (PGC, 2014) −5.35 −5.55 0.95 5.18 5.18 0
Alzheimer (IGAP, 2013) −5.04 −5.24 0.94 4.73 4.73 0

CAD (CARDIoGRAM, 2011) −5.18 −5.39 0.97 4.91 4.88 0.08
T2D (DIAGRAM, 2012) −5.49 −5.54 0.54 4.80 4.78 0.10

Table 1
Summary of sample squared correlation {ĉ2

j } and sample size n for several large-scale
GWAS. The full names of phenotypes and references are provided in Supplementary

Table 1. The medians, means, SDs and histograms are across SNPs. The sample
correlation ĉj between phenotype and SNP j is defined as ĉj := (||y|| · ||Xj||)−1(Xᵀ

j y).

Note that ĉ2
j = (nσ̂2

j + β̂2
j )
−1 β̂2

j = (nŝ2
j )
−1 β̂2

j , and ĉj
p→ cj.

To deal with unknown {S, R} the RSS likelihood (2.1) approximates the
likelihood in (3.1) by replacing {S, R} with their estimates {Ŝ, R̂}. We
take a similar approach to prior specification: we specify a prior p(β|S, R)
and replace {S, R} with {Ŝ, R̂}.

Our prior specification is based on the prior from Zhou, Carbonetto
and Stephens (2013) which was designed for analysis of individual-level
GWAS data. This prior assumes that β is independent of R a priori, with
the prior on β j being a mixture of two normal distributions

(3.2) β j ∼ πN (0, σ2
B + σ2

P) + (1− π)N (0, σ2
P).

The motivation is that the first (“sparse”) component can capture rare
“large” effects, while the second (“polygenic”) component can capture large
numbers of very small effects. To specify priors on the variances {σ2

B, σ2
P}

Zhou, Carbonetto and Stephens (2013) introduce two free parameters
h, ρ ∈ [0, 1] where h represents, roughly, the proportion of variance in y
explained by X, and ρ represents the proportion of genetic variance ex-
plained by the sparse component. They write σ2

B and σ2
P as functions of
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10 REGRESSION WITH SUMMARY STATISTICS

π, h, ρ and place independent priors on the hyper-parameters (π, h, ρ):

(3.3) log π ∼ U (log(1/p), log 1), h ∼ U (0, 1), ρ ∼ U (0, 1).

See Zhou, Carbonetto and Stephens (2013) for details.
Here we must modify this prior slightly because the original defini-

tions of σB and σP depend on the genotypes X (which here are unknown)
and the residual variance τ−1 (which does not appear in our likelihood).
Specifically we define

(3.4) σ2
B(S) := hρ(π∑

p
j=1n−1s−2

j )−1, σ2
P(S) := h(1− ρ)(∑

p
j=1n−1s−2

j )−1,

where sj is the jth diagonal entry of S. Because ns2
j = σ2

y σ−2
x,j , definitions

(3.4) ensure that the effect sizes of both components do not depend on
n, and have the same measurement unit as the phenotype y. Further,
with these definitions, ρ and h have interpretations similar to those in
previous work. Specifically, ρ = (πσ2

B)/(πσ2
B + σ2

P), so it represents the
expected proportion of total genetic variation explained by the sparse
components. Parameter h represents, roughly, the proportion of the total
variation in y explained by X, as formalized by the following proposition:

Proposition 3.1. If β|S is distributed as (3.2), with (3.4), then

(3.5) E[V(Xβ)] = h · E[V(y)],

where V(Xβ) and V(y) are the sample variance of Xβ and y respectively.

Because of its similarity with the prior from “Bayesian sparse linear
mixed model” [BSLMM, Zhou, Carbonetto and Stephens (2013)], we refer
to our modified prior as BSLMM. We also implement a version of this
prior where ρ = 1. This sets the polygenic variance σ2

P = 0, making the
prior on β sparse, and corresponds closely to the prior from “Bayesian
variable selection regression” [BVSR, Guan and Stephens (2011)]. We
therefore refer to this special case as BVSR here.

3.2. Posterior inference. We use Markov chain Monte Carlo (MCMC)
to sample from the posterior distribution of β; see Supplement for de-
tails. Software implementing the methods is available at https://github.
com/stephenslab/rss.

Compared with most existing summary-based methods, an important
practical advantage of RSS is that multiple tasks can be performed si-
multaneously using the same posterior sample of β. Here we focus on
estimating PVE (SNP heritability) and detecting associations.
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REGRESSION WITH SUMMARY STATISTICS 11

3.2.1. Estimating PVE. Given the full data {X, y} and the true value
of {β, τ} in model (1.1), Guan and Stephens (2011) define the PVE as
(3.6) PVE(β, τ) := V(Xβ)/(τ−1 + V(Xβ)).

By this definition, PVE reflects the total proportion of sample phenotypic
variation explained by available genotypes. Guan and Stephens (2011)
then estimate PVE using the posterior sample of {β, τ}.

Because X is unknown here, we cannot compute PVE as defined above
even if β and τ were known. Moreover, τ does not appear in our inference
procedure. For these reasons we introduce the “Summary PVE” (SPVE)
as an analogue of PVE for our setting:

(3.7) SPVE(β) := ∑
i,j

R̂ijβiβ j√
(nσ̂2

i + β̂2
i )(nσ̂2

j + β̂2
j )

.

This definition is motivated by noting that PVE can be approximated by
replacing τ−1 with V(y)−V(Xβ):

(3.8) PVE ≈ V(Xβ)
V(y)

= ∑
i,j

Xᵀ
i Xj

yᵀy
βiβ j = ∑

i,j

R̂sam
ij βiβ j√

(nσ̂2
i + β̂2

i )(nσ̂2
j + β̂2

j )
,

where R̂sam is the (unknown) sample LD matrix of the study cohort,
which we approximate in SPVE by R̂, and the last equality in (3.8) holds
because of Equations (1.2) and (1.3). Simulations using both synthetic
and real genotypes show that SPVE is a highly accurate approximation
to PVE, given the true value of β (Supplementary Figure 1).

We infer PVE using the posterior draws of SPVE, which are obtained
by computing SPVE(β(i)) for each sampled value β(i) from our MCMC
algorithms. Unlike the original PVE (3.6), the definition of SPVE (3.7) is
not bounded above by 1. Although we have not seen any estimates above
1 in our simulations or real data analyses, we expect this could occur if
the posterior of β is poorly simulated and/or R̂ is severely misspecified.

3.2.2. Detecting genome-wide associations. Under the BVSR prior a
natural summary of the evidence for a SNP being associated with phe-
notype is the posterior inclusion probability (PIP), Pr(β j 6= 0|y, X). Sim-
ilarly, we define the PIP based on summary data
(3.9) SPIP(j) = Pr(β j 6= 0|β̂, Ŝ, R̂).

Here we estimate SPIP(j) by the proportion of MCMC draws for which
β j 6= 0. [We also provide a Rao-Blackwellised estimate in Supplement
(Casella and Robert, 1996; Guan and Stephens, 2011).]
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12 REGRESSION WITH SUMMARY STATISTICS

4. Simulations. We benchmark the RSS method through simula-
tions, using real genotypes from Wellcome Trust Case Control Consor-
tium (2007) (specifically, the n = 1458 individuals from the UK Blood
Service Control Group) and simulated phenotypes. To reduce computa-
tion the simulations use genotypes from a single chromosome (12,758
SNPs on chromosome 16). One consequence of this is that the simulated
effect sizes per SNP are often larger than would be expected in a typical
GWAS. This is, in some ways, not an ideal case for RSS, because the like-
lihood derivation assumes that effect sizes are small (Proposition 2.3).
We use the simulations to i) investigate the effect of different choices for
R̂; and ii) demonstrate that inferences from RSS agree well with both
the simulation ground truth, and with results from methods based on
the full data [BVSR and BSLMM implemented in the software package
GEMMA (Zhou and Stephens, 2012)].

4.1. Choice of LD matrix. The LD matrix R̂ plays a key role in the
RSS likelihood, as well as in previous work using summary data [e.g.
Yang et al. (2012); Hormozdiari et al. (2014)]. One simple choice for R̂,
commonly used in previous work, is the sample LD matrix computed
from a suitable “reference panel” that is deemed similar to the study pop-
ulation. This is a viable choice if the number of SNPs p is smaller than
the number of individuals m in the reference panel, as the sample LD
matrix is then invertible. However, for large-scale genomic applications
p � m, and the sample LD matrix is not invertible. Our proposed solu-
tion is to use the shrinkage estimator from Wen and Stephens (2010),
which shrinks the off-diagonal entries of the sample LD matrix towards
zero, resulting in an invertible matrix.

The shrinkage-based estimate of R can result in improved inference
even if p < m. To illustrate this, we performed a small simulation study,
with 982 SNPs within the ±5 Mb region surrounding the gene IL27.
We simulated 20 independent datasets, each with 10 causal SNPs and
PVE=0.2. For each dataset, we ran RSS-BVSR with two strategies for
computing R̂ from a reference panel (here, the 1480 control individuals
in the WTCCC 1958 British Birth Cohort): the sample LD matrix (RSS-
P), and the shrinkage-based estimate (RSS). We compared results with
analyses using the full data (BVSR), and also with our RSS approach
using the cohort LD matrix (RSS-C), which by Proposition 2.1 should
produce results similar to the full data analysis. The results (Figure
1) show that using the shrinkage-based estimate for R produces consis-
tently more accurate inferences – both for estimating PVE and detecting
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REGRESSION WITH SUMMARY STATISTICS 13

associations – than using the reference sample LD matrix, and indeed
provides similar accuracy to the full data analysis.

Fig 1: Comparison of PVE estimation and association detection on three types
of LD matrix R: cohort sample LD (RSS-C), shrinkage panel sample LD (RSS)
and panel sample LD (RSS-P). Performance of estimating PVE is measured by
the root of mean square error (RMSE), where a lower value indicates better per-
formance. Performance of detecting associations is measured by the area under
the curve (AUC), where a higher value indicates better performance.

4.2. Estimating PVE from summary data. Here we use simulations
to assess the performance of RSS for estimating PVE. Using the WTCCC
genotypes from 12,758 SNPs on chromosome 16, we simulated pheno-
types under two genetic architectures:
• Scenario 1.1 (sparse): randomly select 50 “causal” SNPs, with ef-

fects ∼ N (0, 1); effects of remaining SNPs are zero.
• Scenario 1.2 (polygenic): randomly select 50 “causal” SNPs, with

effects ∼ N (0, 1); effects of remaining SNPs are ∼ N (0, 0.0012).
For each scenario we simulated datasets with true PVE ranging from
0.05 to 0.5 (in steps of 0.05, with 50 independent replicates for each PVE).
We ran RSS-BVSR on Scenario 1.1, and RSS-BSLMM on Scenario 1.2.
Figure 2 summarizes the resulting PVE estimates. The estimated PVEs
generally correspond well with the true values, but with a noticeable
upward bias when the true PVE is large. We speculate that this upward
bias is due to deviations from the assumption of small effects underlying
RSS in Proposition 2.3. (Note that with 50 causal SNPs and PVE=0.5, on
average each causal SNP explains 1% of the phenotypic variance, which
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14 REGRESSION WITH SUMMARY STATISTICS

is substantially higher than in typical GWAS; thus the upward bias in a
typical GWAS may be less than in these simulations.)

Fig 2: Comparison of true PVE with estimated PVE (posterior median of SPVE)
in Scenarios 1.1 (sparse) and 1.2 (polygenic). The purple lines indicate the true
PVEs. Each box plot summarizes results from 50 replicates.

Next, we compare accuracy of PVE estimation using summary versus
full data. With the genotype data as above we consider two scenarios:
• Scenario 2.1 (sparse): simulate a fixed number T of causal SNPs

(T = 10, 100, 1000), with effect sizes coming from N (0, 1), and the
effect sizes of the remaining SNPs are zero;
• Scenario 2.2 (polygenic): simulate two groups of causal SNPs, the

first group containing a small number T of large-effect SNPs (T =
10, 100, 1000), plus another larger group of 10, 000 small-effect SNPs;
the large effects are drawn fromN (0, 1), the small effects are drawn
from N (0, 0.0012), and the effect of the remaining SNPs are zero.

For each scenario we created datasets with true PVE 0.2 and 0.6 (20 in-
dependent replicates for each parameter combination). For Scenario 2.1
we compared results from the summary statistic methods (RSS-BVSR
and RSS-BSLMM) with the corresponding full data methods (BVSR and
BSLMM). For Scenario 2.2 we compared only the BSLMM methods, since
the BVSR-based methods, which assume effects are sparse, are not well
suited to this setting, in terms of both computation and accuracy (Zhou,
Carbonetto and Stephens, 2013); see also Supplement. Figure 3 summa-
rizes the results. With modest true PVE (0.2), BVSR and RSS-BVSR per-
form better than other methods when the true model is very sparse (e.g.
Scenario 2.1, T = 10), whereas BSLMM and RSS-BSLMM perform bet-
ter when the true model is highly polygenic (e.g. Scenario 2.2, T = 1000).
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REGRESSION WITH SUMMARY STATISTICS 15

When the true PVE is large (0.6), the summary-based methods show an
upward bias (Figure 3b and 3d), consistent with Figure 2. This bias is
less severe when the true signals are more “diluted” (e.g. T = 1000), con-
sistent with our speculation above that the bias is due to deviations from
the “small effects” assumption. Overall, as expected, the summary data
methods perform slightly less accurately than the full data methods.
However, using different modeling assumptions (BVSR versus BSLMM)
has a bigger impact on the results than using summary versus full data.

4.3. Power to detect associations from summary data. Previous stud-
ies using individual-level data have shown that multiple-SNP model can
have higher power to detect SNP-phenotype associations than single-
SNP analyses [e.g. Servin and Stephens (2007); Hoggart et al. (2008);
Guan and Stephens (2011); Moser et al. (2015)]. Here we compare the
power of multiple-SNP analyses based on summary data with those based
on individual-level data. Specifically, we focus on comparing RSS-BVSR
with BVSR, because the BVSR-based methods naturally select the asso-
ciated SNPs (whereas BSLMM assumes that all SNPs are associated).

To compare associations detected by RSS-BVSR and BVSR, we simu-
lated data under Scenario 2.1 above. With Bayesian multiple-SNP analy-
ses, associations are most robustly assessed at the level of regions rather
than at the level of individual SNPs (Guan and Stephens, 2011), so we
compare the association signals from the two methods in sliding 200-
kb windows (sliding each window 100kb at a time). Specifically, for each
200-kb region, and each method, we sum the PIPs of SNPs in the re-
gion to obtain the “Expected Number of included SNPs” (ENS), which
summarizes the strength of association in that region. Results (Figure
4) show a strong correlation between the ENS values from the sum-
mary and individual data, across different numbers of causal variants
and PVE values. Consequently, the summary data analyses have simi-
lar power to detect associations as the full data analyses (Figure 5). As
above, the agreement of RSS-BVSR with BVSR is highest when PVE is
diluted among many SNPs (e.g. T = 1000).

5. The importance of imputing to the same samples. The deriva-
tion of the RSS likelihood assumes that the summary statistics are gen-
erated from the same individuals at each SNP. Specifically, the covari-
ance matrix in (2.1) depends on this assumption. (In contrast, the mean
in (2.1) holds even if different individuals are used at each SNP.) To take
an extreme example, if entirely different individuals are used to compute
summary data for two SNPs then the correlation in their β̂ values (given
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16 REGRESSION WITH SUMMARY STATISTICS

(a) Scenario 2.1 (b) Scenario 2.1

(c) Scenario 2.2 (d) Scenario 2.2

Fig 3: Comparison of PVE estimates (posterior median) from GEMMA and RSS
in Scenario 2.1 and 2.2. The accuracy of estimation is measured by the relative
RMSE, which is defined as the RMSE between the ratio of estimated over true
PVEs and 1. Relative RMSE for each method is reported (percentages in navy).
The true PVEs are shown as navy horizontal line. Each box plot summarizes
results from 20 replicates.
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REGRESSION WITH SUMMARY STATISTICS 17

Fig 4: Comparison of the 200-kb region posterior expected numbers of included
SNPs (ENS) for GEMMA-BVSR (x-axis) and RSS-BVSR (y-axis), based on the
simulation study of Scenario 2.1. Each point is a 200-kb genomic region, colored
according to whether it contains at least one causal SNP (reddish purple “*”) or
not (bluish green “+”).
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18 REGRESSION WITH SUMMARY STATISTICS

Fig 5: Trade-off between true and false positives for GEMMA-BVSR (reddish
purple) and RSS-BVSR (blue) in simulations of Scenario 2.1.
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REGRESSION WITH SUMMARY STATISTICS 19

β) will be 0, even if the SNPs are in complete LD.
In practice, we have found that problems can arise if RSS is applied

to summary data that violate this assumption. Table 2 provides an il-
lustrative example. Using summary statistics for high-density lipopro-
tein (HDL) cholesterol (Global Lipids Genetics Consortium, 2013), we
computed the 1-SNP and 2-SNP Bayes factors (BFs) [as in Servin and
Stephens (2007); see also Chen et al. (2015)] for 22 SNPs in the gene
ADH5. Table 2 shows results for seven SNPs that are in complete LD
with one another in the reference panel (1000 Genomes EUR r2 = 1). One
of these SNPs (rs7683704) has summary data based on approximately
twice as many individuals as the other SNPs (187,000 versus 94,000 in-
dividuals). None of the SNPs shows evidence for marginal association
with HDL (log10 1-SNP BF are all negative, indicating evidence for the
null). However, the 2-SNP BFs for rs7683704 together with any of the
other SNPs are all extremely large.

While the RSS likelihood – specifically, the covariance matrix in (2.1)
– could in principle be modified to account for this issue, this is unattrac-
tive because it would require specification of sample overlaps for many
pairs of SNPs. Instead, we suggest that genotype imputation [e.g. Servin
and Stephens (2007); Marchini et al. (2007)] be used when generating
GWAS summary data for public release, so that summary statistics are
computed on the same individuals for each SNP.

SNP nj β̂ j σ̂j 1-SNP log10 BF 2-SNP log10 BF r2

rs7683704 187,124 0.0096 0.0058 -0.676 NA 1.0
rs13125919 94,311 0.0038 0.0079 -1.084 172.638 1.0
rs4699701 94,311 0.0054 0.0081 -1.028 88.364 1.0
rs17595424 94,274 0.0055 0.0081 -1.024 83.925 1.0
rs11547772 94,311 0.0056 0.0081 -1.021 79.756 1.0
rs7683802 94,311 0.0056 0.0081 -1.021 79.756 1.0
rs4699699 94,311 0.0058 0.0081 -1.013 71.580 1.0

Table 2
Example of potential problems that can arise when RSS is applied to summary
statistics computed from different samples. The table reports the sample sizes,

single-SNP effect size estimates, SEs, and log 10 1-SNP BFs of seven SNPs that are in
complete LD in the reference panel. The 2-SNP BFs reported are for rs7683704 with

each of the other SNPs. These very large 2-SNP BFs appear unreasonable, likely due to
the fact that the summary data were computed on different individuals.

6. Analysis of summary data on adult height. We applied RSS
to summary statistics from a GWAS of human adult height, involving
253,288 individuals of European ancestry typed at ∼ 1.06 million SNPs
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20 REGRESSION WITH SUMMARY STATISTICS

(Wood et al., 2014). Accessing the individual-level genotypes and phe-
notypes would be a considerable undertaking; in contrast the summary
data are easily and freely available1. These data satisfy our requirement
that summary statistics were computed on the same individuals [Section
1.1.2 of Supplementary Note in Wood et al. (2014)].

We filtered SNPs as in Bulik-Sullivan et al. (2015), and then removed
SNPs that were absent in the genetic map of HapMap CEU Population
Release 24 (Frazer et al., 2007). To avoid negative recombination rate es-
timates, we excluded SNPs in regions where the genome assembly had
been rearranged. We also removed triallelic sites by manual inspection
in BioMart (Smedley et al., 2015). This left 1,064,575 SNPs retained
for analysis. We estimated the LD matrix R using phased haplotypes
from 379 European-ancestry individuals in 1000 Genomes Project Con-
sortium (2010). To reduce computation time and hardware requirement,
we separately analyzed each of the 22 autosomal chromosomes so that all
chromosomes were run in parallel in a computer cluster. In our analysis,
each chromosome used a single 2.6 GHz CPU core. To assess convergence
of the MCMC algorithm, we ran the algorithm on each dataset multiple
times; results agreed well among runs (results not shown), suggesting
no substantial problems with convergence. Here we report results from a
single run on each chromosome with 2 million iterations. The CPU time
of RSS-BVSR ranged from 1 to 28 hours, and the time of RSS-BSLMM
ranged from 4 to 30 hours, both depending on the length of chromosomes.

We first inferred PVE (SNP heritability) from these summary data.
Figure 6 shows the estimated total and per-chromosome PVEs based on
RSS-BVSR and RSS-BSLMM. For both methods, we can see an approx-
imately linear relationship between PVE and chromosome length, con-
sistent with a genetic architecture where many causal SNPs each con-
tribute a small amount to PVE, and consistent with previous results us-
ing a mixed linear model (Yang et al., 2011) on three smaller individual-
level datasets (number of SNPs: 593,521-687,398; sample size: 6,293-
15,792). By summing PVE estimates across all 22 chromosomes, we esti-
mated the total autosomal PVE to be 52.4%, with 95% credible interval
[50.4%, 54.5%] using RSS-BVSR, and 52.1%, with 95% credible interval
[50.3%, 53.9%] using RSS-BSLMM. This is consistent with, but more
precise than, previous estimates based on individual-level data from sub-
sets of this GWAS. Specifically, Wood et al. (2014) estimated PVE as
49.8%, with standard error 4.4%, from individual-level data of five co-

1https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_
consortium_data_files
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REGRESSION WITH SUMMARY STATISTICS 21

horts (number of SNPs: 0.97-1.12 million; sample size: 1,145-5,668). The
improved precision of the PVE estimates illustrates one benefit of being
able to analyze summary data with a large sample size.

Fig 6: Posterior inference of SNP heritability (PVE) for adult human height.
Panel A: posterior distribution of the total PVE. Panel B: posterior median and
95% credible interval for PVE of each chromosome against the chromosome
length, where the dotted lines 6 the fitted regression line.

Next, we used RSS-BVSR to detect multiple-SNP associations, and
compared results with previous analyses of these summary data. Using
a stepwise selection strategy proposed by Yang et al. (2012), Wood et al.
(2014) reported a total of 697 genome-wide significant SNPs. Among
them, 384 SNPs were included in our filtered set of SNPs. Taking a re-
gion of ±40-kb around each of these SNPs, our analysis identified al-
most all of these regions (379/384) as showing strong signal for associa-
tion (estimated ENS ≥ 1). However, only 125 of the 384 SNPs showed,
individually, strong evidence for inclusion (estimated SPIP > 0.9). This
suggests that, perhaps unsurprisingly, many of the reported associations
are likely driven by a SNP in LD with the one identified in the original
analysis.

To assess the potential for RSS to identify novel putative loci asso-
ciated with human height, we estimated the ENS for ±40-kb windows
across the whole genome. We identified 5194 regions with ENS ≥ 1, of
which 2138 are putatively novel in that they are not near any of the pre-
vious 697 GWAS hits (distance > 1 Mb). Some of these 2138 regions are
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22 REGRESSION WITH SUMMARY STATISTICS

overlapping, but this nonetheless represents a large number of potential
novel associations for further investigation. We manually examined the
putatively novel regions with highest ENS (23 regions with estimated
ENS > 3), and identified several loci harboring genes that seem plausi-
bly related to height. These include the gene WWOX, which is a tumor
suppressor linked to skeletal system morphogenesis (Del Mare et al.,
2011; Aqeilan et al., 2008), and the gene ALX1 (a.k.a. CART1), which is
involved in bone development (Iioka et al., 2003).

7. Discussion. We have presented a novel Bayesian method to in-
fer multiple linear regression coefficients using simple linear regres-
sion summary statistics, and demonstrated its application in GWAS.
On both simulated and real data our method produces results compara-
ble to methods based on individual-level data. Compared with existing
summary-based methods, our approach takes advantage of an explicit
likelihood for the multiple regression coefficients, and thus provides a
unified framework for various genome-wide analyses. We illustrate the
applications of our framework on heritability estimation and associa-
tion detection. Other potential applications include training phenotype
prediction models, prioritizing causal variants and testing gene-level ef-
fects.

Our work highlights three conditions that should ideally hold for RSS
to be applied. First, the marginal phenotype-genotype correlation of each
covariate (SNP) must be small. In GWAS this holds, empirically, in a very
wide range of studies (Table 1), but it may not hold in other contexts.
Second, RSS depends on having an adequate estimate of the matrix R,
which captures correlations among the covariates. In GWAS we often
have available large suitable reference panels which help here. Third,
our current implementation of RSS requires that the input summary
data are computed on the same samples. Otherwise, misleading results
can be obtained (Section 5). This last point suggests that, more generally,
if the estimate R̂ is badly misspecified (e.g. computed from a reference
panel that is not a good match to the study sample) then results of RSS
could be problematic; however we have not studied this issue in detail.

We view the present work as the first stage of what could be done
with RSS using GWAS summary statistics. One important extension is
to integrate additional genomic information into the prior distributions.
For example, Carbonetto and Stephens (2013) allow the prior probability
of each SNP being included to depend on a covariate, such as biological
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pathway membership,

(7.1) β j|S ∼ (1− πj)δ0 + πjN (0, σ2(S)), logit(πj) = θ0 + θaj,

where aj = 1 if and only if SNP j is in the pathway. Unlike prior (3.2),
prior (7.1) reflects that biologically related gene sets might preferentially
harbor associated SNPs, essentially integrating the idea of gene set en-
richment into GWAS (Wang, Li and Hakonarson, 2010). Second, some
functional categories of the genome could contribute disproportionately
to the heritability of complex traits (Gusev et al., 2014), which could be
incorporated by letting the prior variance of the SNP effects depend on
functional categorization, for example by

(7.2) β j|S ∼ N (0, σ2
j (S)), log(σ2

j ) = w0 + ∑G
g=1wg f j,g,

where f j,g = 1 when SNP j belongs to category g, w0 captures the base-
line (log) heritability and {wg} reflect the contribution of each category.
This could provide a different way to partition heritability by functional
annotation using GWAS summary statistics (Finucane et al., 2015).
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