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ABSTRACT In small populations, genetic linkage between a polymorphic 

neutral locus and loci subject to selection, either against partially recessive 

mutations or in favor of heterozygotes, may result in an apparent selective 

advantage to heterozygotes at the neutral locus (associative 

overdominance), and a retardation of the rate of loss of variability by 

genetic drift at this locus. In large populations, selection against deleterious 

mutations has previously been shown to reduce variability at linked neutral 

loci (background selection). We describe analytical, numerical and 

simulation studies that shed light on the conditions under which retardation 

versus acceleration of loss of variability occurs at a neutral locus linked to 

a locus under selection. We consider a finite, randomly mating population 

initiated from an infinite population in equilibrium at a locus under 

selection, with no linkage disequilibrium. With mutation and selection, 

retardation only occurs when S, the product of twice the effective 

population size and the selection coefficient, is of order one. With S >> 1, 

background selection always causes an acceleration of loss of variability. 

Apparent heterozygote advantage at the neutral locus is, however, always 

observed when mutations are partially recessive, even if there is an 

accelerated rate of loss of variability. With heterozygote advantage at the 

selected locus, there is nearly always a retardation of loss of variability. 

The results shed light on experiments on the loss of variability at marker 

loci in laboratory populations, and on the results of computer simulations of 

the effects of multiple selected loci on neutral variability. 
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There has recently been much interest in the effects of selection at one locus on 

patterns of evolution and variation at linked neutral or nearly-neutral loci, with 

mounting evidence for such effects from surveys of genome-wide patterns of 

molecular variability and evolution (Cutter and Payseur 2013; Neher 2013; 

Charlesworth and Campos 2014). Attention has been especially directed at the 

possibility of enhanced neutral variability at nucleotide sites that are closely linked to 

sites under long-term balancing selection (Charlesworth 2006; Gao et al. 2015), and 

at the reduction in variability caused by the hitchhiking effects of directional 

selection, involving either positive selection (selective sweeps) (Maynard Smith and 

Haigh 1974) or negative selection (background selection) (Charlesworth et al. 1993). 

There seems little doubt that linkage effects play an important role in shaping patterns 

of variability across the genome (Cutter and Payseur 2013; Charlesworth and 

Campos 2014). 

 Recent studies have, however, made little or no reference to the classical work 

on associative overdominance (AOD), which dates back to over 40 years ago 

Following a proposal by Frydenberg (1963), who coined the term, it was shown by 

Sved (1968, 1971, 1972) and by Ohta and Kimura (Ohta and Kimura 1970; Ohta 

1971, 1973) that linkage disequilibrium (LD) between a polymorphic neutral locus 

and a locus subject either to selection in favour of heterozygotes, or to selection 

against recessive or partially recessive mutant deleterious alleles, could result in 

apparent heterozygote advantage at the neutral locus. This is because such LD, 

generated by genetic drift in a randomly mating finite population, leads to an 

association between homozygosity at the two loci (Haldane 1949). If homozygosity at 

the selected locus results in reduced fitness, homozygotes at the neutral locus will also 

suffer reduced fitness. A heuristic treatment of this effect is given by Charlesworth 

and Charlesworth (2010, pp. 396-7, 403-4).  

 This effect of LD in a randomly mating population should be distinguished 

from the effect of identity disequilibrium (ID) in a population with a mixture of 

random mating and matings between close relatives (Haldane 1949; Cockerham and 

Weir 1968), as exemplified by species that reproduce by a mixture of outcrossing and 
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self-fertilization. Here, AOD can arise because of variation among individuals in their 

inbreeding coefficients, which causes correlations among loci in their levels of 

homozygosity even if they are unlinked (Haldane 1949; Cockerham and Weir 1968). 

Theoretical models show that this type of AOD does not require either finite 

population size or LD among loci (Ohta and Cockerham 1974; Charlesworth 1991). 

In a finite randomly mating population, however, LD and ID are formally equivalent 

(Weir et al. 1980; Bierne et al. 2000). 

 Associations between heterozygosity at putatively neutral molecular marker 

loci and higher values of fitness components have frequently been found in natural 

populations of many different types of organism, leading to a debate as to whether 

AOD due to LD with random mating or to ID caused by variation in inbreeding 

levels is the main cause of these associations (David 1998; Hansson and Westerberg 

2002). Current evidence appears to favor the latter model (Szulkin et al. 2010; 

Hoffman 2014), especially because the LD model seems to require a relatively small 

effective population size to produce substantial effects, unless linkage is very tight 

(Ohta 1971, 1973).  

 It has also been reported that the level of variability in both quantitative traits 

and marker loci in laboratory populations maintained with known effective population 

sizes can sometimes decline less rapidly over time than is predicted by the standard 

neutral model (e.g., Rumball et al. 1994; Gilligan et al. 2005; Latter 1998). In 

addition, laboratory populations and populations of domesticated animals and plants 

often have levels of quantitative trait variability that are surprisingly high, given their 

low effective population sizes (Johnson and Barton 2005; Hill 2010). Sved and Ohta 

proposed that AOD caused by randomly generated LD leads to a retardation in the 

loss of variability at neutral loci linked to loci under selection; Ohta suggested that 

this effect could be substantial when the effects of partially recessive mutations 

distributed over a whole chromosome are considered, provided that the population 

size is sufficiently small (Ohta 1971, 1973). Computer simulations of multi-locus 

systems have shown that a retardation of the rate of loss of neutral variability can 

indeed occur in small populations (Latter 1998; Pamilo and Palsson 1998, 1999; 
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Wang and Hill 1999; Wang et al. 1999). However, an accelerated rate of loss was 

observed when the level of dominance of deleterious mutations is sufficiently high 

and/or selection is sufficiently strong, due to the background selection (BGS) effect of 

deleterious mutations (Charlesworth et al. 1993), which causes a reduction in the 

effective population size experienced by linked neutral variants  

 AOD due to LD is an attractive potential explanation for the maintenance of 

unexpectedly high levels of variability in small populations. However, we lack a 

quantitative theory concerning the conditions under which it produces noticeable 

effects on levels of variability, other than for the cases of selfing and sib-mating lines 

studied by Wang and Hill (1999). It is also unclear when retardation versus 

acceleration of  the rate of loss of variability is likely to prevail in randomly mating 

populations, especially with multiple loci subject to mutation and selection. As a first 

step toward such a theory, we present some analytical, numerical and simulation 

results on the simplest possible model: a neutral locus linked to another locus subject 

to selection. We also present simulation results for a neutral locus surrounded by a 

small number of selected loci. Selection can either involve partially recessive 

deleterious mutations or heterozygote advantage.  

 Our main focus is on a small, randomly mating population, founded from a 

large initial equilibrium population, mimicking experiments on the rates of loss of 

neutral variability in laboratory populations. We derive approximate expressions for 

the apparent selection coefficients against homozygotes at the neutral locus, as well 

for the rate of loss of neutral variability. We show that, contrary to what seems to 

have been widely assumed, these apparent selection coefficients have nothing to do 

with the rate of loss of variability. In particular, with selection against deleterious 

mutations there is a wide range of parameter space in which BGS accelerates the loss 

of variability, but an apparent selective advantage to heterozygotes at the neutral 

locus is always observed. When selection is very weak, AOD always causes a 

retardation of the loss of neutral variability, unless mutations are close to 

semidominance in their fitness effects. 
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 Theoretical Models and Methods 

 
Apparent selection coefficients against homozygotes at a neutral locus 
caused by a linked locus subject to mutation to deleterious alleles 

  

We assume that the neutral locus is segregating for two alleles, A1 and A2, with 

frequencies x and y = 1 – x, respectively, in a given generation. The selected locus 

has wild-type and deleterious mutant alleles, B1 and B2, respectively, with frequencies 

p and q = 1 – p. The selection and dominance coefficients at this locus are h and s, 

such that the relative fitnesses of B1B1, B1B2, and B2B2 are 1, 1 – hs and 1 – s. The 

mutation rates for B1 to B2 and B2 to B1 are u and v, respectively.  Let the haplotype 

frequencies of A1B1, A1B2, A2B1 and A2B2 be y1, y2, y3, and y4. We have x = y1 + y2, q = 

y2 + y4. The frequency of recombination between the two loci is c. 

 With random mating, the apparent fitnesses (denoted by tildes) of the three 

genotypes A1A1, A1A2 and A2A2 at the neutral locus, conditional on these haplotype 

frequencies, are as follows (Sved 1968; Ohta 1971): 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   w11 =1−
(2y1h+ y2 )y2s

x2
(1a) 	
  

                                        w12 =1−
[(y1y4 + y2y3)h+ y2y4 ]s

x(1− x)
(1b)  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   w22 =1−
(2y3h+ y4 )y4s

x2
(1c)

	
  
 

The extent of apparent selection at a neutral locus, induced by LD in a 

randomly mating finite population, can be assessed by determining the expectations 

of these apparent fitnesses over the distribution of haplotype frequencies induced by 

drift, conditioning on segregation at the A locus (Ohta and Kimura 1970; Ohta 1971). 

In the present case, the starting point is assumed to be a population of infinite size, at 

equilibrium under mutation and selection at the B locus and with no LD between the 

two loci. It is thereafter maintained at a population size of N breeding individuals 
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each generation. For simplicity, a Wright-Fisher population model is assumed, so that 

N is also the effective population size. 

 The expectations for a given generation t after the foundation of the 

population are most simply found by expressing the haplotype frequencies in terms of 

the products of the relevant allele frequencies and the coefficient of linkage 

disequilibrium, D = y1 y4 – y2 y3. The expectation of D, E{D}, remains at zero, since 

selection, mutation and drift do not affect the direction of association between the 

two loci; this applies generally to E{Dqi}, where i is an arbitrary non-negative integer 

(a proof is given in section S4 of the Supplementary Information). This does not, 

however, imply that quantities involving the expectation of products of D and other 

functions of the allele frequencies at the two loci can be ignored, which complicates 

the analyses. 

 Simple algebra (Ohta 1971) shows that the expected apparent selection 

coefficients against A1A1 and A2A2 homozygotes (neglecting second-order terms in 

s) over a set of replicate populations that are segregating at the A locus are given by: 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
s11 ≈ E{ w12 − w11} = −sE{

D[h+ q(1− 2h)]
x(1− x)

−
D2 (1− 2h)
x2 (1− x)

} (2a)  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
s22 ≈ E{ w12 − w22} = sE{

D[h+ q(1− 2h)]
x(1− x)

+
D2 (1− 2h)
x(1− x)2

} (2b)  

 

For simplicity, from now on we will simply refer to these as the apparent selection 

coefficients. 

 

Approximations for the apparent selection coefficients:  It has previously been 

assumed that the terms in D in these expressions can be neglected, so that the extent 

of apparent overdominance at the neutral locus is given by the terms in D2 alone. This 

allows approximations for the apparent selection coefficients to be derived; two 

different approaches have been used, as described by Sved (1968), Ohta and Kimura 

(1970) and Ohta (1971), and by Bierne et al. (2000), respectively. We will present an 

alternative approach here, which takes into account the initial allele frequency at the 
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neutral locus in the founding generation, as well as the subsequent effects of drift in 

creating a probability distribution around this frequency. 

 The measures of apparent overdominance in Equations 2 can be conveniently 

be written as: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
s ≈ s(1− 2h)E{pqx−1r2} (3a)  

                                                      t ≈ s(1− 2h)E{pq(1− x)−1r2} (3b)  

	
  	
  

where r2 = D2/[x(1-x)pq] is the squared correlation coefficient in allelic state between 

the two loci (Hill and Robertson 1968). The difference between Equations 2 and 3 in 

the notation for the apparent selection coefficients is intended to emphasize the use of 

terms in D alone in Equations 3. 

 In order to obtain useful approximate expressions for these apparent selection 

coefficients at an arbitrary time t, we assume that the probability distributions of x, q 

and r are independent of each other, which is of course not exact. We can then write: 

	
  

	
   	
   	
   	
  	
  	
  	
  	
   s ≈ s(1− 2h)E{pq}E{x
−1}E{r2} (4a)  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
t = s(1− 2h)E{pq}E{(1− x)−1}E{r2} (4b)

	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  
The quantity s(1 – 2h)E{pq} is equal to the expectation of the inbred load, B, 

caused by the deleterious mutations, i.e., the expected difference in fitness between 

the logarithms of the mean fitness of a randomly mating population and of a 

completely homozygous population with the same allele frequencies (Greenberg and 

Crow 1960). Because of the loss of variability due to drift, E{B} will in general be 

smaller than the inbred load for an infinite population, B* = p*q*s (1 – 2h), where q* 

is the equilibrium frequency of B2 under mutation and selection in an infinite 

population (Glémin et al. 2003). If v << u, as assumed here, q* is given by the 

following expression (Crow and Kimura 1970, p.260): 
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                            q*=
−hs+ h2s2 + 4us(1− 2h)

2(1− 2h)s
(5a)  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
 

 

 If hs is >> u and h > 0, this reduces to the familiar result of Haldane (1927): 

  

                                                         q* ≈ u / (hs) (5b)  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
   This yields the widely used formula for the inbred load in an infinite 

population:	
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1
2h

−1) (6)
	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
                                           

 Weakly selected loci may contribute substantially to the inbred load and 

associative overdominance in the initial population, so that q* could be substantially 

greater than zero. The more general expressions for q* and B* will, therefore, be used 

here. 

 An exact analytic treatment of how E{B} changes over time in a finite 

population is, unfortunately, very difficult. Since the expected change in allele 

frequency due to selection is a third degree function of q when h ≠ 0.5, the third and 

higher moments of q enter into the expected change per generation in B under drift, 

mutation and selection, so that closed expressions cannot be obtained without using a 

full solution to the diffusion equation under selection with arbitrary h, (e.g., Balick et 

al. 2015). The simplest way to obtain tractable analytical results is to make the 

assumption that departures caused by drift from q* are sufficiently small that the 

change in allele frequency due to selection per generation, (Δsq), can be linearized 

around q*, and hence equated to (Δsq)q* + (q – q*)(dΔsq/dq)q* (e.g., Charlesworth and 

Charlesworth 2010, p.355). If the mutational contributions to the change in allele 

frequency are included, the net change in q is equal to (q – q*) (dΔsq/dq)q* –  (u + v). 

The expected change in q in a finite population is then zero, and a recursion equation 
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for the variance of q, Vq, can easily be obtained, yielding a simple expression for the 

approximate value of E{pq} in a given generation (see Appendix).  

 An approximate linear recursion equation for the expectation of r2 can be 

obtained in a similar way, following the approach of Sved (1972) (see Appendix). 

The quantity σ2
d = E{D2}/E{xypq} is also frequently used as a descriptor of LD in 

finite populations, since it can be calculated by using diffusion equations (Ohta 1971; 

Ohta and Kimura 1971), as discussed below. While a simple recursion for σ2
d does 

not exist, a heuristic approach is to assume that it has a similar form to that for r2, 

replacing the equilibrium value of r2 given by Sved’s approach by the (smaller) 

equilibrium value of σ2
d (see Appendix). We can then substitute the expected value of 

σ2
d for the corresponding expectation of r2 in Equations 3. Both of these approaches 

ignore any effects of selection on LD. 

 We also need to obtain the expectations of x–1 and (1 – x) –1 for a given 

generation, conditioned on segregation at the neutral locus. This can be done using 

the diffusion equation solution for the probability distribution at a biallelic locus 

under pure drift (Kimura 1955), using the terms involving the first few 

eigenfunctions of the power series representation of the probability distribution, 

conditioned on an initial allele frequency x0 (see Appendix). The approximate 

expectations of x–1 and (1 – x) –1 can then easily be determined (see Appendix). As 

shown by Fisher (1930), this distribution is asymptotically close to a uniform 

distribution, with some slight deviations in the terminal classes, and with a mean 

allele frequency of 0.5 regardless of the value of x0. The asymptotic values of x–1 and 

(1 – x) –1 can then be calculated, which both approach 5.18 asymptotically for the 

population size of 50 used in the numerical examples below (Equation A11); this 

implies that the apparent selection coefficients against each homozygote should 

approach the same asymptotic value, provided that any effects of mutation at the 

neutral locus can be ignored over the timescale under consideration. 

 

Apparent selection coefficients induced by linkage to a locus with 
heterozygote advantage  
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The same machinery can be used when the selected locus is segregating for a pair of 

alleles where the B1B1 and B2B2 homozygotes have fitnesses 1 – s and 1 – t relative 

to a fitness of 1 for B1B2 : 

 

                                                   w11 =1−
(y1

2s+ y2
2t)

x2
(7a)  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
w12 =1−

(y1y 3s+ y2y4t)
x(1− x)

(7b)
	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
w22 =1−

(y3
2s+ y4

2t)
(1− x)2

(7c)
	
  

 

(Sved 1968; Ohta and Kimura 1970). 

 The approximate apparent selection coefficients are then given by: 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
s11 ≈ E{ w12 − w11} = E{

D[sp− qt]
x(1− x)

+
D2 (s+ t)
x2 (1− x)

} (8a)  

 

          s22 ≈ E{ w12 − w22} = E{
D[tq− sq]
x(1− x)

+
D2 (s+ t)
x(1− x)2

} (8b)  

  

Using the same argument that led to Equations 4, these apparent selection coefficients 

can be approximated by: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   s ≈ (s+ t) E{pq}E{x
−1}E{r2} (9a) 	
  

	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   t ≈ (s+ t) E{pq}E{(1-x)
−1}E{r2} (9b)  

 

 The expectation of the inbred load B in a finite population is now equal to (s + 

t) E{pq}, so that Equations 4 and 9 both involve the same function of E{B}. An 

approximation for E{pq} can be found by linearizing the recursion relation for q 
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around the deterministic equilibrium, q* = s/(s + t), similarly to the procedure for the 

mutation-selection balance case. The coefficient κ that measures the rate of approach 

to equilibrium is now equal to –st/(s + t) (Charlesworth and Charlesworth 2010, 

p.355). In this case, no mutation is allowed at the locus under selection; this is 

because we are considering a single nucleotide site instead of a whole gene sequence, 

and mutations to new variants are unlikely to occur over the timescale with which we 

are concerned. 

 

The effect of selection at a linked locus on the amount of neutral 
variability 
 

Lack of relevance of the apparent selection coefficients to the rate of loss of 

variability:  It was assumed in previous theoretical studies that the apparent selection 

coefficients obtained by ignoring terms in D in Equations 2 and 8 provide a measure 

of the extent to which the loss of variability at a neutral locus, caused by drift, is 

retarded by linkage to a selected locus (Sved 1968; Ohta and Kimura 1970; Ohta 

1971). But this assumption is mistaken, as can be seen as follows. Indeed, the 

apparent selection coefficients obtained from these equations may provide 

approximations for the apparent reductions in the fitnesses of the homozygotes at the 

neutral locus, but have no relation to the rate of loss of variability.  

 This can be seen as follows for the case of deleterious mutations at the B 

locus; a similar argument holds for the case of heterozygote advantage. The expected 

change in x given by Equations 2 (neglecting second-order terms in s) is: 

 

E{Δx} = E{x(1− x)[xs11 − (1− x)s22 ]} = −sE{x(1− x)(D[h+ q(1− 2h)](1− x)
+
D[h+ q(1− 2h)]

x
)}  

 This reduces to: 

                            E{Δx} = sE{D[h+ q(1− 2h)]} (10)  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
    

 In other words, the terms in D2 contribute nothing to the change in the 

frequency of allele B1 at the neutral locus, which is determined entirely by the 
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expected product of D and the additive effect of B1 on fitness, a(q) = s[h + q(1 – 2h)]. 

A result equivalent to this is used in models of selective sweeps on neutral allele 

frequencies at linked sites (Charlesworth and Charlesworth 2010, p.410). It is an 

example of the Price equation (Price 1970), since Da is the covariance between 

fitness and the allelic state with respect to A1 at the neutral locus (Santiago and 

Caballero 1995).  

 Since the change in the expectation of the heterozygosity, 2x(1 – x), at the 

neutral locus caused by the change in allele frequency due to selection at the B locus 

is approximated by the expectation of 2(1 – 2x)Δx, the accompanying change in the 

expected heterozygosity, H = 2E{xy}, is given by: 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
ΔHsel ≈ 2sE{D(1− 2x)[h+ q(1− 2h)]} (11)  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
 

 Similar results apply to the case of heterozygote advantage. Here, a(q) = qt – 

ps = q(s+t)  – s, so that: 

                                                           E{Δx} =E{D[q(s+ t)− s]} (12)  

and 

                ΔHsel ≈ 2E{D(1− 2x)[q(s+ t)− s]} (13)  

	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   

 We cannot, therefore, use the apparent selection coefficients to assess the 

extent to which loss of variability at the neutral locus is affected by selection at a 

linked locus. Previous results using these selection coefficients (Ohta and Kimura 

1970; Ohta 1971, 1973; Bierne et al. 2000) thus do not provide reliable measures of 

the extent to which AOD retards the loss of neutral variability.  

 

How to calculate the rate of loss of variability: In order to solve this problem, we 

have extended the linear diffusion operator approach (Ohta and Kimura 1971; Ohta 

1971) to include the effects of drift on allele frequencies at the selected locus, 

ignoring third-order and higher-order moments of q around q*. This requires the use 

of a 9-dimensional vector Y of functions of allele frequencies and D, with a 

corresponding 9 x 9 recursion matrix, R (see section 1 of the Supplementary 
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 Information for details). The elements of Y are as follows: Y1 = E{xy}, Y2 = E{xyq}, 

Y3 = E{xyq2}, Y4 = E{D(x – y)}, Y5 =E{D(x – y)q}, Y6 = E{D(x – y)q2}, Y7 = E{D2}, Y8 

= E{D2q}, and Y9 = E{D2q2}.   

 Iteration of the R matrix provides an approximation for σ2
d in an arbitrary 

generation (which can used instead of E{r2} in Equations 3) as well as for H, since 

σ2
d = Y7/(Y2 – Y3) and H = 2Y1. 

  

Computer simulations  

 

One neutral and one selected locus: The theoretical predictions described above 

were compared with Monte Carlo simulation results for a population started in 

mutation-selection balance at the selected locus and in linkage equilibrium with a 

neutral locus, and then run for a chosen number of generations at a fixed population 

size. In each generation, the new haplotype frequencies were calculated using the 

standard deterministic equations, and 2N uniform random numbers were generated to 

sample each new haplotype from the cumulative distribution of haplotype 

frequencies.   

 Since the effects of a single selected locus on a linked neutral locus are very 

small, it was necessary to run a large number of replicate simulations (usually 107) to 

obtain tight confidence intervals on the mean heterozygosity at the neutral locus 

  

Multiple loci with selection and mutation: To simulate multiple loci subject to 

mutation and selection, we assumed additive fitness interactions across the relevant 

loci. For weak selection, this should yield very similar results to a multiplicative 

fitness model. The state of the population in a given generation is represented by the 

haplotype frequencies with respect to n loci subject to mutation and selection, 

following the same rules as in the single locus case, with a neutral locus in the centre 

of the chromosome. The recombination frequency between the loci under selection is 

c; the frequency of recombination between the neutral locus and each of the adjacent 

selected loci is c/2. Complete interference is assumed, so that only single crossovers 
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are allowed, generating a frequency of recombination between the two terminal loci 

of (n – 1)c.  

 The frequencies of diploid genotypes at the start of a given generation are 

assumed to be given by random combinations the frequencies of the haplotypes 

determined in the previous generation, thus tacitly assuming an infinite number of 

new zygotes. The frequencies of haplotypes after recombination were calculated 

deterministically, using an extension of the three-locus algorithm described by Crow 

and Kimura (1970, p.51). The haplotype frequencies after mutation and selection 

were then calculated deterministically. (With weak effects of selection, mutation and 

recombination on genotype frequencies, the order in which these processes take place 

has a negligible effect on the final outcome.) The haplotype frequencies after drift 

were obtained by choosing 2N haplotypes from a pool with the new haplotype 

frequencies, in the same way as above.  

 FORTRAN programs for all the cases mentioned here are available on request 

to BC. 
 

Results 
 

A single selected locus with mutation and selection 
 

In order to generalize the results described below as far as possible, we have used the 

principle from diffusion equation theory that the outcome of the evolutionary process 

is determined by the products of the effective population size, Ne, and the 

deterministic parameters, measuring time in units of 2Ne generations (Ewens 2004, 

p.157). In the present case, where Ne = N, the simulation results for a given N and a 

set of mutation, selection and recombination parameters can be applied to a system 

with a population size of KN and deterministic parameters that are a factor of K–1 

times those used here. For this reason, the selection and mutation parameters in most 

of the material described below are scaled by a factor of 2N, thereby avoiding 

reference to a specific population size. We use S = 2Ns, C = 2Nc, U= 2Nu and V = 

2Nv to denote these scaled parameters. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 4, 2016. ; https://doi.org/10.1101/042390doi: bioRxiv preprint 

https://doi.org/10.1101/042390
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  
	
  
	
  
	
  
	
  
	
  

17	
  

 An additional point to note is that the assumption that the initial state of the 

population has D = 0 implies that only the first three elements of the initial Y vector 

are non-zero. Without loss of generality, the elements of Y can be divided by the 

product of the initial frequencies of A1 and A2, x0y0, and the resulting vector, Y´, can 

then be iterated using the R matrix. The ratio of the first element of Y´ in generation t 

to (1 – 1/2N)t measures the ratio of the mean heterozygosity at the neutral locus 

relative to its value in the absence of selection at the B locus, which we denote by 

Hrel. This procedure means that the matrix predictions for Hrel and σ2
d are 

independent of the initial allele frequencies at the neutral locus, since the initial value 

of Y´ is independent of these frequencies. If, however, D were non-zero in the initial 

generation, only the asymptotic behaviour of the system would be independent of the 

initial allele frequencies. 

 

Accuracy of the matrix approximation: We first consider the accuracy of the 9 x 9 

matrix approximation. Figure 1 shows the values of Hrel and 2ΔE{xy} = ΔHsel from 

Equation 11 over 2N generations, for two different dominance coefficients and with 

C = 0.1. We are assuming that selection and mutation at the B locus relates to 

deleterious mutations affecting the gene as a whole rather than individual nucleotide 

sites, whereas the alleles at the A locus represent a pair of variants chosen by an 

experimenter as neutral markers, and are not affected by mutation over the time 

course of the experiment. The selection and mutation parameters were chosen such 

that the equilibrium frequency of the deleterious mutation at the B locus was 

approximately 0.3. This may seem very high, but is consistent with the typical 

frequency per gene of putatively deleterious nonsynonymous mutations in 

Drosophila populations (Haddrill et al. 2010), although the selection coefficient and 

mutation rates used in the figure are probably much higher than is realistic.  

 Agreement between the simulation and matrix results is remarkably good for 

this parameter set. A value of h = 0.1 is associated with an elevation of Hrel over one 

in later generations (retardation of loss of neutral variability), whereas h = 0.45 is 

associated with Hrel less than one (acceleration of loss of neutral variability). This 

illustrates the conflict between AOD and BGS, noted previously in simulation results 
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(Pamilo and Palsson 1999; Wang and Hill 1999); for sufficiently low h, AOD is the 

dominant force as far as the level of neutral variability is concerned, whereas BGS 

dominates when h is sufficiently close to ½. We provide some insights into the reason 

for this behavior in the next but one section. 

 This conflict implies the existence of a critical value of h, hc, where the two 

effects exactly cancel each other; the properties of hc are examined in more detail 

below. Unfortunately, there is no exact fixed value of hc, since the extent to which 

Hrel is greater or less than one depends on the generation in question, as shown in 

Figure 2, which uses the matrix results. As h increases from 0 to 0.5, Hrel at both 

generation N and 2N declines. The insert shows hc is larger for the earlier generations. 

However, for the selection and mutation parameters used in Figure 2, hc is close to 

0.37 for all generations.   

 When q* is small and S is of order 1 or less, agreement with the simulations is 

good only in earlier generations of the process, reflecting effects of such high a level 

of dispersion of allele frequencies at the B locus around q* that our neglect of higher-

order terms is inaccurate. In general, however, the matrix gives reasonably good 

approximations up to 2N generations, although the extent of retardation of the rate of 

loss of variability tends to be underestimated (or the rate of acceleration 

overestimated) by the matrix approximation with small q* (See Figure S2 in 

Supplementary Information, Section 9). We will often use results for this generation 

as a standard, since it is of similar order to the duration of the Drosophila experiments 

on AOD described in the Discussion. 

 

Apparent selection coefficients and their relation to the rate of loss of variability: 

These conclusions are confirmed by the results displayed in Table 1, which also 

shows the simulation results for an additional measure of variability, the proportion 

of segregating neutral loci, Ps, at 0.5N and 2N generations, for a range of 

recombination rates. In addition, the exact and approximate apparent selection 

coefficients are displayed, together with the matrix and simulation values for Hrel. It 

can be seen that the approximate apparent selection coefficients are similar in 

magnitude to the exact ones, but tend to exceed them, especially with very close 
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linkage and for the neutral allele with the lower initial frequency. This is mainly 

because of the inaccuracy of the assumption of independence between the probability 

distributions of allele frequencies at the neutral and selected loci. Variability at the 

two loci is positively correlated, so that the expectation of pqx–1 in Equation 3a will 

tend to be smaller than E{pq}E{x–1} in Equation 4a. 

 With an initial frequency of A1 of 0.5, the apparent selection coefficients for 

A1A1 and A2A2 are always equal, as expected from Equations 3 and 4. In contrast, for 

an initial frequency of 0.1 there is initially a stronger apparent selection coefficient 

against A1A1, again as expected, but the selection coefficients converge on equality 

as the mean neutral allele frequency at segregating sites approaches 0.5; these are 

also similar to the selection coefficients for the case of an initial frequency of 0.5. 

The apparent selection coefficients at generation 2N are quite close to the asymptotic 

values given by Equations 4 when the B locus has reached mutation-selection-drift 

equilibrium, if E{pq} is calculated using the linear approximation described above. 

For example, with h = 0.1, C = 0.1 and the selection and mutation parameters in 

Table 1, the asymptotic apparent selection coefficient for populations segregating at 

the A locus is 0.0014 when the equilibrium neutral value of σd
2 is used as the estimate 

of E{r2} in Equations 4, whereas the observed value at 2N generations for the case 

with x0 = 0.5 is 0.0013. In contrast, the asymptotic value predicted by Equation 7 of 

Ohta (1971) is 0.0024, a somewhat worse fit. This probably reflects the fact that Ohta 

assumed a fixed allele frequency at the neutral locus, as well as q* << 1. 

 As expected, the magnitudes of the apparent selection coefficients decline 

sharply as the recombination rate increases, but always indicate heterozygote 

advantage, even with C = 10 and h = 0.45. But with h = 0.45, there is an acceleration 

of the loss of variability at the neutral locus when linkage is tight, despite the 

apparent selective advantage to heterozygotes. This confirms the above conclusion 

that the apparent selection coefficients have no relation to the extent to which 

mutation and selection at one locus affect the rate of loss of variability at a linked 

neutral locus, and show heterozygote advantage even when BGS is causing an 

accelerated loss of variability. Furthermore, if C is >> 1, little effect of selection on 

the rate of loss of variability can be detected (Table 1). 
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Conflict between AOD and BGS with respect to the rate of loss of variability: The 

existence of a conflict between AOD and BGS, and its evident dependence on the 

dominance coefficient, raises the question of how to make generalizations about the 

regions of parameter space in which one or other force is dominant. One way of 

approaching this problem is to study the properties of the leading eigenvalue of the R 

matrix, λ0, as a function of the relevant variables. If we equate λ0 to 1 – 1/(2Ne), 

where Ne is the effective population size in the presence of selection at the B locus, 

1/(1 – λ0 ) provides a measure of 2Ne.  Consider first the limiting case when S = 2Ns 

>> 1 and u << hs, so that the expected frequency of A2 is close to u/(hs) (Equation 

5b).  The approximation for λ0 – 1 for this case (Equations S17 and S18 of section 2 

of the Supplementary Information) shows that Ne is given by the standard equation 

for BGS at a single locus (Charlesworth and Charlesworth 2010, p.402), which relies 

on these conditions.  

 As argued by Whitlock and Barton (1997), the value of 2Ne obtained from 

1/(λ0 – 1) gives the asymptotic value of the mean coalescent time, T2, for a pair of 

alleles at the neutral locus. Under the infinite sites model, the nucleotide diversity at 

mutation-drift equilibrium is equal to the product of the neutral mutation rate and 2Ne 

(Charlesworth and Charlesworth 2010, p.211), so that we can use these results to 

predict the effect of selection at the B locus on the equilibrium level of variability at 

the neutral locus. (See section S2 of the Supplementary Information, Equation S16, 

for a more rigorous derivation of this result in the present context.)  

 However, since the matrix approximation is inaccurate for later generations 

with S  < 1 and small q*, this use of the leading eigenvalue to estimate Ne is limited 

in scope, and is not necessarily accurate for general q* and small S. The approximate 

approach described in the next section deals with the case when S is of order 1 or 

less. 

 

Approximation	
  for	
  the	
  rate	
  of	
  loss	
  of	
  variability	
  with	
  weak	
  selection: The starting 

point for this analysis is Equation 11, which shows that the change in expected 

heterozygosity due to selection, ΔHsel, is the sum of two terms, Δ1 = – 2shY4 and Δ2 = 
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– 2s(1 – 2h)Y5, where Y4 =  E{D(x – y)} and Y5 =  E{D(x – y)q}. We know from 

previous work on BGS that an acceleration of loss of variability always occurs in 

haploid models with deleterious mutations and drift; these are equivalent to diploid 

models with h = 0.5, in which case Δ2 is necessarily zero, and the process is entirely 

driven by Δ1; a necessary and sufficient condition for acceleration in this case is thus 

Δ1 < 0. This suggests that with h < 0.5 there may be a conflict between the two terms, 

whenever Δ1 < 0 and Δ2 > 0. Larger h gives more weight to Δ1 relative to Δ2, so that 

selection is more likely to reduce variability when h is large, in agreement with the 

numerical results just described. It is, however, unclear from this argument why small 

S should favour AOD over BGS. 

 The complexity of the recursion relations means that it is impossible to obtain 

simple, exact expressions for Y4  and Y5, but useful approximate results for the case of 

weak selection (S < 1) can be obtained as follows. Using expressions S4d and S4e in 

the Supplementary Information, the changes per generation in these moments in the 

absence of selection are: 

                                                   

                                 

 

 In the absence of selection, Y4 thus tends to zero, and Y5 tends to – Y7/[N(C + 

U + v) + 5], which is < 0 and < Y7 in magnitude. This suggests that the magnitude of 

Δ1 will be much smaller than that of Δ2 when selection is weak. This is confirmed by 

the following argument. When there is selection, approximate recursions for Y4 and Y5 

can be obtained using the matrix approach described in section 1 of the 

Supplementary Information (Equations S5). We make the further simplification of 

dropping terms involving u, v and products of s or D2 with q and q2, on the 

assumption that these are small relative to similar terms involving s or D2. These 

assumptions will be violated when selection is strong in relation to drift (S  > 1) or 

when q* is >> 0. In addition, for the neutral case, it is possible to show that Y6 and Y5 

approach equality and Y8 approaches Y7/2 if q* is set to 0.5 (we neglect Y9, since it is 

considerably smaller than Y8): see Equations S31 of the Supplementary Information, 

ΔY4 ≈ –Y4[c+u+ v+3 / (2N )] (14a)

ΔY5 ≈
1
2N

Y4 +Y5[c+u+ v+ 5 / (2N )]−
1
N
Y7 (14b)
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section 6. Our numerical results show that these relations are approximately true 

under much wider conditions, so that we can replace Y6 with Y5, and Y8 with Y7/2 in 

Equations S5, allowing us to obtain a coupled pair of difference equations for Y4 and 

Y5 for a given value of Y7. 

 It is also convenient to rescale all terms by multiplying by 2N, implying a new 

time-scale of 2N generations. We can then write: 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
    

                                         

where 

                                                    

                                         a21 =1, a22 = −[5(1− Sh)+C + 2S] (16b)  

                                             b1 = SY7, b2 = −(2− Sh)Y7 (16c)  

	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
   If the changes in Y4 etc. are sufficiently slow, we can set ΔY4 and ΔY5 to zero, 

and solve the resulting linear equations to obtain approximate expressions for Y4 and 

Y5 as functions of Y7: 

                                            Y4 ≈
Y7S[3+ 2S(1− 2h)+C]

det
(17a)  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Y5 ≈

Y7[S − (2− Sh)(3+C + Sh)]
det

(17b) 	
  

	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
   	
  

 This shows that Y4 is O(S), whereas Y5 is of order one, so that ΔHsel is 

dominated by Δ1 when S is small, provided that h < ½. The determinant is always 

positive for S ≤ 60; this condition is not very restrictive given our assumption of 

relatively small S, and we will assume positivity from now on. Given that X7  > 0, it 

can easily be shown that Y4 > 0 when h < ½; S < 2 is sufficient for Y5 < 0 when h = 

0.5. For small values of h these conditions are less stringent; with h = 0, Y4  > 0 

independently of S, and Y5 < 0 when S < 6. Furthermore, neither Y4 nor Y5 depend on 

2N ΔY4 ≈ a11Y4 + a12Y5 + b1 (15a)

2N ΔY5 ≈ a12Y4 + a22Y5 + b2 (15b)

a11 = −(3+C + Sh), a12 = S (16a)

det = a11a22 − a12a21 = (3+C + Sh)[(5(1− Sh)+C + 2S)]− S (17c)
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q*, except through their common factor of Y7. Our numerical results show that these 

conclusion are correct, provided that S is of order 1. 

 From Equation 11, the sign of the change due to selection in the 

heterozygosity at the neutral locus, ΔHsel, is the same as the sign of  –[h Y4  + (1 – 2h) 

Y5]. Variability will be increased by selection if ΔHsel > 0 and reduced if ΔHsel < 0, so 

that these results imply that the critical upper value of h, hc, required for an increase in 

neutral variability due to AOD, is also independent of q* under the conditions we 

have assumed. The value of hc can be found by setting ΔHsel = 0. Using Equations 11 

together with the numerators of Equations 17a and 17b, we find that hc is the value of 

h that satisfies the following cubic equation in h: 

 

f (S,h,C) = 2S2h3 + S(2+ 2C +3S)h2 − 2[6+ 2C + S(1+C + S)]h+ 6− S + 2C = 0 (18) 	
  
	
  

 With S close to zero, Equation 18 reduces to 12h – 6 = 0, i.e. hc = ½, 

suggesting that variability will always be increased for realistic h values when 

selection is very weak. For other cases, some insights into the properties of hc can be 

obtained by assuming C = 0, which approximates cases with low recombination rates. 

With S = 1, the solution to the cubic is approximately hc = 0.36, slightly smaller than 

the value of 0.37 obtained from the numerical results. Figure 3 shows a comparison of 

the values obtained from Equation 18 using Matlab symbolic calculations with the 

values from the matrix approximation for generation 2N with C = 0.1 (very similar 

patterns are obtained for C values of up to 1). It will be seen that they agree quite well 

when S < 1, regardless of the value of q*, but Equation 18 mostly underestimates hc as 

S increases beyond 1, except for  values of q* much smaller or much greater than 0.1. 

For S << 1, dominance coefficients close to ½ are compatible with an enhanced level 

of neutral variability, but BGS always prevails for values of S  >> 3, even when h is 

very close to zero. 

 The quantity 2N ΔHsel /H is equivalent to ε = Ne/N – 1, where Ne is the 

effective population size for the generation in question. For small S, we can 

approximate ε by a Taylor’s series around S = 0. We have: 
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 The first term in this equation is derived entirely from the contribution of Y5 to 

ΔHsel, since the contribution from Y4 is O(S2).  This implies that selection will cause 

increased variability if h is slightly less than ½ when higher order terms in S are 

negligible, consistent with the conclusions reached above. With very weak selection, 

BGS thus does not operate unless mutations are close to being semidominant. The 

second-order term is always < 0 and increases in magnitude as S increases; under the 

most favourable situation (h = 0), S  < 4(5 + C)/10 is necessary for ε > 0, which is 

slightly more restrictive than is indicated by the results in  Figure 3. Figure 4 shows 

some examples of the extent to which this approximation match the simulation 

results; in general, it tends to underestimate the extent to which loss of heterozygosity 

is retarded by selection when S. 

 These approximations also imply that the magnitude of ΔHsel is proportional to 

Y7 = E{D2}. If we approximate E{D2} by E{xy}E{pq}σ2
d = H E{pq}σ2

d/2, as was 

done when obtaining the Equations 4 for the apparent selection coefficients, 

Equations 17 and 18 give: 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
ε ≈

E{pq}σ d
2 f (S,h,C)
det

(20)  

 

 Since σ2
d E{pq}is ≤ 0.25, the quadratic dependence of the denominator on C, 

and the inverse relation between σ2
d and C, implies that there will only be a very 

small effect of selection on neutral variability when C  >> 1, unless  S  >> C. In 

addition, the size of the effect is strongly determined by S and by E{pq}, since σ2
d 

takes a value between 0 and 1. 

 Overall, these results suggest that retardation of loss of neutral variability 

caused by a single selected locus is unlikely to be important except for S values of the 

order of 1. In such cases, if linkage is sufficiently tight, there can be a significant 

ε ≈
Y7S

H (5+C)
{4(1− 2h)− 2S[5− 2h(1− h)(5−C)]

(5+C)
} (19)
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retardation of loss of neutral variability, and an enhancement of the equilibrium level 

of variability even when h approaches ½.  

 

Two selected loci with mutation and selection 
 

From simulation studies of the effect of multiple, linked selected loci on the 

behaviour of neutral loci located among them, we would expect to see larger values 

of both the apparent selection coefficients and the level of neutral heterozygosity than 

with a single selected locus (Ohta 1971; Latter 1998; Pamilo and Palsson 1998, 1999; 

Wang and Hill 1999; Bierne et al. 2000). However, it is unclear whether the effects 

of multiple selected loci are approximately additive, or whether there is some degree 

of synergism.  

 With small population size, very close linkage, strong selection and a 

sufficiently high level of recessivity of deleterious mutations, simulations have 

shown that ‘crystallization’ of the population into two predominant and 

complementary haplotypes (+ – + – … and – + – +… , where + denotes wild-type 

and – mutant) with respect to the selected loci can occur, such that its behavior is 

very similar to that of a single locus with strong heterozygote advantage 

(Charlesworth and Charlesworth 1997; Pamilo and Palsson 1999; Palsson 2001). This 

can result in long-term maintenance of variability at the selected loci. This is strongly 

suggestive of a synergistic effect of multiple selected loci. 

 No analytical treatment of more than one selected locus has been done, so we 

have investigated this problem using simulations of a small number of selected loci. 

The results of simulations with two selected loci surrounding a neutral locus are 

shown in Table 2, using the same set of recombination frequencies between the 

neutral and nearest selected locus as in Table 1. As far as the apparent selection 

coefficients are concerned, with h = 0.1 and the lower two recombination rates, there 

is clear evidence that the apparent selection coefficients in generation 2N (but not 

necessarily in generation 0.5N) are somewhat larger than twice the apparent selection 

coefficients in the single locus case, indicating a degree of synergism.  A similar 

pattern is found with four selected loci (results not shown). 
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 It is more difficult to quantify the effect on Hrel, since this is strongly 

dependent on the generation in question. With close linkage and h = 0.1, the values of 

Hrel – 1 in generation 2N in Table 2 are slightly larger than twice the corresponding 

values in Table 2. Conversely, with h = 0.45 and close linkage, for which Hrel < 1, 

the absolute values of Hrel – 1 in generation 2N are less than twice the corresponding 

values in Table 1, although the apparent selection coefficients are slightly larger than 

twice the values with a single selected locus. A more rigorous test for additivity is 

described in section S5 of the Supplementary Information; it suggests that the effects 

of two loci on Ne/N – 1, as estimated from ΔHsel, are somewhat greater than additive 

when there is a retardation of loss of variability, and less than additive when there is 

an acceleration.  

 

A single selected locus with heterozygote advantage 
The methods used for the case of mutation and selection can be used to model the 

case of linkage to a single selected locus with heterozygote advantage, simply by 

making appropriate modifications to the terms in the R matrix, and to the expressions 

for the changes in haplotype frequencies in the computer simulations (see Equations 

9 and section 3 of the Supplementary Information). Figure 5 and Table 3 compare 

some examples of matrix and simulation results; these again suggest that the matrix 

predictions are accurate for this parameter range. Once again, the ratio of 

recombination to the strength of selection has to be sufficiently small for a substantial 

effect.  

 An approximate treatment can be applied for the case when S = 2Ns and T = 

2Nt are both < 1, on the same lines as for Equations 15-20 for the mutation-selection 

balance case. The coefficients for the approximate recursion relations for Y4 and Y5 

are as follows: 

 

	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  a11 =1, a12 = −[5(1− Sh)+C + 2S] (21a)  

                     a21 =1+
3S2

(S +T )
, a22 = −(5+C)− 2(S +T )+ S[8− 9S

(S +T )
] (21b)  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   b1 = (T − S)Y7, b2 = −(2+ S)Y7 (21c)  
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 The equivalents of Equations 17 and 18 are given in section 3 of the 

Supplementary Information, which can be used to calculate ΔHsel in the same way as 

for the mutation-selection case. The first-order term in S and T in ΔHsel gives: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
ε ≈

4Y7(S +T )
H (5+C)

(22)  

 The inbred load in this case is (s + t)E{pq} (see Equations 9), so that this is 

identical in form to the first-order approximation for the mutation-selection balance 

case (see Equation 19). For sufficiently weak selection, therefore, heterozygote 

advantage should always lead to an enhancement of neutral variability at a linked 

locus. 

	
   We	
  note,	
  however,	
  that	
  the asymptotic rate of loss of variability at a locus 

with heterozygote advantage has a complex dependence on the deterministic 

equilibrium allele frequency and the population size, with extreme allele frequencies 

(outside the range 0.2 to 0.8) leading to an acceleration of loss of variability when S + 

T is sufficiently large (Robertson 1962). This suggests that a similarly complex 

pattern should be found for the dependence of the measure of retardation/acceleration 

based on the leading eigenvalue of the recursion matrix. Figure S3 of the 

Supplementary Information (section 9) shows that this is indeed the case, although 

there is only a small region of parameter space where acceleration rather than 

retardation of loss of variability occurs.  

 Under most circumstances, some retardation of the loss of variability at a 

neutral locus is, therefore, likely to be observed as a result of linkage to a selected 

locus, although its magnitude is small unless linkage is tight and S + T >> 1. For C >> 

S + T it is unlikely that any experimentally detectable effects could be observed. The 

same applies to the apparent selection coefficients against homozygotes at the neutral 

locus. 

 

Discussion	
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Some	
  general	
  considerations	
  

	
  

Our results shed some new light on the old question of the existence and properties of 

associative overdominance (AOD) at a neutral locus in a randomly mating population 

of finite size, resulting from randomly generated linkage disequilibrium with respect 

to a locus subject to selection. The pioneering work of Sved (1968, 1971, 1972), Ohta 

and Kimura (1970) and Ohta (1971) gave expressions for the apparent selection 

coefficients against homozygotes at a neutral locus, using the equivalents of our 

Equations 3 and 8. Our approximate estimates of the apparent selection coefficients 

for the case of a finite population founded from an infinite population at equilibrium 

with no LD between the selected and neutral loci (Equations 4 and 9) followed their 

approach in using only the terms involving D2 in these equations, which are the 

dominant terms.  

 However, as was noted by Sved (1968, p.552) for the case of heterozygote 

advantage and by Latter (1998) for the case of selection against deleterious mutations, 

these selection coefficients do not result in any change in allele frequency at the 

neutral locus. As mentioned above (Equation 10), this is a completely general 

conclusion: application of the Price equation (Price 1970) shows that the change Δx 

per generation in the frequency of allele A1 at the neutral locus is equal to aD, where 

a is the average effect of A1 on fitness (see also Santiago and Caballero 1995, p.1016), 

to the order of the approximations used here (neglect of second-order terms in s and 

1/N). Neither the change in allele frequency nor the change in heterozygosity at the 

neutral locus are influenced by terms in D2. 

 There is thus no connection between apparent overdominance caused by 

linkage disequilibrium and any retardation of loss of variability by drift at a neutral 

locus. Such a connection seems to have been widely assumed to be the basis for a 

retardation of loss of variability (e.g. Latter 1998), although it had been pointed out by 

Charlesworth (1991) that AOD caused by identity disequilibrium has no effect on 

allele frequencies at the neutral loci concerned. As was noted by Bierne et al. (2000), 

for this case it is necessary to treat apparent overdominance at the neutral locus as a 
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phenomenon that is entirely distinct from any retardation of loss of variability. This 

point is reinforced by the results in Tables 1 and 2 for the case of selection against 

recurrent deleterious mutations, which show that apparent overdominance can 

accompany an acceleration of loss of neutral variability when the dominance 

coefficient h is sufficiently large (see the entries with h = 0.45). Of course, h < ½ is a 

necessary condition for both retardation of loss of variability and for apparent 

overdominance. This is not restrictive, given the evidence that the dominance 

coefficients for slightly deleterious mutations are generally < ½ (Crow 1993; Manna 

et al. 2011). 

  

Selection	
  against	
  deleterious	
  mutations	
  	
  

Computer simulations of systems with many loci subject to mutation to deleterious 

alleles have shown that a noticeable retardation of loss of neutral variation at linked 

loci can occur (Latter 1998; Pamilo and Palsson 1998, 1999; Wang and Hill 1999; 

Wang et al. 1999), although only for certain ranges of values of selection and 

dominance coefficients. As pointed out by Pamilo and Palsson (1998, 1999), Wang 

and Hill (1999) and Wang et al. (1999), there is a conflict between the effect of AOD 

on neutral variability and the effect of background selection (BGS); the latter involves 

a reduction in the effective population size experienced by a neutral locus caused by 

its linkage to deleterious mutations (Charlesworth et al. 1993). Their multi-locus 

simulations, as well as the matrix-based investigation of a model of a single selected 

locus linked to a neutral locus sib-mating and selfing lines by Wang and Hill (1999), 

showed that retardation versus acceleration of the rate of loss of neutral variability is 

favoured by relatively weak selection (2Ns values of order four or less) and low 

dominance coefficients; see, for example, Figure 1 of Wang and Hill (1999).  

 Our analytical and numerical methods, employing a 9 x 9 matrix of ‘moments’ 

of functions of the allele frequencies at the two loci and D, as well as the weak 

selection approximations for the change in heterozygosity, have allowed us to 

investigate in detail the regimes in which retardation versus acceleration of loss of 

neutral variability occurs. 

 The main conclusions are that: 
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(1) Retardation rather than acceleration of loss of variability is favored by sufficiently 

low values of the dominance coefficient, h, when S = 2Ns is in the range 0.5 to 4.5 

(Figure 3). The commonly used estimate of h = 0.25 for slightly deleterious mutations 

(Manna et al. 2011; Charlesworth 2015) is consistent with retardation when S ≤  2.5, 

except when q* is close to 0.5.  

(2) S < 0.5 allows retardation of loss even for h values approaching ½; this domain of 

S values can be thought of as the AOD limit. 

(3) In contrast, there is always an acceleration of loss of variability when S > 4, even 

with very low h values; this constitutes the BGS limit. Despite this acceleration, 

apparent heterozygote advantage at the neutral locus is always observed, provided 

that h < ½. 

(4) For q* << 1and for S >> 1, the asymptotic behaviour of the expected 

heterozygosity at the neutral locus is well predicted by the Ne value given by the 

standard equation for BGS.  

(4) The magnitude of the extent of retardation or acceleration of loss of variability is 

an increasing function of C/S, for a given h value. Equation (19) also shows that, 

when S << 1, the effect is proportional to the inbred load scaled by 2N, for a given 

value of C. 

  Population genomic analyses of levels of nonsynonymous site variability in a 

variety of organisms have consistently shown that there is a wide distribution of 

selection coefficients against new deleterious mutations, and suggest a mean S for 

natural populations that is >> 1 (reviewed by Charlesworth 2015). The large effective 

population sizes of most populations that have been studied in this way imply, 

however, that the mean selection coefficient against a new deleterious mutation is 

likely to be very small. For example, the current estimate of the mean hs for new 

nonsynonymous mutations in D. melanogaster is approximately 0.001; with h = 0.25, 

the corresponding mean s is 0.004 (Charlesworth 2015). With N = 50, as used in the 

examples below, the mean S is 0.4. If there were no variation in s for new mutations, 

this would suggest that they fall well within the range where Equations 18 and 19 

predict retardation of loss of variability. However, as discussed below we also have to 

take into account the fact that there is a wide distribution of s. A coefficient of 
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variation for s for new mutations of approximately 2 is suggested by the Drosophila 

polymorphism data (Kousathanas and Keightley 2013).  

 There is also evidence for deleterious mutations with larger fitness effects than  

typical nonsynonymous mutations, such as insertions and deletions; these appear to 

make up only a small contribution to the spectrum of new mutations (Charlesworth 

2015), and will be neglected in what follows, since they must be sparsely distributed 

across the genome. Their net effect is probably to tilt the balance slightly more in 

favor of BGS than if they are ignored (but see the section below on relevant data).  

 

Effects of multiple loci subject to mutation and selection 
 

We now consider how the effects of multiple loci subject to deleterious mutation 

affect a linked neutral locus; this question can asked about both the apparent selection 

coefficients and the extent of retardation or acceleration of loss of variability.  

Apparent	
  selection	
  coefficients: With respect to the apparent selection coefficients, 

previous workers (Ohta 1971, 1973; Ohta and Cockerham 1974; Bierne et al. 2000) 

assumed that multiple loci combine approximately additively. Table 2, which 

describes results for a pair of selected loci with, suggests that this assumption may be 

somewhat conservative; in most of the examples shown there, the selection 

coefficients are somewhat larger than twice the corresponding single locus values, 

especially with a low initial frequency of the A1 allele.  

 The procedure of summing contributions over all sites when there are many 

selected loci, as used by Ohta (1971, 1973), may thus underestimate the apparent 

selection coefficients, although the departure from additivity is likely to be small for 

the very weak selection that is probably most common. An alternative to Equation 13 

of Ohta (1973), based on Equations 3, is derived in section 6 of the Supplementary 

Information (Equations S31). We assume that the population is being studied at a 

sufficiently long time after establishment that its LD is close to equilibrium. We also 

assume a single chromosome with a uniform rate of recombination along the 

chromosome, as well as a linear genetic mapping function (this somewhat 

overestimates the amount of recombination, compared with the true situation with 
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partial crossover interference). For a randomly placed marker, we have the asymptotic 

result: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

s = t ≈ 5Btot[(1+C*)ln(1+C*)−C*]
C *2

(23)

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
 

where Btot is the inbred load associated with homozygosity for the whole 

chromosome, and C* = 2NM, where M is the effective map length of the chromosome 

(taking into account any sex differences in recombination rates).   

 It is useful to compare this formula with the multi-locus simulation results of 

Latter (1998), who modeled a D. melanogaster autosome evolving in a population 

maintained at a size of 50 for 200 generations after its foundation from an equilibrium 

population. The chromosome was 100cM in length; the absence of crossing over in 

males means that the effective value of M is 0.5 Morgans, so that C* = 50 with N = 

50. For a randomly placed marker, Equation 23 gives an approximate apparent 

selection coefficient of 0.312Btot.  

 Btot can be estimated as follows. The initial value of the net fitness (relative to 

a balancer chromosome) for D. melanogaster second chromosomes that were purged 

of major effect mutations by extracting them from a population maintained for many 

generations at an approximate size of 50 was 0.4 (Latter et al. 1995; Latter 1998). 

This is equivalent to the fitness of a homozygous chromosome relative to that of an 

outbred genotype in the initial population; the value of Btot for the initial population is 

then – ln(4) = 0.90, assuming multiplicative fitness effects. This assumption is 

consistent with the log-linear decline in fitness with inbreeding coefficient F in the 

small laboratory populations of D. melanogaster described by Latter et al. (1995).  

 The simulations of Latter (1998) adjusted the number of mutable loci to 

produce an initial Btot of 0.90. However, we need to take into account the reduction in 

Btot as variability is lost at the selected loci. A minimum estimate of Btot at generation 

t is provided by assuming that the ratio of E{pq} to its initial value follows the 

standard neutral result, 1 – Ft = exp(–t/2N). For N = 50 and t =200, this procedure 

yields Btot = 0.90 x (1 – F200 ) = 0.122, and a value of 0.038 for the apparent selection 

coefficient on a random marker, somewhat lower than the value of 0.05 given in 
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Figure 6 of Latter (1998). The discrepancy probably reflects an overestimate of the 

loss of variability by use of the standard neutral value of Ft. Latter’s Figure 4 shows 

F200 = 0.7 for the selected loci in his simulations, giving Btot = 0.270 and an apparent 

selection coefficient of 0.084. The single locus approximations for the apparent 

selection coefficients often overestimate the true values for later generations (see 

Table 1), so that it is not surprising that Equation 23 overestimates the apparent 

selection coefficient. 

 Since the numerator of Equation (23) is only a logarithmic function of C*, the 

apparent selection coefficients are roughly inversely proportional to population size. 

Species with larger numbers of chromosomes, and with crossing over in both sexes, 

will have much smaller apparent selection coefficients for the same value of N. 

Detectable apparent selection coefficients arising from AOD in randomly mating 

populations are thus only likely to be found in very small populations, especially in 

organisms with large numbers of chromosomes such as most vertebrates. This 

suggests that AOD arising from identity disequilibrium (Szulkin et al. 2010) is a more 

likely explanation of heterozygosity/fitness relations in natural populations than LD 

due to drift in a randomly mating population (Hansson and Westerberg 2002), unless 

the population has been reduced to a very small number of breeding individuals. 

 

Rate	
  of	
  loss	
  of	
  variability: This approach can also be applied to the rate of loss of 

neutral variability, using the weak selection approximation of Equation 19, which 

includes only the first and second-order terms in S in the expression for ε = Ne/N – 1 = 

2N ΔHsel, again assuming that LD is close to neutral equilibrium. The derivation of 

the approximate expected value of ε for a neutral marker placed randomly on a 

chromosome, using the same assumptions as before, is given in section S7 of the 

Supplementary Information (Equations S32-S35). The final result is: 
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ε =
4Btot
9MC *
{2[(1+C*)ln(1+C*)− (11+ 2C*)ln(11+ 2C*)+ (2C *+11)ln(11)]}−

BtotS (1+CVs
2 )

9(1− 2h)MC *
{[5−12h(1− h)][(1+C*)ln(1+C*)+ 45[4h(1− h)−1](5+C*)[ln(5+C*)− ln(5)]

+ 4[5− 21h(1− h)](11+ 2C*)][ln(11+ 2C*)−11ln(11)]} (24)

 

where CVs is the coefficient of variation of the distribution of s for new mutations. 

With an exponential distribution, CVs = 1. 

 We can compare the predictions of this equation with the simulation results in 

Latter’s Table 6 for a mean S of 0.5, which is similar to the value suggested by the 

population genomic analyses for a population size of 50 and meets the weak selection 

requirement. Latter used a measure (ΔF) derived from net change in F for neutral loci 

over t generations, relative to the corresponding value without selection; this is 

approximately equivalent to the ratio of N to the harmonic mean of Ne, i.e., to 1/(1 + 

ε ). For the case of an exponential distribution of s, he estimated ΔF as approximately 

0.6 for t = 200, for three different dominance coefficients, 0, 0.1 and 0.2. With h = 

0.2, the estimate of ε for a random marker with a population size of 50 is 1.35Btot; 

with the above estimate of Btot = 0.270 for generation 200, this gives ε = 0.365 and ΔF 

= 0.73, which is somewhat higher than Latter’s value. But the comparisons of the 

single locus simulation results with Equation 19 suggested that the approximation 

underestimates ε by about 30% (Figure 4); increasing ε by this amount to 0.474 give 

ΔF = 0.68. If the effects of different loci on Ne combine multiplicatively rather than 

additively, as is known to be the case for BGS (Charlesworth and Charlesworth 2010, 

p.402), ε should be replaced by exp(ε) – 1 = 0.606, and ΔF = 0.62, which is very close 

to the simulation value. The value of h has only a small effect on the results; for 

example, with h = 0, the uncorrected ε = 0.454 and ΔF = 0.69.  

 We can also use Equation 24 to determine the expectations with the 

population genomics estimates of mean S of 0.004 and CVs = 2, with h = 0.25. 

Substituting these values into Equation 24 with the same N and recombination 

parameters as before, Equation 24 gives a negative values of ε = – 0.0663, and ΔF =  

1.07. This implies that BGS would cause a reduction in Ne, to about 93% of the 
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neutral value. This conclusion should be treated with caution, since the very wide 

distribution of selection coefficients in this case means that there will be a substantial 

range of values that violate the assumption of S < 1 required for the validity of 

Equation 19.  

 

Relation to the data on loss of variability in small populations 
 

Most of the data that are relevant to the question of whether AOD generated by 

linkage to deleterious mutations can retard the loss of neutral variability in small 

randomly mating populations comes from a few studies of the behavior of putatively 

neutral markers and quantitative traits in small laboratory populations of D. 

melanogaster. In order to avoid the complications of interpretation associated with 

high levels of inbreeding, we will not discuss results from studies of sib or first-cousin 

mating, although these suggest a significant retardation of loss of variability (Rumball 

et al. 1994), which is consistent with the conclusion that retardation is favored when S 

is small. Latter (1998) analyzed the results of Latter et al. (1995) for two allozyme 

markers, and found a ΔF value of 0.52 over 200 generations in populations 

maintained at a size of approximately 50 (see his Table 6), consistent with his multi-

locus simulation results based on an exponential distribution of s.  

 Experiments using seven allozyme markers and two bristle traits in pedigreed 

populations ranging in size from sib-mating to 500, and maintained for 50 

generations, showed that the regression coefficient of heterozygosity and genetic 

variance on pedigree inbreeding coefficient were significantly lower than the value of 

1 expected with neutrality, suggesting a retardation of loss of variability (Gilligan et 

al. 2005). The facts that the results from populations with different sizes were pooled, 

and that there is non-linear relation between heterozygosity and inbreeding coefficient 

when AOD is acting, mean that a quantitative analysis of these results in terms of our 

model is impossible. In addition, a later analysis of 8 microsatellite loci over 48 

generations for the same set of populations showed an acceleration of loss of 

variability by this criterion (Montgomery et al. 2010), which the authors interpreted 

as evidence for selective sweeps related to adaptation to the laboratory environment.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 4, 2016. ; https://doi.org/10.1101/042390doi: bioRxiv preprint 

https://doi.org/10.1101/042390
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  
	
  
	
  
	
  
	
  
	
  

36	
  

 Different experiments have, therefore, given very different patterns, and it is 

certainly possible that any retardation of loss of variability due to AOD may be 

obscured by selective sweeps even if N is of the size that would otherwise lead to a 

retardation of loss of variability. However, a basic problem with experiments of this 

type is that the heterozygosity for a single neutral locus has a very high stochastic 

variance, even if allele frequencies are estimated with complete accuracy (Avery and 

Hill 1977); see Equation S39 of the Supplementary Information, section 8. This yields 

the asymptotic expression for large t: 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

VH
H 2 ≈

2
5H

(25)  

 

 This equation implies that the relative error increases as mean heterozygosity 

decreases. For example, at generation 100, if the initial heterozygosity was at the 

maximal value of 0.5 for a biallelic locus, the mean neutral H for N  = 50 is 0.184, 

yielding an expected coefficient of variation for a single locus in a single population 

of 2.17. To obtain a coefficient of variation of 0.1, (2.17/0.1)2 = 471 independent 

heterozygosities would need to be measured, either from independent loci or 

populations, or from a combination of the two. Given that Figure 6 of Latter (1998) 

shows a difference of approximately 0.2 between the expected neutral F value and the 

value from simulations with AOD due to deleterious mutations, which corresponds to 

the difference in scaled H values, it is clear that many more replications than this 

would be necessary to obtain statistically significant results, especially as the 

distribution of H is far from normal. The differences between the different 

experiments could thus be purely stochastic, especially as the autocorrelations 

between H values in different generations means that the regression tests used by 

Gilligan et al. (2005) and Montgomery et al. (2010) are problematic. 

 It is possible that tight linkage of neutral markers to sets of very strongly and 

highly recessive deleterious variants that are in repulsion LD with each other could 

maintain variation as a result of the pseudo-overdominance that can arise in this 

circumstance: see the section on two selected loci above, and Charlesworth and 
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Charlesworth (1997),  Pamilo and Palsson (1999) and Palsson (2001). This is most 

likely to occur in very small populations;  major effect mutations are relatively 

sparsely distributed, so that their effects on neutral variability are likely to be 

restricted to specific genomic regions, rather than evenly spread across the genome. 

Recent genomic investigations of the well-known Chillingham population of cattle, 

which have been maintained at very small population size for 350 years, are 

consistent with this interpretation. Genome-wide diversity is very low, and residual 

variability is localized to a number of specific genomic locations (Willams et al. 

2016).  

 A full assessment of the possibility that a realistic distribution of mutational 

effects on fitness (DFE), which are currently becoming available from genome-wide 

polymorphism data (Charlesworth 2015), can cause significant retardation of the loss 

of neutral variability will require simulations that use realistic DFEs, coupled with 

experiments on the effects of reduced population size that exploit the high levels of 

replication that can be achieved using modern genomic technology for generating 

large numbers of markers.  It would also be desirable to use populations that have 

been maintained for a long period in the laboratory at a large size as the initial 

population, to avoid possible confounding effects of selective sweeps. Current theory 

and data cannot convincingly answer the question of whether AOD due to deleterious 

mutations is a credible explanation for the presence of more than expected levels of 

variability in small populations. 

 

Selection	
  in	
  favor	
  of	
  	
  heterozygotes	
  

	
  

Genome scans for signatures of balancing selection suggest that this is a relatively 

rare phenomenon compared with the number of genes in the genome (Charlesworth 

2006; Gao et al. 2015), so that it is unlikely that a given neutral site will be closely 

linked to a locus maintained by heterozygote advantage. The exception is inversion 

polymorphisms in organisms such as Drosophila; these can cover relatively large 

proportions of the genome, and also suppress crossing over to a considerable extent 

outside their breakpoints (Krimbas and Powell 1992). They could thus have a 
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substantial impact on the behavior of neutral variants in small populations. Thus, our 

conclusions concerning heterozygote advantage are relevant to experimental results 

on small populations where inversions are segregating, as is often the case with D. 

melanogaster.   

 Our main conclusion is that retardation of loss of variability is nearly always 

observed when there is heterozygote advantage, except when the allele frequency at 

the selected locus is close to the boundaries 0 or 1, and there is relatively strong 

selection, when it is known that heterozygote advantage tends to accelerate the loss of 

variability (Robertson 1962). As shown in Figure 4 and Table 3, a substantial degree 

of retardation can occur when c < < 10(s + t), especially with intermediate 

equilibrium allele frequencies. As with mutation and selection, with S + T < 1 and a 

fixed value of C the magnitude of retardation is proportional to the inbred load scaled 

by 2N (see Equation 22).  
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Appendix 
 

Approximations for the expected frequency of B2 and expected 
heterozygosity at the selected locus 
 
With weak selection, the deterministic change in the frequency q of allele B2 under 

selection and mutation (neglecting terms of order s2) is given by: 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Δq = −spq[(1− 2h)q+ h]+up− vq (A1) 	
  
  

Because Δq is third degree in q, it is impossible to obtain exact, closed equations for 

the changes in the expectations of q and q2, E{q}, and E{q2} under drift, selection and 

mutation. However, if it is assumed that second-order terms in the deviation of q from 

its deterministic equilibrium value q*, given by Equation 5a, can be ignored, 

approximate recursion relations can be obtained as follows. (The matrix calculations 

described in section 1 of the Supplementary Information, which neglect only third-

order terms in (q – q*), yield better approximations.)    

 Taking the first derivative of Equation A1 with respect to q yields a linear 

deterministic recursion relation for the departure of q in generation t from the 

equilibrium frequency q* under mutation and selection, which is given by Equations 

5: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   qt − q* ≈ (1+κ )(qt−1 − q*) (A2a)                                                      
where  

                   κ = −(u+ v)− s[(1− 2h)q*(2−3q*)+ h(1− 2q*)] (A2b)                                                        
 

 Since this is linear in q, the mean of q under drift, selection and mutation 

remains at q*.  

 The equilibrium expected heterozygosity at the selected locus is given by H2
* 

= 2q*(1 – q*)A/(1+A), where A = –4Neκ (e.g., Charlesworth and Charlesworth 2010, 

p.355). The change in the expected heterozygosity at the selected locus at time t, H2 t, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 4, 2016. ; https://doi.org/10.1101/042390doi: bioRxiv preprint 

https://doi.org/10.1101/042390
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  
	
  
	
  
	
  
	
  
	
  

45	
  

is approximately equal to the expectation of 2(1 – 2qt)Δq(qt); combining this with 

Equations A2 yields the following recursion relation:	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  H2 t ≈ H2
* − (H20 −H2

*)exp[−t(1− 4Nκ ) / (2N )] (A3) 	
   	
  
 

Because H2  is twice the expectation of pq, Equation A3 was used in Equations 4 for 

determining the approximate apparent selection coefficients. 

 

Approximate neutral recursion relations for the expectation of r2  
 

For the purely neutral case,	
  Sved (1972) proposed the following approximation for the 

recursion relation for the expected correlation coefficient in generation t, E{rt
2}: 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  E{rt
2} ≈ 1

2N
+ (1− 2c− 1

2N
)E{rt−12 } (A4a)  

 

where c is the frequency of recombination between the two loci, assumed to be << 

0.5. Since mutation at the B locus reduces the coefficient of linkage disequilibrium D 

with the A locus by u + v each generation, this equation should be modified as 

follows: 

 

                      E{rt
2} ≈ 1

2N
+[1− 4N(c+u+ v)+1

2N
]E{rt−12 } (A4b)  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
  	
   	
   	
  
 

This yields the equilibrium solution: 

 

                                               E*{r
2} ≈1/ (1+ 2 "C ) (A4c)                                            

where C´ = 2N	
  (c + u + v).	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
    

 If the initial population is in linkage equilibrium, Equations A4 yield the 

following homogeneous recursion relation: 
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                                  E{rt
2} ≈ E*{r2}{1− exp(1+ 2 #C ) / (2N )]} (A5)       

       
 

This suggests the following expression for σd
2 = E{D2}/E{xypq}: 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  σ d, t
2 ≈σ *d

2 {1− exp(1+ 2 #C ) / (2N )]} (A6a)
	
  

 

where the equilibrium value of σd
2  is given by the following expression (Ohta and 

Kimura 1971):  

                                          σ *d
2 ≈

(5+ "C
(11+ "C )(1+ "C )

(A6b)  
                        

]
                                                 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
The simulation results show that Equation A6a tends to overestimate E{ r2} 

up to t = 0.5N; it is quite accurate for later generations up to t = N, and tends to 

underestimate E{r2} thereafter. Equation A5 gives a better approximation for the 

earlier and later generations, but a worse approximation for the intermediate 

generations. 

 

Expectations of the reciprocals of the allele frequencies at the neutral 
locus 
The expectations of x–1 and y–1 = (1 – x) –1, conditioned on segregation at locus A, for 

use in Equations 3 and 9, can be derived using the diffusion equation solution for the 

case of pure drift (Kimura 1955), under the assumption that departures from strict 

neutrality can be neglected as a first-order approximation. For this purpose, it is 

convenient to rescale time in units of 2N generations, such that T = t/(2N). Using the 

first three terms in the series expansion for the unconditional probability density of 

the frequency x of A1 at time T, given an initial frequency of x0, we have: 
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φ(x, T ) ≈ 6x0y0 exp(–T )+30x0 (y0 – x0 )(y− x)exp(−3T )

+84(1− 5x0y0 )(1− 5xy)exp− (6T ) (A7)  

  

 The expected frequency of heterozygotes at locus A at time T is  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  H1(T ) ≈ 2x0y0 exp(–T ) (A8) 	
  
 

 To determine the conditional probability of x for a segregating population, we 

need the probability that the population is still segregating for A1 and A2 at time T, 

given by Equation 8.4.9 of Crow and Kimura (1970). Using the first two terms in the 

series, we have 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Ps (T ) ≈ 6x0y0 exp(–T )+14x0y0 (1− 5x0y0 )(y− x)exp(−6T ) (A9)  
  

 The conditional probability density of x at time T is then given by φ/Ps, which 

can be used to determine the mean of x–1 at time T for segregating populations: 

 

Es{x
−1, T} = Ps (T )

−1 x−1
1/(2N )

1−(1/2N )

∫ φ(x, t) dx

≈ Ps (T )
−1{6x0y0 ln(2N )[exp(–T )+ 5x0 (y0 – x0 )(y− x)exp(−3T )+14(1− 5x0y0 )exp(−6T )]

−12x0y0[(y0 – x0 )exp(−3T )− (35 / 2)(1− 5x0y0 )exp(−6T )]} (A10)
 

  

An equivalent expression for the expectation of y–1 can be obtained by interchanging x 

and y and x0 and y0 in these equations. 

 For sufficiently large T, Equation A7 implies that the conditional probability 

distribution becomes uniform, regardless of the initial frequency, so that its mean 

should be well approximated by   

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Es{x
−1,∞} = Es{(1− x)

−1,∞} ≈ ln(2N )+γ (A11)  
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where γ is Euler’s constant (approximately 0.5772) for the difference between the 

sum and integral of 1/x. 

 As was pointed out by Fisher (1930), there is a slight departure of the 

asymptotic distribution from a uniform distribution, due to the inaccuracy of the 

diffusion approximation near the frequencies 0 and 1, with fewer frequencies in the 

subterminal classes close to either boundary, although the distribution is still 

symmetrical about 0.5. Using the table of exact values computed by Fisher for the 

first 10 classes from 1/(2N)  upwards, and from 1 – 1/(2N) downwards, the asymptotic 

conditional means are slightly greater than the above value, by 2.299 – [2.6556 x 

2N/(2N – 1)]. Addition of this term to Equation A11 provides a slightly more accurate 

approximation for the long-term expectation of the reciprocals of the allele 

frequencies, which was used to calculate the asymptotic expected selection 

coefficients.  
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Table 1     Simulation and theoretical results for one locus subject to mutation to    
deleterious alleles 

     
a Approximation using  neutral r2 recursion; b Approximation using neutral σ2

d 
recursion; cApproximation using matrix recursion with selection; d Expectation from 
neutral simulations.  
 
Standard errors for 107 simulations are shown in parentheses. 

 
  
              Generation 0.5N                                 Generation 2N 
              

  
2Ns = 1, h = 0.1, 2Nu = 0.1, 2Nv = 0.01, qeq = 0.296, N = 50, x0 = 0.5 
 

  2N s              2N t          Hrel             Ps               2N s         2N t            Hrel         Ps 

 
  

 
  

C = 0        
0.068  
(0.00003)  

0.085a 

0.153b 
0.088 c 

0.068  
(0.00003)  
0.085 a 
0.153b 
0.088 c 

1.0004 
(0.0001) 
 1.0004c 
 

0.9843  
(0.00004) 
 0.9841 
(0.00004)d  

0.134  
(0.00009) 

0.263 a 
0.185 b 

0.190c 
 

0.134 
(0.00009) 
0.263 a 
0.185 b 

0.190c 
 

1.0082 
(0.0003) 

1.0083c 

0.5403  
(0.0002)0.
5375  

(0.0002)d 

  

 
C = 0.1        
0.067  
(0.00003) 

0.083 a 
0.141b 

0.066 c 

0.067  
(0.00003)  

0.083 a 
0.141b 

0.066 c 

1.0002 
(0.0001)  
1.0004c 

0.9842 
(0.00004)  
 

0.124 
(0.00008)  

0.173a 
0.230b 

0.344c 
 

0.124  
(0.00008)  

0.174 a 
0.230 b 

0.344c 
 

1.0076 
(0.0003)  
1.0078c 
 

0.5399  
(0.0002)  
 

C = 1        
0.055  
(0.00003)  

0.068 a 
0.084b 

0.070 c 

0.055  
(0.00003)  

0.068 a 
0.084 b 

0.070 c 

1.0004 
(0.0001)  

1.0003c 
 

0.9843  
(0.0004)  
 

0.071  
(0.00006)  

0.139 a 
0.102b 

0.146c 
 

0.071  
(0.00006) 

0.139 a 
0.102 b 

0.146c 
 

1.0050 
(0.0003)  

1.0048c 
 

0.5390  
(0.0002)  
 

C = 10        
0.018  
(0.00001)  

0.019 a 
0.017b 

0.018 c 

0.018  
(0.00001)  

0.019 a 
0.017 b 

0.018 c 

1.0000 
(0.0001)  

1.0001c 
 

0.9842 
(0.0004)  
 

0.014  
(0.00002)  
0.023 a 
0.021b 

0.022c 
 

0.014  
(0.00002) 

0.023 a 
0.021 b 

0.022c 
 

1.0001 
(0.0003)  

1.0005c 
 

0.5370  
(0.0002)    
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             Generation 0.5N                                 Generation 2N 
 
 
2Ns = 1, h = 0.1, 2Nu = 0.1, 2Nv = 0.01, qeq = 0.296, N = 50, x0 = 0.1 
 

        2N s          2N t          H rel             Ps               2N s         2N t           H rel         Ps 
 

 

 

 

 

 

 

 

 

 

C = 0        
0.150  
(0.00007)  

0.389a 

0.701b 
0.404 c 

0.030  
(0.00002)  
0.070 a 
0.126b 
0.075 c 

1.0007 
(0.0004)  
1.0004c 

0.5534  
(0.0002)  
0.5536 
(0.0002)d 
 

0.157  
(0.00015)  

0.357 a 
0.252 b 

0.374 c 

0.113  
(0.00013) 

0.182 a 
0.129 b 

0.192 c 

1.0090  
(0.0007) 

1.0083c 

 0.1967 
(0.0001) 
 0.1956 
(0.0001)d  
 

C = 0.1        
0.147 
(0.00008) 

0.380 a 
0.648b 

0.394 c 

0.030  
(0.00002)  

0.068 a 
0.116 b 

0.071 c 

1.0008 
(0.0004)  
1.0004c 

0.5531  
(0.0002)  
 

0.145  
(0.00015)  

0.331 a 
0.233b 

0.348 c 

0.105  
(0.00012)  

0.169 a 
0.119 b 

0.178 c 

1.0072  
(0.0007)  
1.0078c 

0.1964  
(0.0001) 
 

C = 1        
0.127  
(0.00007)  

0.311 a 
0.388b 

0.322 c 

0.025  
(0.00002)  

0.056 a 
0.070b 

0.058 c 

0.9999 
(0.0004)  

1.0003c 

0.5531  
(0.0002)  
 

0.085 
(0.00011)  

0.188 a 
0.139 b 

0.199 c 

0.058  
(0.00008) 

0.096a 
0.007 b 

0.010 c 

1.0052 
(0.0007)  

1.0048c 

0.1958  
(0.0001)  
 

C = 10        
0.053  
(0.00004)  

0.086 a 

0.080b 

0.087 
 
0.080b 

0.087 c 

0.008  
(0.00001)  

0.015 a 
0.014b 

0.015 c  

1.0000 
(0.0004)  

1.0001c 

0.5532  
(0.0002)  
 

0.018  
(0.00004)  
0.031 a 
0.029 b 

0.032 c 

0.011  
(0.00002) 

0.016 a 
0.015 b 

0.016 c 

1.0001  
(0.0007)  

1.0005c 

0.1956 
(0.0001)  
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              Generation 0.5N                                 Generation 2N 
 

2Ns = 1, h = 0.45, 2Nu = 0.15, 2Nv = 0.01, qeq = 0.311, N = 50, x0 = 0.5 
 

   2N s           2N t           Hrel            Ps              2N s          2N t          Hrel          Ps 
 
 

 
 
 
 
 
 
 
  

C = 0        
0.008  
(0.00001)  

0.011a 

0.018b 
0.011 c 

0.008  
(0.00001)  
0.011 a 
0.018b 
0.011 c 

0.9999 
(0.0001)  
0.9999 c 

0.9841  
(0.00004)  
0.9841 
(0.00004)d  

0.016 
(0.00001)  
0.031 a 
0.022b 

0.034 c 

0.016 
(0.00001) 
0.031 a 
0.022 b 

0.034 c   

0.9976        
(0.0003) 

0.9974 c 

0.5360  
(0.0002) 
0.5375  

(0.0002)d 

C = 0.1        
0.008  
(0.00001) 

0.010 a 
0.016b 

0.011 c 

0.008  
(0.00001)  

0.010 a 
0.016 b 

0.011 c 

0.9999 
(0.0001)  
0.9999 c  

0.9842 
(0.00004)  

 

0.014  
(0.00001)  

0.028 a 
0.020b 

0.031 c 

0.014 
(0.00001)  

0.028 a 
0.020 b 

0.031 c 

0.9978  
(0.0003)  
0.9976 c 

0.5361  
(0.0002) 
 

C = 1        
0.007  
(0.00001)  
0.008 a 
0.010b 

0.009 c 

0.007 
(0.00001)  

0.008 a 
0.010 b 

0.009 c 

0.9999 
(0.0001)  

0.9999 c 

0.9841  
(0.0004)  
 

0.009  
(0.00001)  

0.017a 
0.013b 

0.018c 

0.009 
(0.00001) 

0.017 a 
0.013 b 

0.018c 

0.9988  
(0.0003)  

0.9985c 

0.5364  
(0.0002)  
 

C = 10        
0.002  
(0.00001)  

0.002 a 
0.002b 

0.002c 

0.002 
(0.00001)  

0.002 a 
0.002 b 

0.002c 

0.9998 
(0.0001)  

1.0000 c 

0.9842 
(0.0004)  
 

0.002  
(0.00002)  
0.003 a 
0.003b 

0.004 c 

0.002 
(0.00002) 

0.003 a 
0.003 b 

0.004 c 

0.9999  
(0.0003)  

0.9999c 

0.5368  
(0.0002)  
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                   Generation 0.5N                                 Generation 2N 

              
 2Ns = 1, h = 0.45, 2Nu = 0.15, 2Nv = 0.01, qeq = 0.311, N = 50, x0 = 0.1 

 
           2N s           2N t           H rel            Ps              2N s          2N t         H rel          Ps 

 
 

      
 
 
 

  
 

 

	
   	
  

C = 0        
0.019  
(0.00001)  

0.049a 

0.083b 
0.051 c 

0.004  
(0.00002)  
0.009a 

0.015b 
0.009 c 

1.0005 
(0.0004)  
0.9999c  

0.5531  
(0.0002)  
0.5536  
(0.0002)d 
 

0.019  
(0.00002)  

0.042 a 
0.030 b 

0.046 c 

0.013 
(0.00002) 

0.021 a 
0.015 b 

0.023 c 

0.9999 
(0.0007) 

0.9974c 

0.1953  
(0.0001) 
0.1956 
(0.0001)d 

C = 0.1        
0.015  
(0.00001) 
0.038 a 
0.065b 

0.049 c 

0.003  
(0.00002) 

0.007 a 
0.012b 

0.009 c 

0.9995 
(0.0004)  
0.9999c  

0.5534 
(0.0002)  

 

0.015  
(0.00002)  

0.033 a 
0.023b 

0.043 c 

0.010  
(0.00002)  

0.017 

a0.012b 

0.022 c 

0.9975  
(0.0007)  
0.9976c 

0.1951  
(0.0001) 
 

C = 1        
0.016  
(0.00001)  

0.039 a 
0.047b 

0.041 c 

0.003  
(0.00002)  

0.007 a 
0.008b 

0.007 c 

0.9998 
(0.0004)  

0.9999c 

0.5528  
(0.0002)  
 

0.010  
(0.00001)  

0.023 a 
0.017b 

0.025 c 

0.007  
(0.00001) 

0.012 a 
0.009b 

0.010 c 

0.9988  
(0.0007)  

0.9985c 

0.1954  
(0.0001)  
 

C = 10        
0.007  
(0.00001)  

0.010 a 
0.010b 

0.012 c 

0.001  
(0.00001)  

0.001 a 
0.002b 

0.002 c 

0.9997 
(0.0004)  

1.0000c 

0.5531 
(0.0002)  
 

0.002  
(0.00001)  
0.004 a 
0.003b 

0.004 c 

0.001 
(0.00001) 

0.002 a 
0.002b 

0.002 c 

0.9990 
(0.0007)  

0.9999c 

0.1952  
(0.0001)  
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      Table 2     Simulation results for two loci subject to mutation to deleterious  
              alleles 
 

  
a Single locus simulation values multiplied by 2; b Expectation from neutral 
simulations. 
 
Standard errors for 5 x 106 simulations with 2 selected loci are shown in 
parentheses. 
 

 
  

                Generation 0.5N                                 Generation 2N 
             

  2Ns =1, h = 0.1, 2Nu = 0.1, 2Nv = 0.01, qeq = 0.296, N = 50, x0 =0.5 
 
            2N s          2N t          Hrel             Ps               2N s           2N t            H el         Ps 
 

 
 

 
 
 
 
 
 
 

C = 0        
0.142  
(0.00001) 
0.136 a 

 

0.142  
(0.00001) 
0.136 a 

 

1.0008 
(0.0001)  
 

0.9842  
(0.00006)  
0.9841 
(0.00004)b  

0.294  
(0.00003)  

0.268 a 

 
 

0.297 
(0.00003) 
0.268 a 

 
 

1.0180 
(0.0004) 

 

0.5444  
(0.0002) 
0.5375  

(0.0002)b 

C = 0.1        
0.139  
(0.00001) 

0.134a 

 

0.139  
(0.00001)  

0.134a 

 

1.0001 
(0.0001)  
 

0.9843 
(0.00006)  
 

0.272 
(0.00003)  

0.248 a 

 

0.272 
(0.00003)  

0.248 a 

 

1.0159 
(0.0005)  
 

0.5433  
(0.0002)  
 

C = 1        
0.115  
(0.00001) 
0.110a 

  

0.115  
(0.00001)  

0.110a 

 

1.0007 
(0.0001)  

 

0.9843  
(0.0006)  
 

0.151  
(0.00002)  

0.142 a 

 

0.151  
(0.00002) 

0.142 a 

 

1.0010 
(0.0005)  

 

0.5412  
(0.0002)  
 

C = 10        
0.037  
(0.00001) 
0.036 a  
  

 

0.037  
(0.00001)  

0.036 a  
 

1.0002 
(0.0001)  

 

0.9841 
(0.0006)  
 

0.028  
(0.00001)  
0.028 a 

 

0.028  
(0.00001) 

0.028 a 

 

1.0000 
(0.0005)  

 

0.5372  
(0.0002)    
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                    Generation 0.5N                                 Generation 2N  
 
2Ns = 1, h = 0.1, 2Nu = 0.1, 2Nv = 0.01, qeq = 0.296, N = 50, x0 = 0.1 
 

                   2N s        2N t          Hrel             Ps               2N s            2N t            Hrel           Ps  
           

      
 
                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C = 0        
0.018  
(0.0001)  

0.016 a 

 

0.018  
(0.0001)  
0.016 a 

 

0.9999 
(0.0001)  
 

0.9842  
(0.00006)  
0.9841 
(0.00004)b  

0.036 
(0.00003)  
0.032 a 

 

0.036 
(0.00003) 
 0.032 a 

 

0.9952        
(0.0005) 

 

0.5352  
(0.0002) 
0.5375  

(0.0002)b 
C = 0.1        
0.018  
(0.0001) 

0.016 a 

 

0.018  
(0.0001)  

0.016 a 

 

0.9999 
(0.0001)  
 

0.9841 
(0.00006)  

 

0.034  
(0.00003)  

0.030 a 

 

0.034 
(0.00003)  

0.030 a 

 

0.9961  
(0.0005)  
 

0.5356  
(0.0002) 
 

C = 1        
0.015  
(0.0001)  
0.014 a 

 

0.015 
(0.0001)  

0.014 a 

 

0.9996 
(0.0001)  

 

0.9841  
(0.0006)  
 

0.019  
(0.00002)  

0.018 a 

 

0.019 
(0.00002) 

0.018 a 

 

0.9975  
(0.0005)  

 

0.5360  
(0.0002)  
 

C = 10        
0.005  
(0.0001)  

0.004 a 

 

0.005 
(0.0001)  

0.004 a 

 

0.9999 
(0.0001)  

 

0.9842 
(0.0006)  
 

0.004  
(0.0001)  
0.004 a 

 

0.004 
(0.0001) 

0.004 a 

 

0.9998  
(0.0005)  

 

0.5337  
(0.0002)  
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                Generation 0.5N                                 Generation 2N 
 
2Ns =1, h = 0.45, 2Nu = 0.15, 2Nv = 0.01, qeq = 0.311, N = 50, x0 = 0.5 
	
  

           2N s               2N t          Hrel             Ps               2N s            2N t               Hrel         Ps  

 

 
 
                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C = 0        
0.018  
(0.0001)  

0.016 a 

 

0.018  
(0.0001)  
0.016 a 

 

0.9999 
(0.0001)  
 

0.9842  
(0.00006)  
0.9841 
(0.00004)b  

0.036 
(0.00003)  
0.032 a 

 

0.036 
(0.00003) 
 0.032 a 

 

0.9952        
(0.0005) 

 

0.5352  
(0.0002) 
0.5375  

(0.0002)b 
C = 0.1        
0.018  
(0.0001) 

0.016 a 

 

0.018  
(0.0001)  

0.016 a 

 

0.9999 
(0.0001)  
 

0.9841 
(0.00006)  

 

0.034  
(0.00003)  

0.030 a 

 

0.034 
(0.00003)  

0.030 a 

 

0.9961  
(0.0005)  
 

0.5356  
(0.0002) 
 

C = 1        
0.015  
(0.0001)  
0.014 a 

 

0.015 
(0.0001)  

0.014 a 

 

0.9996 
(0.0001)  

 

0.9841  
(0.0006)  
 

0.019  
(0.00002)  

0.018 a 

 

0.019 
(0.00002) 

0.018 a 

 

0.9975  
(0.0005)  

 

0.5360  
(0.0002)  
 

C = 10        
0.005  
(0.0001)  

0.004 a 

 

0.005 
(0.0001)  

0.004 a 

 

0.9999 
(0.0001)  

 

0.9842 
(0.0006)  
 

0.004  
(0.0001)  
0.004 a 

 

0.004 
(0.0001) 

0.004 a 

 

0.9998  
(0.0005)  

 

0.5337  
(0.0002)  
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  Generation 0.5N                                 Generation 2N 
 
 2Ns =1, h = 0.45, 2Nu = 0.15, 2Nv = 0.01, qeq = 0.311, N = 50, x0 = 0.1 
 
            2N s               2N t          Hrel             Ps               2N s         2N t            Hrel           Ps  

           
	
  

 
 

  

C = 0        
0.044  
(0.0002)  

0.038 a 
 

0.003  
(0.0002)  
0.008a 

0.9988 
(0.0005)  
 

0.5526  
(0.0002)  
0.5536  
(0.0002)b 
 

0.045  
(0.0004)  

0.038a 

0.028 
(0.0004) 

0.026a 

0.9955 
(0.0010) 

 

0.1947  
(0.0002) 
0.1956 
(0.0001)b 

C = 0.1        
0.043  
(0.0002) 
0.038a 

 

0.004  
(0.0002) 

0.008a 

0.9994 
(0.0005)  
 

0.5530 
(0.0002)  

 

0.043  
(0.0004)  

0.034a 

0.027  
(0.0004)  

0.024a 

0.9948  
(0.0010)  
 

0.1947  
(0.0002) 
 

C = 1        
0.040  
(0.0002)  

0.036a 
 

0.003  
(0.0002)  

0.006a 

0.9998 
(0.0005)  

 

0.5530  
(0.0002)  
 

0.032  
(0.0004)  

0.020a 

0.019  
(0.0004) 

0.014 

0.9967 
(0.0010)  

 

0.1949  
(0.0002)  
 

C = 10        
0.022  
(0.0001)  

0.014a 
 

0.001  
(0.0001)  

0.002a 

1.0002 
(0.0005)  

 

0.5531 
(0.0002)  
 

0.008  
(0.0002)  
0.004a 

0.005 
(0.0002) 

0.002 a 

1.0007  
(0.0010)  

 

0.1956  
(0.0003)  
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        Table 3    Simulation and theoretical results for a single locus with  
        heterozygote advantage 
 

a Approximation using  neutral r2 recursion; b Approximation using neutral σ2
d 

recursion; cApproximation using matrix recursion with selection; d Expectation from 
neutral simulations.  
 
Standard errors for 107 simulations are shown in parentheses. 
 

   2Ns = 0.2, 2Nt = 0.2, qeq = 0.5, N = 50, x0 =0.5 
 

          
     2N s          2N t             Hrel             Ps               2N s          2N t               Hrel             Ps  

 
 

 
 

 
 

 
 
 

C = 0        
0.043  
(0.00002)  

0.051a 

0.105b 
0.053c 

0.043  
(0.00002)  
0.051a 
0.105b 
0.053c 

1.0003 
(0.0001) 
1.0003 c    
 

0.9841  
(0.00004)  
0.9841 
(0.00004)d  

0.091  
(0.00005)  

0.138 a 
0.099 b 

0.142c 
 

0.091 
(0.00005) 
0.138 a 
0.099 b 

0.142c 
 

1.0088 
(0.00035) 

1.0083 c 
 

0.5404  
(0.0002) 
0.5375  

(0.0002)d 

C = 0.1        
0.042  
(0.00002) 

0.051a 
0.096b 

0.051c 
 

0.042  
(0.00002)  

0.051a 
0.096b 

0.051c 
 

1.0002 
(0.0001)  

1.0003 c 
 

0.9842 
(0.00004)  
 

0.083 
(0.00005)  

0.127a 
0.090b 

0.143c 
 

0.083  
(0.00005)  

0.127a 
0.090 b 

0.143c 
 

1.0078 
(0.00035)  

1.0078 c 
 
 

0.5400  
(0.0002)  
 

C = 1        
0.035  
(0.00002)  

0.041a 
0.054b 

0.043c 
 

0.035  
(0.00002)  

0.041a 
0.054b 

0.043c 
 

1.0002 
(0.0001)  
1.0003 c 

0.9842 
(0.0004)  
 

0.043  
(0.00003)  

0.069 a 
0.051b 

0.077c 

 

0.043  
(0.00003) 

0.069 a 
0.051 b 

0.077c 

 

1.0048 
(0.00035)  

1.0046 c 
 

 

0.5389  
(0.0002)  
 

C = 10        
0.011  
(0.00001)  

0.011a 
0.010b 

0.011c 
 

0.011  
(0.00001)  

0.011a 
0.010 b 

0.011c 
 

1.0001 
(0.0001) 
1.0001 c   

 

0.9842 
(0.0004)  
 

0.007  
(0.00001)  
0.010 a 
0.010b 

0.010 c 
 

0.007  
(0.00001) 

0.010 a 
0.010 b 

0.010 c 
 

1.0004 
(0.00035) 
1.0004 c 
  

 

0.5372  
(0.0002)    
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                                       Generation 0.5N                                 Generation 2N 
 

    2Ns = 0.2, 2Nt = 0.2, qeq = 0.5, N = 50, x0 =0.1 
 

        2N s          2N t            Hrel               Ps                2N s          2N t            Hrel          Ps  
 
 

 
 

 
 
 
 
 
 
 
 
 
 
                             
    Generation 0.5N                                 Generation 2N 

C = 0        
0.094  
(0.00004)  

0.246a 

0.505b 
0.258c 

 

0.019  
(0.00001)  
0.044a 
0.091b 
0.046c 
 

1.0002 
(0.0004)  
1.0003 c    
 

0.5533  
(0.0002)  
0.5536  
(0.0002)d 
 

0.105  
(0.00009)  

0.190a 
0.137b 

0.212c 
 

0.077  
(0.00008) 

0.097a 
0.070b 

0.108c 

1.0082  
(0.0007) 

1.0083 c 
 

0.1966  
(0.0001) 
0.1956 
(0.0001)d 

C = 0.1        
0.092  
(0.00004) 

0.240 a 
0.459b 

0.251c 
 

0.020  
(0.00001)  

0.043a 
0.082 b 

0.043 c 
 

1.0005 
(0.0004)  

1.0003 c 
 
 

0.5535  
(0.0002)  
 

0.096  
(0.00008)  

0.161a 
0.114b 

0.179a 
 

0.070  
(0.00007)  

0.082a 
0.058b 

0.092c 
 

1.0311 
(0.0007)  
1.0078c 

0.1964  
(0.0001) 
 

C = 1        
0.079  
(0.00004)  

0.200 a 
0.262b 

0.210c 
 

0.016  
(0.00001)  

0.036a 
0.047b 

0.037c 
 

1.0008 
(0.0004)  

1.0003 c 

0.5533  
(0.0002)  
 

0.071 
(0.00006)  

0.091a 

0.066 b 

0.103c 

 

0.035  
(0.00005) 

0.047a 
0.034b 

0.061c 
 

1.0053 
(0.0007)  

1.0046 c 
 

0.1962  
(0.0001)  
 

C = 10        
0.032  
(0.00002)  

0.056a 
0.052b 

0.056c 
 

0.005  
(0.00001)  

0.010a 
0.009b 

0.011c 

1.0004 
(0.0004)  

1.0001 c   

 

0.5532  
(0.0002)  
 

0.008  
(0.00002)  
0.016 a 
0.015 b 

0.016 c 
 

0.005  
(0.00001) 

0.008a 
0.007b 

0.008 c 
 

1.0004  
(0.0007)  

1.0004 c 
 

0.1956 
(0.0001)  
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2Ns = 0.2, 2Nt = 0.1, qeq = 0.667, N = 50, x0 =0.5 
 
2N s               2N t           Hrel               Ps                   2N s          2N t           Hrel          Ps 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C = 0        
0.029  
(0.00001)  

0.034a 

0.070b 

0.036c 

 

0.029  
(0.00001)  
0.034 a 
0.070b 
0.036c 

 

1.0002 
(0.0001) 
1.0002 c    
 

0.9842  
(0.00004)  
0.9841 
(0.00004)d  

0.060 
(0.00004)  
0.089 a 
0.064b 

0.101c 
 

0.060 
(0.00004) 
0.089 a 
0.064 b 

0.101c 
 

1.0048        
(0.0004) 
1.0054 c       
 

 

0.5387  
(0.0002) 
0.5375  

(0.0002)d 

C = 0.1        
0.028  
(0.00001) 

0.033 a 
0.064b 

0.035c 
 

0.028  
(0.00001)  

0.033 a 
0.064 b 

0.035c 
 

1.0002 
(0.0001) 
1.0002 c    
 

0.9842 
(0.00004)  

 

0.055  
(0.00003)  

0.082 a 
0.058b 

0.093 a 
 

0.055 
(0.00003)  

0.082 a 
0.058 b 

 

1.0043  
(0.0004) 
1.0051 c       
  
 

0.5386  
(0.0002) 
 

C = 1        
0.023  
(0.00001)  
0.027 a 
0.036b 

0.028c 
 

0.023 
(0.00001)  

0.027 a 
0.036 b 

0.028c 
 

1.0001 
(0.0001)  

1.0002 c 

0.9842  
(0.0004)  
 

0.028  
(0.00002)  

0.045a 
0.032b 

0.051a 
 

0.028 
(0.00002) 

0.045 a 
0.032 b 

0.051a 
 

1.0024 
(0.0004) 
1.0030 c       
  

 

0.5380  
(0.0002)  
 

C = 10        
0.007  
(0.00001)  

0.007 a 
0.007b 

0.007 c 
 

0.007 
(0.00001)  

0.007 a 
0.007 b 

0.007 c 
 

1.0001 
(0.0001)  

1.0001 c 

 

0.9842 
(0.0004)  
 

0.004  
(0.00001)  
0.007a 
0.006b 

0.007c 
 

0.004 
(0.00001) 

0.007 a 
0.006 b 

0.007c 
 

1.0007  
(0.0003) 
1.0002 c       
  

 

0.5373  
(0.0002)  
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                                 Generation 0.5N                                 Generation 2N 
 
2Ns = 0.2, 2Nt = 0.1, qeq = 0.667, N = 50, x0 =0.1 
 
   2 N s          2N t            Hrel             Ps                2N s          2N t            Hrel          Ps 

 

 
 

 
 

  

C = 0        
0.062  
(0.00003)  

0.165a 

0.034b 
0.171c 

0.013  
(0.00001)  
0.030a 

0.061b 
0.031c 

1.0023 
(0.0004)  
1.0002c  

0.5534  
(0.0002)  
0.5536  
(0.0002)d 
 

0.069  
(0.00006)  

0.121 a 
0.087 b 

0.137 c 

0.051 
(0.00006) 

0.062 a 
0.044 b 

0.070c 

1.0056 
(0.0007) 

1.0054c 

0.1962  
(0.0001) 
0.1956 
(0.0001)d 

C = 0.1        
0.061  
(0.00003) 
0.161 a 
0.309b 

0.178 c 

0.013  
(0.00001) 

0.029 a 
0.055b 

0.032 c 

1.0024 
(0.0004)  
1.0002c 

0.5531 
(0.0002)  

 

0.063 
(0.00006)  

0.111 a 
0.079b 

0.178 c 

0.046  
(0.00005)  

0.057 a 
0.040b 

0.091c 

1.0198  
(0.0007)  
1.0051c 

0.1961  
(0.0001) 
 

C = 1        
0.053  
(0.00003)  

0.131 a 
0.172b 

0.137 c 

0.010  
(0.00001)  

0.024 a 
0.031b 

0.025 c 

1.0010 
(0.0004)  

1.0002c 

0.5532  
(0.0002)  
 

0.033  
(0.00004)  

0.061 a 
0.044b 

0.070 c 

0.023  
(0.00003) 

0.031 a 
0.023b 

0.035 c 

1.0021  
(0.0007)  

1.0030c 

0.1959  
(0.0001)  
 

C = 10        
0.021  
(0.00001)  

0.035 a 
0.033b 

0.035 c 

0.003  
(0.00001)  

0.006 a 
0.006b 

0.006 c 

1.0000 
(0.0004)  

1.0001c 

0.5531 
(0.0002)  
 

0.006  
(0.00001)  
0.009 a 
0.008b 

0.010 c 

0.003 
(0.00001) 

0.005 a 
0.004b 

0.006 c 

0.9997  
(0.0007)  

1.0002c 

0.1953  
(0.0001)  
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Figure Legends 
 
 

Figure 1   A comparison of the simulation results (red dots, with 95% confidence interval 

error bars) with the matrix approximation (black dots) for the case of mutation and 

selection. The scaled selection coefficient and recombination rates are S = 1 and C = 

0.1. The population size is N = 50; the initial frequency of the neutral allele A1 is x0 = 0.5; 

the dominance coefficient is h = 0.1 for A and B and h = 0.45 for Panels C and D. The 

mutation rates are such that the equilibrium frequency of the deleterious allele B2, q*, is 

approximately 0.3, with v = 0.1u. Panels A and C show the heterozygosity relative to 

neutral expectation at the A locus, Hrel; Panels B and D show the change in 

heterozygosity per generation at the A locus due to selection at the B locus, ΔHsel.  h = 

0.1 and h = 0.45  are on opposite sides of the critical h value (approximately  0.37 for 2N 

generations), so that Panel A shows a retardation of loss of neutral variability, whereas 

Panel C shows an acceleration. 

 

Figure 2  The heterozygosity at the A locus relative to neutral expectation, Hrel, as a 

function of the dominance coefficient, h, at generations N and 2N, for the case of 

mutation and selection. S = 1, C = 0.1, N = 50 and q* = 0.3. The results were obtained 

using the matrix approximation.  

 

Figure 3  The critical dominance coefficient, hc, as a function of the scaled selection 

coefficient, S, for the case of mutation and selection with C = 0.1 and N = 50. The initial 

frequency of A1 was 0.5. The blue line is the value of hc given by Equation 18. The 

dashed lines represent the values obtained from the matrix approximation at generation 

2N, for several different values of the equilibrium frequency, q*, of the deleterious allele 

at the B locus.   

 

Figure 4  A comparison of the values of 2N ΔHsel obtained from the simulations and 

from Equation 19 (using values of Y7 = E{D2} obtained from the simulations), with C = 

0.1, q* =0.3 and N = 50. The initial frequency of A1 was 0.5. The panels display the 
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approximate results from Equation 19 (blue dots)  and the simulation results (red dots) 

or different values of S. The confidence intervals are too small to be easily seen. 

 

Figure 5    A comparison of the simulation results (red dots, with 95% confidence 

interval error bars) with the matrix approximation (black dots) for the case of 

heterozygote advantage. The left-hand panels plot Hrel and Δ Hsel against time for scaled 

selection coefficients S = 0.2 and T = 0.1; the right-hand panels give the values of these 

variables when S = 0.2 and T = 0.2. N = 50, C = 0.1, and the initial frequency of A1 was 

0.5. 
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Figure 1 

   
Figure 2 
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Figure 3 

 
Figure 4 
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Figure 5 
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