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ABSTRACT 

We explored genome-wide patterns of RT content surrounding lineage-specific gene family 

expansions in the human and mouse genomes. Our results suggest that the size of a gene family is 

an important predictor of the RT distribution in close proximity to the family members. The 

distribution differs considerably between the three most common RT classes (LINEs, LTRs and 

SINEs). LINEs and LTRs tend to be more abundant around genes of multi-copy gene families, 

whereas SINEs tend to be depleted around such genes. Detailed analysis of the distribution and 

diversity of LINEs and LTRs with respect to gene family size suggests that each has a distinct 

involvement in gene family expansion. LTRs are associated with open chromatin sites 

surrounding the gene families, supporting their involvement in gene regulation, whereas LINEs 

may play a structural role, promoting gene duplication. This suggests that gene family 

expansions, especially in the mouse genome, might undergo two phases, the first is characterized 

by elevated deposition of LTRs and their utilization in reshaping gene regulatory networks. The 

second phase is characterized by rapid gene family expansion due to continuous accumulation of 

LINEs and it appears that, in some instances at least, this could become a runaway process. We 

provide an example in which this has happened and we present a simulation supporting the 
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possibility of the runaway process. Our observations also suggest that specific differences exist in 

this gene family expansion process between human and mouse genomes. 

 

Keywords: Gene families, transposable elements, retrotransposons, LINE, LTR, SINE, human, 

mouse 
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INTRODUCTION 

 One of the surprises that emerged from the draft sequence of the human genome was that 

half or more of it is composed of interspersed repetitive DNA sequences that were thought to be 

parasitic DNA in some state of degradation (Lander et al. 2001). These transposable elements 

(TEs) were first discovered by McClintock 70 years ago (see for example (McClintock 1950)). 

TEs are mobile DNA sequences that can move from one site in a genome to another. On arrival, 

they either insert themselves directly into the genomic DNA by a cut-and-paste mechanism 

(transposons) or indirectly through an RNA intermediate (retrotransposons; RTs). Since their 

discovery, the numbers and kinds of TEs that have been described have grown into a complex 

collection that warranted a classification system (Wicker et al. 2007; Kapitonov and Jurka 2008). 

Since the TEs in mammal genomes are mostly retrotransposons: LINEs, LTRs and SINEs, we 

will refer to these collectively as RTs. 

 The idea that TEs are nothing more than parasitic DNA that infiltrated eukaryotic 

genomes has been challenged recently with the suggestion that they have played an important role 

in genome evolution (reviewed in(Fedoroff 2012)). In fact, McClintock’s observation that TEs 

can control gene expression (McClintock 1950; McClintock 1956) presaged recognition of their 

evolutionary involvement in the architecture of gene regulatory networks (Feschotte 2008; 

Bourque 2009). Since then, TEs have been found to contain functional binding sites for 

transcription factors (Jordan et al. 2003; Bourque et al. 2008; Polavarapu et al. 2008; Sundaram et 

al. 2014) and recently, DNAse I hypersensitive site (DHS) data from ENCODE were used to 

show that 44% of open chromatin regions in the human genome are in RTs, as are 63% of regions 

controlling primate-specific gene expression (Jacques et al. 2013). TEs, particularly ERVs, have 

contributed hundreds of thousands of novel regulatory elements to the primate lineage and 

reshaped the human transcriptional landscape (Jacques et al. 2013). Genes proximal to tissue-

specific hypomethylated RTs are enriched for functions performed in that tissue, (Xie et al. 

2013), emphasizing the importance of RTs in contributing to regulating tissue-specificity of gene 
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expression in the mouse. Using a ChIP-seq approach to map binding sites of 26 orthologous 

transcription factors (TFs) in the human and mouse genomes RTs have been found to contribute 

up to 40 % of some TF binding sites , most of which were species-specific with some binding 

sites being significantly expanded only in one lineage (Sundaram et al. 2014). 

 Besides their importance in gene regulation, RTs are also considered to be an important 

source of structural variation (Bourque 2009). RTs may provide homologous substrates for 

double-strand break (DSB) induced repair mechanisms, including non-allelic homologous 

recombination (NAHR) and microhomology-mediated break-induced repair (MMBIR), which 

may result in structural variation (Hastings et al. 2009). Double-strand breaks themselves may be 

associated with repetitive elements (Hedges and Deininger 2007; Argueso et al. 2008). 

Accordingly, segmental duplications and CNVs were repeatedly found to have TEs enriched at 

their edges (Bailey et al. 2003; Kim et al. 2008; She et al. 2008). Some studies confirmed directly 

the role of TEs in NAHR (Fitch et al. 1991; Janoušek et al. 2013; Campbell et al. 2014; Startek et 

al. 2015). 

 Now, a new view of the complex role of TEs in organismal evolution is being adopted, 

suggesting that TE mobilization may represent an important source of new genetic variability 

under stressful conditions (Capy et al. 2000; Fablet and Vieira 2011). A role for TEs has been 

proposed in adaptive evolution of an invasive species of ant, Cadiocondyla obscurior (Schrader et 

al. 2014). This species has a small genome with rapidly-evolving accumulations of TEs, called 

TE islands. The species produces genetically-depleted founder populations (reviewed in (Stapley 

et al. 2015)). When the genomes of two isolated populations of C. obscurior were compared, 

distinct phenotypic differences were found between them with a strong correlation between the 

TE islands and genetic variation, suggesting that these serve as a source of variation in the 

founder populations. The origin of repetitive elements often correlates with speciation events, 

suggesting that TEs might have played major roles in evolution, and possibly speciation (Jurka et 

al. 2011). (Fedoroff 2012) suggested that the evolution of a powerful epigenetic apparatus 
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enabled a proliferation of TEs and their successful co-option in the evolution of the high 

complexity of eukaryote genomes. 

 Since Ohno’s proposal that gene duplication represents an important source of new 

genetic material (Ohno 1970), evidence for its importance in adaptation to changes in the 

environment has mounted (reviewed in (Kondrashov 2012)). Because gene duplication provides a 

means for gene family expansion and thus the production of new genetic material (Korbel et al. 

2008), we feel that it is time to further explore the role of TEs in the evolution of gene families. In 

a previous study (Janoušek et al. 2013), we examined the role of repeat element sequences in the 

expansions of the mouse and rat Abp gene families and found high densities of L1 and ERVII 

repeats in the Abp gene region with abrupt transitions at the region boundaries, suggesting that 

their higher densities are tightly associated with Abp gene duplication. We confirmed the role of 

L1 repeats with the identification of recombinant L1Md_T elements at the edges of the most 

recent mouse Abp gene duplication, suggesting that they served as the substrates for NAHR. We 

observed that the major accumulation of L1 elements occurred after the split of the mouse and rat 

lineages and that there is a striking overlap between the timing of L1 accumulation and the 

expansion of the Abp gene family in the mouse genome. This established a link between the 

accumulation of L1 elements and the expansion of the Abp gene family, and identified an NAHR-

related breakpoint in the most recent duplication. At that time, the reason for the large 

accumulation of ERVII elements that occurred before the gene family expansion was not obvious.  

 In the study we report here, we endeavored to determine how widespread is the 

involvement of RTs in human and mouse gene family expansions, and what putative roles these 

elements play in gene family evolution. We found a significant association between RT content 

and the size of lineage-specific gene family expansions, and LINEs and LTRs were found to have 

an important role in these. Detailed analysis revealed the complex role these elements play and 

we propose a model of interaction of LINEs and LTRs supported by the Abp gene family 

example. We also suggest that gene family expansions, especially in the mouse genome, 
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apparently occur in two phases. The first phase is characterized by elevated deposition of LTRs 

and rewiring gene regulatory networks due to an increase in number of gene copies. The second 

phase is then characterized by continuing rapid expansion due to ongoing accumulation of LINEs, 

potentially becoming a runaway process. We constructed a computer simulation to investigate the 

theoretical mechanisms that could allow this second phase to assume runaway proportions. 

 

RESULTS 

Retrotransposon content and gene family size 

We explored the densities, abundances and lengths of the three main classes of 

retrotransposons (RTs, which include LINEs, LTRs and SINEs) as a function of gene family size 

in the human and mouse genomes. The retrotransposons analyzed were active only after the 

mouse-human split and were thus lineage-specific. We began by assessing the importance of gene 

family size and window size in explaining RT densities, abundances, and average lengths in the 

two species separately. In these considerations, gene family sizes ranged from single genes to 

inparalog/outparalog numbers >10 genes. We tested window sizes of 10 Kb, 50 Kb, 100 Kb, 500 

Kb, 1 Mb, and 5 Mb surrounding the inparalogs/outparalogs of individual gene families. The 

effect of gene family size and window size and their interaction (i.e. the full model) was found to 

explain the data best of all possible tested models for all three RT classes in both species for the 

inparalog and outparalog datasets (Table 2; Supplemental Table 2). Akaike's information 

criterion (AIC; (Akaike 1974)) analysis exhibits the lowest values for the full model for all tested 

datasets. The estimated parameters of the full model were plotted in Fig. 1A. 

In the case of inparalogs, representing lineage-specific gene family expansions, we found 

a striking increase in the densities of LINEs and LTRs and a decrease in the densities of SINEs, 

respectively, with increasing gene family size (Fig. 1A). This was most pronounced in small 

windows (10 and 50 Kb), suggesting that RT content is altered in close proximity to genes, 

whereas, in larger windows (1 and 5 Mb), the RT densities are more similar to the genome-wide 
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average with minimal differences between single genes and large gene families. The LINE and 

LTR densities for single genes were substantially lower than the genome-wide average, in 

contrast to dramatically higher RT densities in small gene families (2-5 genes). This suggests that 

even one or a few lineage-specific duplication events producing a few inparalogs from a single 

gene have an important effect, especially in the mouse genome.  

Despite the fact that the full model fitted the outparalog dataset best (Fig. 1A), the 

patterns of RT densities changed little with respect to gene family size (from one to many genes). 

There was essentially no difference between single genes and genes of small gene families and 

only a very slight increase for larger gene families, mostly in the same direction as the densities 

for inparalogs. The effect of window size for LINEs and LTRs is considerable for gene families 

composed of outparalogs. The areas close to genes (10 and 50 Kb) have much lower densities of 

LINEs and LTRs than larger areas (1 and 5 Mb), suggesting that some functional constraints 

might be occurring. This suggests that the effect of gene family size is important mainly in 

lineage-specific expansions. 

 RT density is a function of element abundance and element length and thus it is important 

to examine the contributions of the two variables separately. The RT abundance is the natural 

logarithm of RT counts in a given window size and we scaled the counts so that they were 

comparable between windows of different sizes. We found that the full model, including gene 

family size and window size, as well as their interaction, was highly significant both for inparalog 

and outparalog datasets (Supplemental Table 3). As in the case of RT densities, the outparalog 

datasets exhibited much lower log-likelihood ratios than the inparalog datasets. Patterns of 

change in RT abundance with increasing gene family size closely followed RT density for both 

inparalogs and outparalogs (Supplemental Fig. 3), with low abundances in close proximity (10 

and 50 Kb) of single genes and outparalogs and a considerable increase for inparalogs (i.e. 

lineage-specific expansions). Abundances in larger windows (1 and 5 Mb) around genes were 

comparable to the genome-wide average for all genes.  
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In general, the distribution of average RT length was found to be quite noisy 

(Supplemental Fig. 4). Nonetheless there are clear trends in the distributions of LINEs and LTRs 

in the mouse genome as both of those RT classes increased in average element size for larger 

gene families. The pattern was generally highly significant for all inparalog datasets, while the 

significance for outparalog datasets was weak or absent (Supplemental Table 4). This suggests 

that RT abundance is more important than RT length in driving RT density increase relative to 

gene family size. However, the average RT element length also contributes to the RT density 

increase, at least for LINEs and LTRs in the mouse genome. 

We compared the RT content surrounding a representative gene family, ApoI, in human 

and mouse (Fig. 1B-C and two other examples are shown in Supplemental Fig. 5). Figure 1C 

shows a phylogeny containing ApoI human and mouse genes in different clades with the pig ApoI 

genes in several clades, including one that is a putative outgroup to the human and mouse genes. 

The ApoI regions in the human and mouse genomes are enriched both in LINEs and LTRs but not 

SINEs. This observation and that of separate clades for the two taxa are consistent with ApoI 

genes being inparalogs in the human and mouse genomes, and thus the gene expansions being 

lineage specific in the human and mouse genomes. 

Correlation between RT densities of the three RT classes and gene family size 

 We explored the relationship between densities of elements of the three RT classes and 

asked whether these differ between the three gene family size categories (i.e. single genes, small 

gene families and large gene families). Employing analysis of covariance (ANCOVA) we 

identified significant interactions between correlations of RT classes and densities and gene 

family size (Table 3, Fig. 2A). Individual correlations were also confirmed by Spearman’s 

correlation coefficient (Bonferroni correction used: n=3). The SINEs and LINEs exhibited 

negative correlation, which strengthened as the gene family size grew. Such a negative 

relationship corresponds to the overall difference in their dependence on GC content for their 

occurrence (Lander et al. 2001; Waterston et al. 2002). Interestingly, the LTR elements exhibited 
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differences in co-occurrence with the two other RT classes between gene families of the three 

size categories. Generally, there was a positive relationship between LINE and LTR densities for 

single genes and small gene families. However, for large gene families this relationship became 

negative in the mouse and non-significant in the human. More interestingly, the relationship 

between SINE and LTR densities complemented this finding. There is no correlation between 

SINEs and LTRs for single genes, a negative correlation for small gene families and a positive 

correlation for large gene families in both genomes.  

The effect of increasing gene family size on RT density and diversity for large gene families 

Given the interaction between LINE and LTR content and gene family size, we also 

explored how this relationship changes for very large gene families and how it is reflected in the 

prevalence of individual RT subfamilies. The RT subfamily diversity reflects patterns of RT 

accumulation. Assuming that only one or a few RT subfamilies of each class are active at any 

time (Batzer and Deininger 2002), then high RT subfamily diversity reflects high continuous RT 

accumulation throughout the evolution of a gene family. Comparison of density and diversity for 

individual RT classes relative to gene family size should reveal patterns of RT deposition over the 

evolutionary period. We analyzed the relationship between the average RT densities, the overall 

diversities of RT subfamilies, and the sizes of gene families undergoing lineage-specific 

expansion (Fig. 2B, C). Generalized additive models were used and smoothed relationships were 

compared to the null model to obtain significances (Supplemental Table 5). Our analysis 

provides contrasting results between the two genomes. In the mouse genome, LINE density and 

diversity exhibit a steep and continuous increase from single genes to large gene families 

(density: F2.37,3926.63 = 209.96, p-value < 2.2E-16; diversity: F1.89,429.11 = 84.483, p-value < 2.2E-

16). In the human genome, by contrast, the increase can only be seen for small gene families 

because the average LINE density and diversity does not change for large human gene families. 

The significance of the effect of human gene family size in explaining RT diversity is rather weak 

(density: F2.01,3886.99 = 61.587, p-value < 2.2E-16; diversity: F1.63,309.37 = 4.4754, p-value = 1.802E-
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02).  

 The effect of gene family size is strongly correlated with change in density and diversity 

of LTRs in both genomes (densityhuman: F1.96,3887.04 = 51.882, p-value < 2.2E-16; diversityhuman: 

F2.53,342.47 = 9.7455, p-value 1.46E-05; densitymouse: F2.53,3926.65 = 49.004, p-value < 2.2E-16; 

diversitymouse: F2.83,435.17 = 19.47, p-value = 2.31E-11). The pattern for LTRs contrasts between RT 

density and diversity. The LTR density increases for small gene families and stays steady for 

large gene families in both genomes (Fig. 2B). The LTR diversity increases for small gene 

families, however for large gene families it tends to decrease, especially in the mouse genome 

(Fig. 2C). The contrast in LINE and LTR diversity can be explained by a decrease in deposition 

of new LTRs and the passive duplication of existing LTRs along with duplicated genes. 

The age of RT subfamilies and their distribution among gene families 

We compared distributions of RT abundances for individual LINE and LTR subfamilies 

for the lineage-specific expansions of gene families of small and large sizes. The LINE and LTR 

subfamilies were ordered according to the average divergence from consensus from the youngest 

to the oldest mouse RT subfamilies. The individual gene families were hierarchically clustered 

according to the abundance pattern among individual RT subfamilies (Fig. 2D; the full data for 

both species are in Supplemental Fig. 6). It is clear that more LINE and LTR subfamilies are 

represented in the regions surrounding larger gene families, however there is no apparent age 

preference in the RT subfamilies surrounding any size gene family because all ages of 

subfamilies are found in the gene family regions. Thus there appears to be essentially no 

distinction for gene family size based on the presence of elements of specific RT subfamilies. 

The detailed patterns are also interesting because they differ somewhat between LINEs 

and LTRs. For small and large gene families, one can find gene families lacking essentially any 

LINEs, gene families over-populated by elements of essentially all LINE subfamilies and those 

which represent a transition between these two extremes. On the contrary, LTRs populate 

moderately almost all gene families without distinction to gene family size. As for the variability 
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in abundance of RT subfamilies within individual gene families, there is little variability for 

LINE subfamilies within any gene size category. Individual LTR subfamilies vary greatly in their 

abundance, especially for large gene families with some subfamilies contributing many elements 

while others contribute none (Fig. 2D). Specific differences in the activity of RT subfamilies 

between the two RT classes may cause such a distinction, however it is unlikely to explain 

differences in variability between individual gene families. 

Correlation of RT content in homologous gene families between the human and mouse genomes 

 Co-occurrence of elements of different RT subfamilies associated with the same gene 

family led us to explore interspecies correlation of RT densities for the homologous gene 

families. We found a highly significant correlation between the average RT densities for 

individual homologous gene families between the human and mouse genomes (Supplemental 

Table 6). The RT densities represent lineage-specific elements, but nonetheless their occurrence 

is correlated between the two genomes. This suggests that there was a common history in the 

environments of the homologous genes which allowed the accumulation of RT elements in the 

human and mouse lineages. These correlations are stronger for LINEs and SINEs (r2
human LINE single 

= 0.23, r2
human LINE small = 0.31, r2

human LINE large = 0.28, r2
mouse LINE single = 0.25, r2

mouse LINE small = 0.27, 

r2
mouse LINE large = 0.14, r2

human SINE single = 0.41, r2
human SINE small = 0.32, r2

human SINE large = 0.27, r2
mouse SINE 

single = 0.41, r2
mouse SINE small = 0.31, r2

mouse SINE large = 0.16) than for LTRs (r2
human LTR single = 0.10, 

r2
human LTR small = 0.07, r2

human LTR large = 0.17, r2
mouse LTR single = 0.11, r2

mouse LTR small = 0.03, r2
mouse LTR 

large = 0.07). This suggests that the common/shared history of homologous regions between human 

and mouse is more important for LINEs and SINEs than for LTRs, which tend to vary more in 

density between homologous gene families of the two genomes. LTRs thus seem to be less 

dependent on genomic region history than the other two RT classes. 

RT densities within the same functional class 

Large gene families were previously shown to be enriched for specific functions 

contrasting with the functional composition of single genes (Emes et al. 2003). We confirmed this 
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for our dataset by conducting GO term enrichment analysis among gene families of the three size 

categories (Fig. 3, Supplemental Fig. 7). Small gene families are more highly associated than 

average (red) with about half the GO term functions, where singles genes have a lower-than-

average association (blue) and large gene families have for the most part an average association 

(green). Single genes are associated more than average with a smaller percentage (~20-25%) of 

GO term functions and large gene families are associated also with about ~20-25% of functions,  

but these are different ones than the single genes (blue) and the small gene families (green). There 

are categories of GO terms that are enriched in large gene families (red) and are less often 

associated with single genes (blue), and vice versa. When this is the case, the small gene families 

are intermediate in enrichment (green).  There are also many GO categories enriched in small 

gene families (red), neutral in large families (green), and less commonly assigned to single genes 

(blue). Single gene families show associations with GO terms that are essentially opposite those 

of small and large gene families. Also, there is some functional distinction between small and 

large gene families.  

Had the RT accumulation been associated with a specific function, such a functional 

distinction between gene families of the three sizes might have been responsible for differences in 

the RT prevalence we observe for gene families of different size. To test whether the actual size 

of the gene family rather than gene function reflects the altered RT content, we studied average 

repeat densities as a function of gene family size associated with the same GO term (Fig. 3B). We 

found increases in LINE and LTR densities for all of the GO terms between single genes, small 

and large gene families. By contrast, the SINE densities exhibited the opposite pattern. All 

comparisons were highly significant (Table 4). Thus, the altered RT content appears to be 

characteristic for the multi-copy nature of gene families without respect to the functional 

categories into which the genes fall. However, the effect of function cannot be discounted 

completely. 

Association of RTs and open chromatin regions 
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The Encyclopedia of DNA Elements (ENCODE; (Consortium 2012; 

Stamatoyannopoulos et al. 2012)) catalogs DNase I Hypersensitive Sites (DHS) data representing 

regions of open chromatin and thus regulatory activity in genomes. We used DHS data from the 

human and mouse genomes to test the hypothesis that a higher abundance of RTs is associated 

with regulatory activity of genes in recently expanded gene families. We assessed potential 

overlap between the three classes of RTs and the DHS around genes of the three gene family size 

categories and found occurrences that were significantly higher or lower than the null expectation 

of randomly distributed DHS (Fig. 4).  

DHS significantly overlap LTRs around single genes and both small and large recently-

expanded gene families, supporting the regulatory hypothesis. There were, however, conflicting 

results between the two sets of DHS regions, DHS1 and DHS2. While we found an increase in 

the association of LTRs and DHS with increased gene family size for the whole DHS dataset 

(DHS1), the cell type/tissue-specific DHS2 exhibited the highest association for single genes with 

a drop in small gene families and only a slight increase for large families. In contrast to LTRs, 

LINEs were consistently underrepresented in the DHS regions in both genomes. SINEs, on the 

other hand, exhibited conflicting results, being systematically underrepresented in the human 

genome and significantly enriched around single genes and small gene families in the mouse 

genome. The trend in the mouse genome was a decrease in the association of RTs and DHS 

regions with increasing size of gene families. This strong contrast for the SINE pattern between 

the human and mouse lineages is similar to enrichment of regulatory factor CTCF-binding sites in 

lineage-specific SINEs found in rodents but not in primates and humans (Schmidt et al. 2012).  

Simulation of a second phase of rapid gene family expansion 

Our observation that the size of a gene family is an important predictor of the RT 

distribution in close proximity to the family members suggests the direct involvement of the RTs 

in the expansion process. This could have been achieved through LINEs serving as the 

homologous sequences for NAHR in what we suggest is a second phase of gene family expansion 
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characterized by rapid gene duplication due to continuous accumulation of LINEs (see 

Discussion). Intuitively, the gene clusters with duplications resulting from NAHR could be prone 

to further NAHR events with progressively more opportunities of forming additional homologous 

sequences. We feel that this process could even take on runaway proportions. However, decay in 

homology between LINEs may decrease the probability of NAHR and slow down the whole 

process of expansion. Using a simulation, we qualitatively assessed the conditions potentially 

leading to a runaway gene expansion process as defined below. 

 We developed a model to test our hypothesis that, in a second phase of gene family 

expansion, continuous accumulation of RTs causes rapid gene duplication (the simulation 

algorithm is illustrated in Supplemental Fig. 8). The population, initially fixed for a particular 

small gene family genotype, is sampled at discrete time steps. The time between steps is assumed 

to be sufficiently long for the mutant type to reach fixation (i.e. ~4Ne generations in the neutral 

case). At each step, the resident genotype either stays or, with the fixation probability ι (iota), is 

replaced by a new genotype and subjected to a new insertion of LINEs (with probability u) and to 

NAHR (with the probability µ). Due to the theoretical complications of calculating the exact 

fixation probabilities in large populations (Weissman and Barton 2012), the parameter ι is set 

arbitrarily. However, it is assumed to be dependent on the rate of recombination, the effective 

population size and/or any form of selection altering local fixation probabilities.  

The simulation was run for a range of values of ι, u and µ, for either 1,000 or 50,000 

repetitions for each combination of the three parameter values. Each run was stopped in one of 

two cases: (i) the number of genes in the cluster reached 20 or (ii) the number of simulation 

cycles reached a threshold of 1,000/50,000. In a typical run (Fig. 5A) most of the gene family 

size change occurred during relatively short time periods at the very beginning (not quite reaching 

the size threshold of 20) and near the end when the gene family size threshold was reached and 

the run stopped. Figures 5 B and C illustrate the two key properties of the cluster size dynamics 

for the combined results of 48,000 runs over a wide range of parameter values. First, the larger 
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clusters tend to undergo larger duplications or deletions during NAHR, and this effect is 

independent of the simulation parameters even though the variability in the size of 

duplication/deletion increases as the size of the cluster increases (Fig. 5B). Second, the average 

duration of runs is shorter in the large clusters relative to the small clusters (Fig. 5C). In short, the 

cluster size dynamics speed up (in either direction) as the gene cluster grows in size. Without an 

upper boundary this process has the potential to quickly create a very large number of genes, 

hence our choice of the term “runaway expansion”. This led us to seek an explanation for the 

apparent shift in the behavior of gene expansions that appears in Fig. 5 B and C to occur at a 

cluster size of ~10. We provisionally define those gene expansion events in which the average 

step size continues to rise and average run duration time continues to diminish (Fig. 5 B and C) 

as having taken on the characteristics of a runaway expansion. By contrast, the other events that 

show the average step size leveling off (or dropping) and average run duration leveling off (and 

sometimes even rising) have escaped the runaway expansion fate. As one would predict, these 

different tendencies create a noticeable increase in variance for both curves Fig. 5 B and C show. 

Increasing parameter values for ι, u and µ increased the proportion of runs that reached 

the size threshold criteria of 20 genes (endpoint, Supplemental Figs. 9A-11A). In those runs that 

reached the endpoint size criteria of 20 genes, increasing all three parameters decreased the time 

to reach the threshold (i.e. the duration of the run, Supplemental Figs. 9B-11B), and 

correspondingly, increased the mean number of NAHR events during the run (Supplemental 

Figs. 9C-11C). At the same time, decreasing the rate of NAHR (µ) allowed for the accumulation 

of more fresh LINEs, for a constant rate of insertion, u (Supplemental Figs. 10D, 11D), whereas 

increasing u had an expectedly positive effect on the frequency of insertions (Fig. 5D, 

Supplemental Figs. 9D, 10D). A certain degree of irregularity of the average response to the 

parameter variation, most notably in the average duration of the run (Supplemental Figs. 9B-

11B), can be explained by the fact that the distributions of times were often positively skewed, 

with a considerable proportion of the simulation runs taking much longer to reach the threshold 
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size > 20 for the same combination of parameter values. Figure 5E provides a single example of 

such a distribution with the main mode around 40 and a flat right tail, and with occasional smaller 

modes around 450 and 900 time cycles (Fig. 5E). 

Our model did not expressly include selection that would favor an increase in gene copy 

number, however, keeping all other things constant (rate of recombination, effective population 

size), ι can be interpreted as the fixation probability due to positive selection. Figure 6 depicts a 

change in the summary statistics over various values of ι showing that positive selection (i.e. 

higher ι) can speed-up the process of gene family expansion by reducing the average duration of a 

run. More interestingly, increasing the fixation probability due to positive selection may lead to a 

locally increased density of LINEs even when the rate of a new LINE insertion is constant. Such 

an outcome can explain the high densities of LINEs we observe in the human and especially in 

the mouse genome.  

 

DISCUSSION 

 Retrotransposons have been recognized recently as important forces shaping mammalian 

genomes and contributing considerably to organismal complexity. In a previous study (Janoušek 

et al. 2013), we found that LINE and LTR retrotransposons contributed to the evolution of the 

Androgen-binding protein (Abp) gene family in the mouse genome. Here we extend that study on 

a genome-wide scale to the human and the mouse, focusing on the general importance of these 

two RT classes in gene family expansion. We provide evidence that LINEs and LTRs interact in 

that process and we suggest that at least some gene family expansions can be divided into two 

phases. In this hypothesis, the first phase represents sub/neofunctionalization associated with 

rewiring regulatory networks by LTR elements, while the second phase accelerates gene family 

expansion by the continuous accumulation of LINEs, and in some cases this process may reach 

runaway proportions. We support this mechanism with a computer simulation. 

LINEs and LTRs are associated with gene family expansions 
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We contrasted RT content between lineage-specific and ancestral gene family expansions 

and found a striking association between RTs and gene family size of lineage-specific expansions 

in both the human and mouse genomes. This contrasts with only a weak or nonexistent 

relationship between RT content and ancestral gene families that were fully expanded in the 

common ancestor of mice and humans, suggesting that the altered RT content is directly related 

to the expansion process. There are low densities of LINEs and LTRs around single genes with a 

subsequent increase as the size of gene families expands in both genomes, whereas SINE content 

differs between the human and mouse genomes. The effect was also strong when RT densities 

were compared within the same functional category, thereby discounting functional specificity in 

driving RT accumulation. This emphasizes the role of the duplication/expansion process as such 

rather than functional differences between single genes and expanded gene families.  

LINEs and LTRs are enriched at the edges of segmental duplications (a mechanism leading to 

gene family expansion) in the mouse genome (She et al. 2008) and these elements provide a 

substrate for NAHR (Campbell et al. 2014; Startek et al. 2015). LINE elements have been found 

to be a substrate for NAHR producing the most recent duplications in the Abp gene family region 

(Janoušek et al. 2013). Bailey (Bailey et al. 2003) suggested that Alus (SINEs) are the elements 

enriched at the edges of segmental duplications in the human genome. This contrasts with our 

data, however, Kim (Kim et al. 2008) proposed that SINEs and LINEs might have been involved 

in producing segmental duplications at different times in the evolution of primates and that this 

could have been related to the different activity of these two RT classes. Alus might have played 

this role during their activity burst ~ 40 MYR ago, whereas LINEs may be a more recent source 

of structural changes (Kim et al. 2008). This differential timing might have obscured the pattern 

of SINE densities around expanded gene families in the human lineage. The fact that we see no 

strong relationship between SINEs and gene family size in the mouse lineage might be related to 

specific differences of SINE elements between the human and mouse lineages (Alus are ~300 bp 

in the human lineage vs. ~150 bp SINEs in the mouse lineage). Nevertheless, the signal provided 
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by LINEs and LTRs is strong in both lineages. The question remains, however, whether their 

structural role is adequate to explain the higher densities and counts associated with lineage-

specific gene family expansions. 

Distinct roles of LINEs and LTRs in gene family expansions 

 Another of our important findings was an interaction between LTRs and the other two RT 

classes with respect to gene family size, an observation we have not found in earlier reports. 

LTRs seem to co-occur with LINEs around gene families of small size, however as the gene 

family size grows, the density of these two RT classes begins to correlate negatively. This is 

supported by a relationship between LTRs and SINEs. In the mouse genome, the continuous 

increase in LINE density and diversity in large gene families contrasts strongly with the 

unchanging density and decreasing diversity of LTRs. Such a pattern can be explained by a 

decrease in deposition of new LTRs and the passive duplication of existing LTRs along with 

LINE-dependent duplication of genes in large mouse gene families. This contrasts with the 

human genome where the densities and diversities of both RT classes (LINEs and LTRs) stay the 

same for large gene families. 

 The role of LTRs in this context is understandable because RTs have been shown to 

contain binding sites for transcription factors (Jordan et al. 2003; Polavarapu et al. 2008). The 

LTR class has been identified as the main contributor to open chromatin regions and transcription 

factor binding sites (Jacques et al. 2013; Sundaram et al. 2014), and elements of the LTR class are 

recruited as tissue-specific promoters by the Neuronal apoptosis inhibitory protein (NAIP) gene 

family (Romanish et al. 2007). We found a highly significant overlap of LTRs with DHSs around 

genes of gene families, which supports their role in gene regulation and suggests that LTRs might 

play a role in subfunctionalisation of newly duplicated genes. By contrast, LINEs exhibited less 

overlap with DHS than expected by chance, ruling out their potential involvement in evolution of 

regulation during gene family expansions. 

Two phases of gene family expansion: A model for retrotransposon interaction  
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 Karn and Laukaitis (Karn and Laukaitis 2009) proposed that the mouse Androgen-

binding protein (Abp) gene family expanded in two phases. First, single genes duplicated to 

produce two daughter genes in inverse adjacent order (Katju and Lynch 2003). Later, blocks of 

genes duplicated by NAHR resulting in new genes in direct adjacent order and accelerating the 

expansion of the ABP gene family. The presence of ERVII (LTR) and L1 (LINE) repeat families 

in high densities in the mouse and rat Abp gene regions with corresponding depletion of other 

families suggested a functional role in duplication (Janoušek et al. 2013). While ERVII 

subfamilies were distributed approximately equally between lineage-specific and lineage-shared 

subfamilies in both genomes, the majority of LINE1 repeats (>90% in the mouse and >80% in the 

rat genome) were lineage-specific. Thus, >50% of ERVII repeat content originated from 

insertions that occurred near the ancestor of the Abp gene family, while almost no LINE1s were 

present in the Abp region before its expansion. Finally, (Janoušek et al. 2013) identified the break 

point in members of a LINE1 (L1Md_T) retrotransposon that caused the last NAHR-mediated 

duplication of the block of genes in the center of the Abp region in the mouse genome.  

 The gene family expansion study we report here may provide a mechanism for the Abp 

gene expansion model proposed by Karn (Karn et al. 2014). They observed that the Abp paralogs 

expressed in the lacrimal and salivary glands are found in different ancestral Abp clades and 

found instances of extremely low levels of paralog transcription without corresponding protein 

production in one gland with high expression in the other. They proposed a model in which genes 

expressed highly in both glands ancestrally were down-regulated subsequent to duplication as the 

result of subfunctionalisation, and they suggested that the most parsimonious point for this would 

be when the first <Abpa-Abpbg> gene module duplicated to produce a pair of daughter modules 

in inverse adjacent order (Karn and Laukaitis 2009; Karn et al. 2014). We think that this process 

involved the accumulation of ERVII retrotransposons (Janoušek et al. 2013), which are LTRs that 

could have ultimately been responsible for the subfunctionalisation of the daughter <Abpa-

Abpbg> gene modules by modifying gene regulation.  
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This is consistent with the ERVIIs accumulating in the mouse and rat gene regions before 

the LINEs (Janoušek et al. 2013) and our finding in this report that small gene families exhibit an 

increase in density and diversity of LTR elements in both genomes along with increasing size of 

lineage-specific gene family expansion. Because LTRs have been suggested to play a role in 

regulation of gene transcription (Feschotte 2008; Bourque 2009), we propose that their 

accumulation is important in a first phase of gene expansion characterized by sub-/neo-

functionalisation (Lynch and Force 2000). The second phase of gene family expansion is 

characterized by continuous deposition of LINEs, which may make the whole region more 

volatile, promote further rapid expansion, and decrease the rate of LTR accumulation. The 

subsequent lineage-specific accumulation of the LINEs in the Abp gene region (Janoušek et al. 

2013) is consistent with the notion that they mediated the second phase of Abp gene expansion by 

NAHR.  

 Finally, we suggest that the mouse Abp gene family might represent an example of 

runaway gene expansion. Karn and Laukaitis (Karn and Laukaitis 2009) argued that the second 

phase of mouse Abp gene expansion occurred in the largest and most volatile Abp central clade 

where blocks of multiple Abp gene modules were duplicated by NAHR, pushing the ancestral 

gene sets apart and leaving the more diverged sequences on the flanks. NAHR accelerated this 

process dramatically, characteristic of the ‘‘snowball effect” of (Kondrashov and Kondrashov 

2006), not to be confused with ‘snowballing’ in speciation (Orr 1995). Indeed, 36% of extant Abp 

genes were formed by the last two large block duplications. One consequence of this was 

volatility evidenced by copy number variation (CNV) in this central clade and extensive 

duplication of pseudogenes (i.e. quadrupling the number of pseudogenes in the final two 

duplications) along with potentially expressible genes (Janoušek et al. 2013; Karn et al. 2014). 

A computer simulation supports our second phase of gene family expansion 

The snowball effect (Kondrashov and Kondrashov 2006) amounts to a rapid, local 

increase in gene duplications caused by a high rate of LINE accumulation, subsequent NAHR 
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and, possibly the presence of low copy repeats (LCRs) produced by previous duplications (Karn 

and Laukaitis 2009). Given the continuous accumulation of LINEs serving along with the LCRs 

as break points for NAHR, the whole region can expand rapidly. If it becomes extensive enough, 

this second phase could be described as a runaway process. 

To explore this possibility, we conducted a computer simulation that showed that rapid 

increase in gene copy number is a possible outcome of increased deposition of homologous 

sequences representing LINEs and that, in some cases, the gene expansion may reach runaway 

proportions. This was true even though the simulation accounted for the fact that previously 

incorporated LINEs undergo loss of their homology over time due to mutation. We found that the 

number of gene copies created in one NAHR event increased with increasing size of the gene 

cluster and, more importantly, that the time between two consecutive NAHR events is shorter for 

larger gene clusters. Both of these findings correspond to speeding up gene family expansion and 

formation of large blocks, i.e. LCRs, spanning several genes. Interestingly, this process is 

possible even without invoking selection in favor of increased gene copy number; however, this 

does not preclude the possible role of selection for increased gene dosage. In our simulation, we 

did not specifically test the direct involvement of selection favoring the increase in gene copy 

number. Nevertheless, the fixation rate of the new genotype (ι) will increase whenever the 

recombinant genotypes are favored, thus reducing the duration of each run. Besides increasing the 

number of runaway events in our simulations, such an increase in ι also leads to the reduction of 

the total time necessary for an expansion and to an increase in the average number of repeats that 

accumulated around the genes. 

Because all parameters in our model were set arbitrarily, it is difficult to directly relate 

the quantitative results of the simulations to real-world population genetic data on the human or 

the mouse. Direct use of this information, although desirable, is methodologically challenging 

due to the complication of the population genetics theory in large populations (Weissman and 

Barton 2012). One quantitative characteristic of our simulation that can be interpreted to a certain 
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degree is the evolutionary time required for the runaway process to occur. The duration of the 

time unit in our model is assumed to be sufficient for a replacement genotype to reach fixation 

and this time can be reduced or increased drastically in the case of positive or negative selection, 

respectively, acting on the gene cluster. Given the rather large estimates for Ne in the mouse and 

human, we conclude that a runaway expansion under negative selection is unlikely. Even under 

neutral evolutionary conditions, a large part of the parameter range we investigated can take a 

considerable amount of time. For example, with Ne = 50,000 and 2 generations per year in the 

mouse, 400 cycles translates into 40 MYR, which is still less the ~80 MYR since the mouse-

human split (Hallstrom and Janke 2010). Invoking selection for increased copy number might 

therefore be necessary to explain the gene family expansions in both taxa.  

A runaway process in the human and mouse lineage 

One of the criteria for entering the second phase could be functional constraint imposed 

on genes. For instance, (Korbel et al. 2008) found successfully duplicated genes have been 

described as being located at the periphery of protein interaction networks. About 10% of genes 

are found to be highly volatile and subject to frequent duplication, deletion and pseudogene 

formation (Lander et al. 2001; Waterston et al. 2002; Gibbs et al. 2004). These generally possess 

functions including chemosensation, reproduction, host defense and immunity, and toxin 

metabolism. We also found distinct GO term enrichment among gene families of different sizes. 

Genes in this set that are expanded in one lineage are often expanded in another, suggesting 

similar functional and/or structural pressures (Ponting and Goodstadt 2009). However, we found 

contrasting patterns of LINE and LTR accumulation between the human and the mouse. 

Analysis of recent segmental duplications between human and mouse genomes highlights 

interesting differences in the distribution of recent duplications (She et al. 2008). Duplications in 

the mouse genome occur in discrete clusters of tandem duplications, whereas duplications in the 

human tend to be scattered across the genome. The scattered nature of expanded gene families in 

the human genome may decrease the chance for gene families to enter the second phase, where 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2016. ; https://doi.org/10.1101/042309doi: bioRxiv preprint 

https://doi.org/10.1101/042309
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

the tandemly-arrayed nature of gene families in the mouse may facilitate the runaway process in 

some cases. Although the percentage of recent segmental duplications between the two genomes 

is similar (She et al. 2008), larger families are more frequent in the mouse genome (Table 1), 

suggesting that the mouse lineage is richer for gene family expansion events. In addition to 

specific environmental challenges this lineage might have faced during its evolution, ~20x higher 

activity of LINEs in the mouse genome (Goodier et al. 2001; Brouha et al. 2003) could have 

contributed to the more massive expansions in this lineage. Assuming that this figure corresponds 

linearly into the 20-fold difference in the rate of insertion, u, in our simulation results, it seems to 

us that the difference in the LINE activity between the human and mouse genomes alone might 

have profound effects on the frequency of the runaway process in the expansion of gene families. 

Besides functional constraints, the specific nature of duplications and overall activity of LINEs in 

a given lineage could be important in facilitating the runaway process. 

Common history and duplicability 

 RTs of the same class accumulate in homologous genomic regions in the human and 

mouse lineages (Yang et al. 2004). Here, we report the correlation of lineage-specific RT 

densities between human-mouse homologous gene families that contain lineage-specific 

expansions (Supplemental Table 6). Furthermore, analyzing patterns of accumulation of 

elements of individual subfamilies revealed that gene families of high RT density exhibit high 

prevalence of all ages of elements. This was most notable for the LINE class, with strong 

correlation in the human-mouse comparison as opposed to LTRs. Weak or no correlation for 

LTRs may correspond to their lineage-specific accumulation depending more on the adaptive 

needs of a given lineage than on a region-specific feature shared between lineages. 

Duplicability is a measure of the likelihood of gene duplication during evolution, which 

is the product of the rate of mutation producing duplicate genes and the probability that the 

duplicates are fixed and retained in the genome (He and Zhang 2005; Qian and Zhang 2008). 

Given their putative involvement in structural changes, LINEs may be associated with 
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duplicability of genomic regions. Such features may be shared between related lineages and cause 

some gene families to undergo independent expansions in different species. 

 

METHODS 

Gene family data 

We used Ensembl’s Core and Compara databases (Version 75; (Vilella et al. 2009) to 

obtain human (Homo sapiens), mouse (Mus musculus) and pig (Sus scrofa) genes from their 

genomes and to determine their evolutionary relationships. The protein coding status of human 

and mouse genes was confirmed using HUGO/MGI databases (Povey et al. 2001; Blake et al. 

2014) and all pseudogenes were discarded from our dataset. The Ensembl Perl API interface was 

used to obtain the data. We created a pipeline using in-house perl/shell scripts; see details in 

Supplemental Fig. 1. First, we defined clusters of homologous genes of the three species and 

aligned them using eight alignment tools and obtained consensus protein alignment using M-

Coffee (Wallace et al. 2006; Moretti et al. 2007). The low scoring parts of alignments were 

discarded. We used the TREEBEST program to construct gene family trees for the three species 

based on aligned clusters of homologous genes and extracted human and mouse lineage-specific 

duplication events. The pig genes served as an outgroup. The approach is described in detail in 

(Vilella et al. 2009). Based on this procedure, we divided genes in the human and mouse genomes 

into three groups (Supplemental Fig. 2): single genes (genes present in a genome as a single 

copy), inparalogs (genes that duplicated from the most similar gene[s] in the genome after the 

human-mouse split) and outparalogs (genes that duplicated from the most similar gene in the 

genome before the human-mouse split). This nomenclature has been adopted from (Sonnhammer 

and Koonin 2002). We distinguished gene families based on the number of inparalogs (genes that 

duplicated within a species) and outparalogs (from an ancestral duplication). Otherwise the gene 

family was considered to have only a single gene in a given genome. 
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In our analyses we explored gene family size, defined as the number of 

inparalogs/outparalogs, as an important predictor of RT density. The minimal gene family size 

was two and the maximal number was the maximal size of a gene family in the dataset. Gene 

families having only a single gene were defined to have size of one (Table 1). The RT content 

(see below) was explored for individual gene family size categories from size one up to ten (gene 

families of higher size than ten were pooled into a ‘>10’ category). Alternatively, in order to 

increase the number of gene families within a gene family size category and also to decrease the 

complexity of the data, we pooled gene families for some analyses into three larger categories: 

single genes (gene families having a single gene), small gene families (gene families having from 

two to five inparalogs/outparalogs) and large gene families (gene families having six or more 

inparalogs/outparalogs). The numbers of gene families within individual gene family size 

categories are summarized in Table 1. 

RT content 

The RT data table ‘rmsk’ was obtained from the UCSC FTP server for human and mouse 

separately (December 2013). The TE data represent the output from the RepeatMasker analysis of 

the human and mouse genomic sequences. We extracted data for the three most common repeat 

classes from the ‘rmsk’ table: Long Interspersed Nuclear Elements (LINEs), Short Interspersed 

Nuclear Elements (SINEs) and Long Terminal Repeats (LTRs). The TEs are classified into 

subfamilies based on the RebBase classification (Wicker et al. 2007; Kapitonov and Jurka 2008). 

For our analysis we defined those repeat subfamilies that are lineage-specific based on repeat 

subfamily names, where the subfamilies unique to one of the two genomes were considered to be 

lineage-specific. We found 40 LINE subfamilies, 416 LTR subfamilies and 28 SINE subfamilies 

that are specific to the mouse lineage, and 47 LINE, 266 LTR and 41 SINE subfamilies that are 

specific to the human lineage (Supplemental Table 1). 

First, we analyzed RT content (density, abundance and length) with respect to gene 

family size, as assessed in windows of multiple sizes (10 Kb, 50 Kb, 100 Kb, 500 Kb, 1 Mb, 5 
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Mb) on each side of a gene. The actual size of the window represents the size after the removal of 

coding regions of adjacent genes. The density of RTs was then calculated as the proportion of 

base pairs covered by RTs of a given class divided by the total number of base pairs within the 

window. The RT densities were divided by the genome-wide averages and, to normalize the data, 

we took logarithms of base two per (Nellaker et al. 2012). The abundance represents the number 

of RTs of a group, given the window size. The average length of RTs is calculated as the number 

of base pairs covered by repeats of a given RT class divided by the RT abundance. The RT 

content was always compared to the genome-wide average for a given window size (10 Kb, 50 

Kb, 100 Kb, 500 Kb, 1 Mb, 5 Mb). Genome-wide averages were based on RT content assessed in 

sliding windows across the whole genome. All the operations were carried out using BEDTOOLS 

(Quinlan and Hall 2010) and BEDOPS (Neph et al. 2012) software. 

Second, we assessed the contribution by individual RT subfamilies by calculating 

Shannon’s diversity index using the ‘Hs’ method in the ‘DiversitySampler’ package (Lau 2012). 

In order to make the diversity comparable between gene families of various sizes, we used 

abundances of elements within subfamilies divided by the number of inparalogs in each gene 

family. The diversity was assessed within 50 Kb windows pooled for each gene family and the 

numbers of elements were flattened so that no element is present multiple times due to the 

window overlap. 

RT content vs. gene family size analysis 

To test the hypothesis that there is a relationship between gene family size defined as the 

number of inparalogs/outparalogs and RT content, we analyzed differences in the RT content 

between individual size categories using the generalized least squares (‘gls’) method in the ‘nlme’ 

package in the R-project (Pinheiro et al. 2014); and the generalized additive models (‘gam’) 

method in the ‘mgcv’ package (Wood 2011). The first method was used to assess detailed 

differences in RT content between gene families of size from one up to ten and all families of 

larger size were pooled into one ‘> 10’ category. Gene family size was treated as a categorical 
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variable. We used the full data to explore RT content between genes within a gene family and the 

interaction between gene family size and window size. Because variances differ among windows 

of different size we used their z-scores of relative densities with mean zero (genome-wide 

average) and standard deviation based on the dataset specific to each window size. We modeled 

the appropriate correlation structure between genes of the same gene family, following which we 

added two factors: ‘gene family size’ and ‘window size’ and their mutual interaction. We chose 

the best model using the backward selection procedure and verified individual steps using a 

combination of hypothesis testing and Akaike's information criterion (AIC) approach (Akaike 

1974). The predicted values and error estimates were obtained using the ‘predictSE.gls’ method 

of the ‘AICcmodavg’ package in the R-project (Mazerolle 2015).  

The second method was used to describe the relationship between RT content (density, 

diversity) and gene family size for larger gene families. The common logarithm of gene family 

size was treated as a continuous variable. To reduce the complexity of the data, we used the RT 

content within a 50 Kb window that was averaged in a gene family. All the visualization 

throughout this study was carried out in the R-project using the ‘ggplot2’ package (Wickham 

2009). The detailed RT densities around chosen gene families were visualized using the 

Integrative Genomic Browser (IGV; (Robinson et al. 2011). 

Gene Ontology data 

Gene Ontology (GO) data were obtained from the publicly available MySQL database 

(Ashburner et al. 2000; Gene Ontology 2015) downloaded on 05/26/2015). To ensure that there 

were a sufficient number of gene families associated with a given GO term, we used a flattened 

set of GO terms based on only the third hierarchical level for all three GO domains (biological 

process, molecular function and cellular component). This provides sufficient functional 

distinction, yet includes enough gene families within an individual GO term. We extrapolated GO 

terms from individual genes onto the whole gene family, assuming that the genes of the same 

gene family are likely to share the same or similar function. The gene families were pooled into 
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the three gene family size categories (single genes, small gene families and large gene families; 

see above) and the average RT content for gene families of the same GO term was explored 

between the three gene family size categories. For our analysis, we considered only GO terms 

associated with at least five gene families for a given gene family size category. The list of GO 

terms used in our analysis appears in Supplemental Table 7. 

Encode data analysis 

 We assessed the hypothesis that some of the RTs around the genes of the gene families 

are involved in gene regulation. To achieve this, we employed open chromatin data based on 

DNase I Hypersensitive Sites (DHS) from the Encode project (Consortium 2012; 

Stamatoyannopoulos et al. 2012). We downloaded all DNase-seq datasets available at the 

ENCODE database for human and mouse before July 2015 (https://www.encodeproject.org). 

These included DNase-seq datasets by John Stamatoyannopoulos’s lab (UW), Gregory 

Crawford’s lab (Duke) and Ross Hardison’s lab (PennState). As these data were produced by 

multiple research groups, we first used a pooling procedure to merge overlapping DHS regions 

using BEDTOOLS (Quinlan and Hall 2010). Based on the number of tissues/cell types where the 

DHS region was identified, we created two datasets: DHS1 representing the full DHS region 

dataset and DHS2 representing tissue/cell type-specific DHS regions identified in less than or 

equal to ten tissues/cell types. The overlap between DHS regions and RTs in our study was 

assessed by producing a custom shell script to randomize the location of DHS regions around 

genes of gene family regions in order to obtain the average random overlap. The significance of 

the observed overlap was judged by comparison to a randomized distribution. 

Simulation of a second phase of rapid gene family expansion 

We simulated a stochastic process of gene duplication and deletion caused by misaligning 

the non-allelic LINE elements during recombination. Inserted LINE elements underwent slow 

decay in homology due to mutation. Qualitative properties of the system were assessed. The full 

description of the simulation algorithm is found in the Supplemental Methods. The simulation 
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proceeds by discrete evolutionary time steps (cycles): the algorithm within a single cycle is 

illustrated in Supplemental Fig. 8. Initially, a gene cluster containing five genes interspersed 

with LINEs is fixed in the population. This resident genotype either stays or, with the arbitrary 

probability ι, is replaced by a new genotype subject to NAHR and further retrotransposition. The 

time between the population samples is assumed to be sufficiently long to ensure that such a 

mutant type reaches fixation (i.e. ~4Ne generations in the neutral case). At the beginning of the 

simulation, all LINEs in a cluster are assumed to be nearly exact copies of the transposition-

capable elements found in small numbers in both the human and the mouse genomes, and 

therefore similar to each other. At the end of each cycle, however, and regardless of whether the 

genotype replacement has occurred or not, all LINEs diverge at a constant rate due to the 

accumulation of random mutations. 

Provided that the replacement type is destined to fixation, the probability of any two LINEs 

serving as breakpoints for NAHR is calculated as Pij = μ
dij

, with μ  being the arbitrary parameter 

and dij  being the amount of divergence between the LINEs at the i-th and j-th intergenic 

positions, respectively. New LINEs can be inserted at random between the genes, and are 

assumed to be similar to the LINEs at the beginning of the simulation. The chances of NAHR at 

particular positions within a cluster increase because the new LINE is assumed to be more similar 

to any of the old elements than they are to each other. This is reflected by a replacement 

dij → dij of the amount of divergence at the corresponding positions (see Supplemental 

Methods for details). The simulations were performed in Mathematica 9.0 (Wolfram Research, 

Champaign, Illinois, USA).  
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FIGURE LEGENDS 

Figure 1. (A) The relative densities of the lineage-specific RT classes (LINE, LTR and SINE) 

around the genes from gene families of increasing size in the human (left) and the mouse (right) 

genomes. Gene family size is defined as the number of inparalogs/outparalogs in a gene family 

with size greater than one, while the gene family size of one corresponds to single genes. The RT 

densities represent the proportion of base pairs contributed by an RT class in a given window size 

(10 Kb, 50 Kb, 100 Kb, 500 Kb, 1 Mb, 5 Mb) around single genes, inparalogs and/or outparalogs 

of individual gene families. The densities are scaled so that the zero corresponds to the genome-

wide average for an RT class and window size and data were treated for differing variances 

among different size windows. Positive and negative values represent RT densities higher and 
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lower than the genome-wide average, respectively. Panels (B) and (C) show a representative gene 

family, ApoI, in the human and the mouse genomes. Panel B compares the gene family sizes and 

RT content in the two taxa and Panel C shows a gene tree of the human (red), mouse (blue) and 

pig (Sus scrofa) genes (brown), which was used to infer mouse and human lineage-specific 

duplications (inparalogs). 

Figure 2. Correlations between gene family size and RT density, diversity and divergence. 

Correlation of the average lineage-specific RT density between the three RT classes (LINEs, 

LTRs and SINEs) and the difference in correlation between the three gene family size categories 

(i.e. single genes, small gene families and large gene families) in the human and mouse genome 

(A). Correlation was calculated using Spearman’s correlation coefficient. The trend lines and 

their interactions are based on analysis of covariance (ANCOVA). B) shows the relationship to 

the gene family size of the lineage-specific RT density, averaged for each gene family. C) shows 

the relationship between RT subfamily diversity (C) and gene family size. Gene family size is 

defined as the common logarithm of the count of inparalogs within a gene family and generalized 

additive models were used to describe the relationship in B and C. D) shows the distribution of 

RT abundances for the LINE and LTR subfamilies in the mouse genome among the gene families 

of small and large size. The individual RT subfamilies are represented by rows and gene families 

by columns in the heatmaps. Yellow corresponds to abundances of zero, and the progressively 

more intense red colors represent the presence of more elements of particular RT subfamilies. We 

randomly chose one hundred gene families to visualize RT abundances in both the LINE and 

LTR panels. The gene families (columns) were hierarchically clustered based on their pattern of 

abundance of individual RT subfamilies for LINEs and LTRs. RT subfamilies (rows) are ordered 

according to the average divergence from consensus for a given RT subfamily from the youngest 

(top) to the oldest (bottom). 

Figure 3. Gene Ontology (GO) data. (A) Examples of functional distinction of gene families of 

different size (single genes, small gene families and large gene families) based on GO biological 
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processes term enrichment. The warmer the colors the higher the enrichment, while the colder the 

colors the lower the enrichment. The GO biological processes were clustered based on prevalence 

between the three gene family size categories. (B) The effect of gene family size (defined as the 

count of inparalogs) on the average relative density of lineage-specific RTs of the three classes 

(LINEs, LTRs and SINEs) within the same GO term (all three GO domains included). The 

average RT densities within the same GO term were connected by lines between the three gene 

family size categories (i.e. single genes, small gene families and large gene families). 

Figure 4. Analysis of the overlap between DNase I Hypersensitive Sites (DHS) and RTs of the 

three classes (LINEs, LTRs and SINEs) among the three gene family size categories (i.e. single 

genes, small gene families and large gene families). The overlap between DHS regions and RTs 

was tested for two sets of DHS regions: the full dataset (DHS1; red) and the dataset of tissue/cell 

type-specific DHS regions (DHS2; blue). The tissue/cell type-specific DHS regions are those 

present in ten or fewer tissues/cell types. The positive values indicate that the overlap is higher 

than the random expectation and the negative values indicate the opposite. The dashed grey lines 

depict 95% confidence intervals. 

Figure 5. Computer simulation of gene family expansion. (A) An example of a single simulation 

run that was terminated upon the cluster reaching size = 20. Parameter values were: ι = 0.14, µ = 

0.4 and u = 0.02. Black and orange dots represent the cluster sizes immediately before and after 

NAHR, respectively. Timings of the fresh LINE insertions are shown by the vertical lines. (B) 

The average size of gain or loss (i.e. step) in the gene cluster as a result of NAHR for each cluster 

size category (i.e. immediately before the NAHR occurred). The initial cluster sizes are shown on 

the X-axis and 95% confidence intervals for the means are indicated by the vertical error bars. (C) 

The average run duration for each cluster size category. The absolute values of run duration 

depend on the parameter values chosen, while here we are interested in relative comparison of 

durations among the cluster size categories. To remove the effects of the parameters, for each 

combination of the parameter values, the run durations were normalized so that they sum to 1. 
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The data in B and C were pooled over 48,000 runs, with µ varying from 0.1 to 0.4 and u varying 

from 0.006 to 0.2. (D) The effect of the rate of insertion of fresh LINEs, u, on (i) the number of 

“successful” runs that reached size >= 20, shown as the proportion of the 1000 runs, (ii) the 

average duration of the successful runs, (iii) the mean number of NAHR in the successful runs 

and (iv) the number of fresh LINE insertions (only the successful runs were considered). (E) An 

example of the distribution of the times of the last NAHR event among the successful runs. 

Parameter values were the same as in A. Note the outlier runs where the last NAHR occurred 

much later then average. 

Figure 6. The effect of varying the iota parameter on the progress of a runaway process. In 

general, the iota parameter reflects processes such as genetic drift, positive selection and/or the 

rate of recombination. 

 

Table 1. Counts of gene families in the inparalog and outparalog 
datasets, where the gene family size of one corresponds to the 
number of families containing only a single gene. 

GF Size 
Inparalogs Outparalogs 

Human Mouse Human Mouse 

1 3578 3541 3578 3541 
2 218 225 1218 1234 
3 37 46 498 484 
4 41 35 241 243 
5 17 22 141 145 
6 14 13 92 98 
7 11 10 61 60 
8 6 7 40 39 
9 5 11 32 33 

10 0 6 20 15 
>10 20 66 124 128 
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Table 2. A comparison of models explaining the relationship between gene family size, size of neighborhood (window size) and RT 
densities, including degrees of freedom (df) and Akaike's Information Criteria (AIC) values. 

In/Out-
paralogs Species RT 

class 

density ~ family 
size * window size 

density ~ family 
size + window size 

density ~ window 
size 

density ~ family 
size 

density ~ 1 

df AIC (ΔAIC) df AIC (ΔAIC) df AIC (ΔAIC) df AIC 
(ΔAIC) df AIC (ΔAIC) 

In
pa

ra
lo

gs
 H
um

an
 LINE 62 102521.4 (0) 17 

103612.2 
(1090.8) 8 

103721.4 
(1200) 12 

121552.8 
(19031.4) 3 

121676.4 
(19155) 

LTR 62 105499 (0) 17 
106385.1 
(886.1) 8 

106534 
(1035) 12 

121202.6 
(15703.6) 3 

121384.7 
(15885.7) 

SINE 62 87612.49 (0) 17 
87942.79 
(330.3) 8 

87951.84 
(339.35) 12 

90454.24 
(2841.75) 3 

90463.12 
(2850.63) 

M
ou

se
 LINE 68 116142 (0) 18 

123571.6 
(7429.6) 8 

124055.6 
(7913.6) 13 

135556.7 
(19414.7) 3 

136058.8 
(19916.8) 

LTR 68 106249 (0) 18 
108019.2 
(1770.2) 8 

108205.5 
(1956.5) 13 

118131.8 
(11882.8) 3 

118337.6 
(12088.6) 

SINE 68 105944 (0) 18 
109162.2 
(3218.2) 8 

109491.5 
(3547.5) 13 

111501.2 
(5557.2) 3 

111834.8 
(5890.8) 

O
ut

pa
ra

lo
gs

 

H
um

an
 LINE 68 256667.5 (0) 18 

256730.8 
(63.3) 8 

256776 
(108.5) 13 

313599.6 
(56932.1) 3 

313642 
(56974.5) 

LTR 68 263397.6 (0) 18 
263457.6 
(60) 8 

263448.2 
(50.6) 13 

311861.8 
(48464.2) 3 

311851.2 
(48453.6) 

SINE 68 223048.5 (0) 18 
223140.2 
(91.7) 8 

223242.2 
(193.7) 13 

230348.6 
(7300.1) 3 

230451.5 
(7403) 

M
ou

se
 LINE 68 237494.9 (0) 18 

237532.1 
(37.2) 8 

237582.8 
(87.9) 13 

291431.7 
(53936.8) 3 

291480.1 
(53985.2) 

LTR 68 221074.1 (0) 18 
221085.8 
(11.7) 8 

221103.7 
(29.6) 13 

250410.8 
(29336.7) 3 

250427.9 
(29353.8) 

SINE 68 207882.9 (0) 18 
207968.8 
(85.9) 8 

208041.3 
(158.4) 13 

214488.6 
(6605.7) 3 

214561.4 
(6678.5) 
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Table 3. The relationship between densities of the three RT classes with respect to gene family size, where the interaction between the 
RT density correlation and gene family size was tested using analysis of covariance (ANCOVA). 

Species Comparison AIC full AIC w/o interactions F df1,df2 p-value slope(single) slope(small) slope(large) 

Human 
LTR ~ LINE 16455.58 16456.42 2.4184 2,3884 8.92E-02 0.37477 0.30288 0.10097 
SINE ~ LINE 14080.67 14092.1 7.7155 2,3884 4.53E-04 -0.16529 -0.32005 -0.26106 
SINE ~ LTR 14285.28 14294.09 6.405 2,3884 1.67E-03 0.05405 -0.10354 0.18448 

Mouse 
LTR ~ LINE 13552.93 13575.18 13.148 2,3924 2.02E-06 0.28702 0.16341 -0.13826 
SINE ~ LINE 12884.33 12908.9 14.316 2,3924 6.38E-07 -0.24173 -0.40902 -0.54104 
SINE ~ LTR 13300.52 13305.88 4.682 2,3924 9.31E-03 0.15512 -0.05274 0.31568 

 

 

Table 4. Analysis of the effect of gene family size on explaining RT densities when included only gene families associated with 
a GO term present in all three gene family size categories, using the generalized Least Squares (GLS) model to capture 
correlation structure between individual GO terms.  

Species RT class AIC (GF size) AIC (null) LogLikelihood Ratio P-value 
RT density estimate 

single small large 

Human 
LINE -902243.2 -901374.5 872.7 < 0.0001 -2.78 -1.87 -1.39 
LTR -898863.5 -898250.4 617.2 < 0.0001 -1.95 -1.17 -0.64 
SINE -919759 -919634.5 128.5 < 0.0001 -0.53 -0.76 -1.03 

Mouse 
LINE -839461 -838015.9 1449.1 < 0.0001 -2.82 -1.89 -1.05 
LTR -847997.3 -847833.6 167.8 < 0.0001 -1.12 -0.77 -0.89 
SINE -863464.5 -861751.5 1717 < 0.0001 -0.24 -0.60 -1.61 
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