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ABSTRACT 
Explaining trait differences between individuals is a core but challenging aim of life 
sciences. Here, we introduce a powerful framework for complete decomposition of trait 
variation into its underlying genetic causes in diploid model organisms. We intercross two 
natural genomes over many sexual generations, sequence and systematically pair the 
recombinant gametes into a large array of diploid hybrids with fully assembled and phased 
genomes, termed Phased Outbred Lines (POLs). We demonstrate the capacity of the 
framework by partitioning fitness traits of 7310 yeast POLs across many environments, 
achieving near complete trait heritability (mean H2 = 91%) and precisely estimating 
additive (74%), dominance (8%), second (9%) and third (1.8%) order epistasis 
components. We found nonadditive quantitative trait loci (QTLs) to outnumber (3:1) but to 
be weaker than additive loci; dominant contributions to heterosis to outnumber 
overdominant (3:1); and pleiotropy to be the rule rather than the exception. The POL 
approach presented here offers the most complete decomposition of diploid traits to date 
and can be adapted to most model organisms. 
 
Decomposing the trait variation within natural populations into its genetic components is a fundamental 
goal of life sciences but has proven challenging1,2. Environmental and gene-by-environment influences 
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are difficult to control for and alleles accounting for trait variation tend to have frequencies that are too 
low for their mostly weak effects to be reliably called3. Compounding matters, many alleles are believed 
to influence each other within (dominance) and between (epistasis) loci4. Consequently, traits depend on 
the presence of very many allele combinations that are exceedingly rare and whose contributions are near 
impossible to assess5. Model organisms offer more complete dissection of complex traits because they 
can be analyzed in controlled contexts, minimizing environmental variation, and in populations derived 
from a few founders, ensuring high frequencies of all alleles and allele combinations6,7. Because of their 
ease of use in genomics8 and phenomic screening9 large panels of haploid yeast segregants have allowed 
for exhaustive dissection of complex traits10-12. Unfortunately, exhaustive trait decomposition in haploid 
crosses requires the costly genotyping of thousands of genomes, disregards dominance, and provides 
much simplified estimates of epistasis. A more complete partitioning of trait variation that is relevant to a 
diploid context has therefore remained elusive. We here introduce a powerful and cost-effective 
framework for tracking the covariation through genome and phenome that allows accurate estimates of 
dominance and epistasis in diploid models. The framework is based on intercrossing two natural genomes 
over many sexual generations to reduce linkage13,14 followed by sequencing and systematic pairing of the 
resulting haploid recombinant segregants to generate a very large array of diploid hybrids with fully 
assembled and phased genomes, termed Phased Outbred Lines (POLs). We validate the capacity of the 
POLs approach by genetic decomposition of trait variation across 7310 diploid yeast genomes.  
 
A novel experimental framework for exhaustive analysis of diploid traits 
To accurately decompose diploid traits, we isolated and sequenced the full genomes of 12th generation 
haploid offspring. These haploid offspring were randomly drawn from a highly intercrossed two-parents 
founder pool with short linkage regions (Fig. 1a). The founder pool was derived from two highly 
diverged (0.53% nucleotide difference) wild yeast strains, here termed North American (NA) and West 
African (WA), such that only two alleles segregate with equal representation in the pool on average13. 172 
haploid offspring from this pool, representing both mating types equally, were systematically crossed in 
all possible pairwise combinations to generate 7310 genetically unique diploid hybrids (POLs, Fig. 1a, 
Online Methods). With only a modest number of 172 haploid genomes sequenced15, we could accurately 
infer the genomes of our large set of 7310 POLs. Importantly, these genomes are fully phased, i.e. we 
know which parent contributed with which alleles. Furthermore, they had a very small fraction of missing 
genotype information (max: 6.5%; mean: 0.5%; median: 0.1%; min 0%) and there are no confounding 
effects from segregating auxotrophies that contribute to trait variation (Supplementary Data SI). The 
hybrids showed remarkable uniformity, with heterozygote frequencies close to 50% (Fig. 1b). The few 
strong deviations (8 deviations > 30%) from 50% heterozygosity were either due to selection for one 
parental allele during the intercross (overrepresentation of homozygous sites) or from the crossing design, 
the latter resulting in regions of fixed heterozygosity at the MAT and LYS2 loci (Fig. 1b). 
We precisely phenotyped the complete set of 7310 designed POLs (median CoV = 10%, mean CoV = 
14%), their F12 haploid parents, the diploid NA and WA founders and their hybrid in a well replicated 
(n≥4), high resolution growth phenotyping platform designed to minimize noise and bias16. We selected 
nine physiologically distinct environmental conditions (Supplementary Table SI) that challenged 
growth to different extents (Supplementary Fig. S1a), and we obtained more than 56 million population 
size estimates, organized into 250.000 growth curves (Fig. 1a, right panel). Extracting the maximum 
growth rate (population doubling time) and total growth (total change in population size) from each 
growth curve (Supplementary Data SII), we found phenotype distributions across the POLs to be mostly 
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monomodal (Fig. 1c and Supplementary Fig. S1b). Given the absence of environmental variation, this 
implies complex traits with multiallelic influences. Galactose and allantoin growth were bimodally 
distributed, in agreement with large effect sizes for the GAL3 (WA premature stop codon) and DAL 
(linked loci, WA loss-of-function SNPs in DAL1 and DAL4) genes respectively17,18. Correlation between 
maximum growth rate and total growth ranged from -0.13 to 0.76 (Pearson’s r; Fig. 1d, orange borders) 
but was overall low (mean r: 0.27; median r: 0.21), in agreement with the hypothesis that distinct genetic 
factors control population expansion in different growth phases17,19. Correlations across environments 
were positive in all but one case (r=-0.02) and often of moderate or large magnitude (max r=0.84, median 
r=0.29; Fig. 1d). We cannot completely exclude a small influence of shared error on correlations, but the 
extensive standardization, randomization and normalization (Online Methods), and the large variation in 
pairwise correlations argue compellingly in favor of extensive positive pleiotropy. 
 
Near complete decomposition of diploid traits into their genetic components 
Based on the assembled and phased diploid genomes, we used a random effects model to decompose the 
variance in growth traits into components arising from additive (no interaction), dominance (intralocus 
interaction) and pairwise and third order epistatic effects (interlocus interactions) (Supplementary Note 
SI). The large sample size and known large variation in relatedness allowed us to estimate nonadditive 
variance components with unprecedented accuracy (mean S.E.M = 1.0-2.5%, depending on environment). 
Simulations provided standard errors of the mean in the same range (Supplementary Table SII and 
Supplementary Data SIII). The large number of replicates and the accuracy of the normalized 
phenotype measures minimized environmental variation. Therefore, additivity, dominance, and pairwise 
epistasis accounted for almost all trait variation ([80-99% depending on environment], median 90%, Fig. 
2, upper panel). On average, the proportion of phenotypic variance explained by additive effects was 
74% (50-87%), for dominance effects this was 9% (2-31%), and for pairwise interactions this was 8% (1-
15%). We estimated that third order interactions accounted for 1.8% of the trait variation on average (Fig. 
2, lower panel), but only maximum growth rates on isoleucine and glycine and total growth in presence 
of phleomycin were significantly (>2 S.E.M from 0) affected by third order epistasis. Complete 
dominance of the functional NA over the nonfunctional WA cluster of DAL genes18 ensured a large 
dominance component for variation in allantoin growth rate and total growth. Otherwise, the large 
variance contributions of additive genetic influences were consistent across environments (Fig. 2, upper 
panel). The trait with the largest estimated variance from pairwise epistasis was growth rate on glycine 
(15%); this epistasis variance contribution equaled half of the largest dominance variance estimate (31% 
for allantoin growth rates). Variation in genome wide levels of homozygosity had no detectable influence 
on yeast fitness traits (Supplementary Fig. S2). This is in stark contrast to its substantial negative effect 
on human traits, e.g. height20). Thus, the data suggest that there is no general inbreeding depression in 
yeast, consistent with natural populations being largely homozygous21,22. 
 
Cost-efficient QTL mapping in yeast POL diploid hybrids 
Our crossing design results in half the genome of each POL being kept constant across the 86 POLs that 
are derived from any one haploid F12 parent (Fig. 1a). This sharing of half a genome accounted for 
surprisingly much of the overall variation in traits23, which somewhat restricted our capacity to 
distinguish contributions from individual alleles and allele pairs from the effect of the genetic 
background. Nevertheless, our platform provided a cost-efficient framework for calling both additive and 
nonadditive (dominance and epistasis) QTLs in diploid models. We excluded 668 POLs with chr. IX 
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aneuploidies and then mapped QTLs onto the inferred parent phenotypes (additive effect of genetic 
background) and recorded deviations from inferred parent means (nonadditive effects; Online Methods). 
Both QTL mapping approaches accounted for the population structure. We called a total of 145 unique 
QTLs at 10% false discovery rate (FDR). These included the GAL3 stop codon, as well as the DAL1 and 
DAL4 non-synonymous and stop codon mutations, known to account for most of the variation in 
galactose and allantoin growth respectively (Fig. 3a, Supplementary Fig. S3 and Supplementary Table 
SIII). Some (21%) of the QTLs contributed significantly to both additive and nonadditive phenotype 
components, but the majority were private to one of them (Fig. 3b). The nonadditive (75%) outnumbered 
the additive (25%) QTLs, but explained on average less of the trait variation (6% vs. 28%, Student’s t-
test: p = 2e-6, Fig. 3c). Thus, significant nonadditive trait contributions were more common but weaker. 
The QTLs were confirmed using linear mixed models that separated additive, dominant and epistatic 
effects (Online Methods). In almost all cases, nonadditive QTLs coincided with dominance effects (Fig. 
3a). The complete recessiveness of the WA GAL3 allele for galactose growth and of the WA DAL alleles 
for allantoin growth recapitulated established knowledge17,18 (Supplementary Fig. S4a).  
Only 32 of 145 (22%) additive and nonadditive QTLs called were unique to a single environment, 
reflecting that extensive pleiotropy is the rule rather than the exception (Fig. 3d). Almost half (44%) of 
the pleiotropic QTLs affected at least five environments, with universal growth QTLs on chr. XIII 
penetrating regardless of the environment and one QTL on each of chr. IX, X and XV penetrating in all 
but one environment (Fig. 3d). Given the wide span of environmental effects on growth and cellular 
physiology in our set of environments, this prevalence and penetrance of universal growth QTLs is 
remarkable. More QTLs (69%) were shared between maximum doubling time and total growth than 
expected from their low general correlation (mean r: 0.27, Fig. 1d). This was largely explained by the 
near universal chr. IX QTL affecting the two fitness components antagonistically: NA homozygotes grew 
slower but reached higher total growth (Supplementary Fig. S4b). This profound fitness trade-off 
penetrated regardless of environment and may therefore have had a large influence on natural selection on 
the ancestral wild strains. Finally, we note that disproportionately many (28% vs. 9% expected, Fisher’s 
exact test, p < 0.0001) QTLs were subtelomeric; almost all (84%) of these were pleiotropic. This agrees 
with previous haploid studies, and adds credibility to the suggestion that hypervariable subtelomeres 
account for much of the remarkably large trait variation in yeast24,25. 
 
Explaining parent-offspring discordance by intralocus interactions 
The degree to which offspring phenotypes deviate from the mean of the parent phenotypes, heterosis, and 
which genetic factors account for this difference are central questions in breeding. Capitalizing on the 
scale (130.000 offspring traits) of our screen, we established the phenotype discordance of the POLs from 
their diploid parents (Online Methods) with previously unattainable completeness. Of the offspring 
phenotypes that differed significantly from those of both its parents and allowed discordance analysis 
(Supplementary Fig. S5a), the majority (88% to 92%) deviated significantly from the midparent 
expectation and were thus heterotic. Half (41 to 52%) of these cases corresponded to the offspring being 
either superior (best parent heterosis) or inferior (worst parent heterosis) to both parents, with equal 
prevalence of best parent and worst parent heterosis (Fig. 4a). This is surprising given that smaller scale 
studies have indicated higher prevalence of best parent heterosis26,27.  
Overdominance (heterozygotes being superior to both homozygotes) and dominance (heterozygotes 
differing from the parent mean) can both contribute to best parent heterosis. However, calling such 
contributions is challenging: multiple effects often act in parallel and they rarely manifest in all genetic 
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backgrounds. We conjectured that overdominance contributions to offspring superiority should manifest 
as enrichment of heterozygotes among POLs with best parent heterosis. Similarly, dominance 
contributions should manifest as enrichment of the better homozygote. For each QTL and trait separately, 
we therefore called overdominance contributions as more heterozygotes than expected among best parent 
heterotic POLs (χ2 test, p < 0.01; Fig. 4b, dark orange), and dominance contributions as more of the 
better homozygote than expected (Fig. 4b, light orange). Overall, for 38% of QTLs, we identified 
probable dominance contributions to best parent heterosis, and for 12%, we identified probable 
overdominance contributions. These proportions were consistent across a wide range of significance cut-
offs (Fig. 4c). For the remaining 56% of QTLs, no significant contributions to the best parent heterosis 
were detected.  
The dominance/overdominance contributions to the growth of the best parent heterotic POLs were often 
notably different from contributions in the entire population (Fig 4b, bottom left vs. bottom right 
panels). Indeed, of the 18 QTLs for which we detected overdominance in the best parent heterotic POLs, 
only two showed heterozygote phenotype averages being significantly superior to homozygote phenotype 
averages when the entire set of POLs was considered (Student’s t-test, p<0.01). This suggests that 
dominance-by-dominance or dominance-by-additive interactions potentiate the best parent heterosis, 
shifting dominant or additive loci to overdominant to create best parent heterosis in a minority of 
backgrounds. For the chr. IX QTL with a near universal fitness trade-off, heterozygotes were consistently 
enriched among offspring with superior growth rate but underrepresented among those with superior total 
growth. Conversely, homozygotes with the North American allele were underrepresented among 
offspring with superior growth rate, but overrepresented among those with superior total growth 
(Supplementary Fig. S5b). Thus, overdominance and dominance at this universal QTL both contributed 
to best parent heterosis for growth, but for different growth components. Finally, we called 
underdominant contributions to worst parent heterosis as more heterozygotes than expected among worst 
parent heterotic POLs. Overall, we found 12% of QTLs to contribute underdominantly to worst parent 
heterosis (Supplementary Fig. S5c). To our knowledge, this is the most exhaustive dissection of 
heterosis to date. 
 
DISCUSSION 
Traits have been exhaustively mapped and decomposed in haploid models10-12,28,29 but extrapolation from 
haploid screens to the biology of diploids is precarious. Intralocus interactions in the form of dominance 
cannot be estimated in haploid screens and these also only capture additive-by-additive epistasis. 
Moreover, ploidy as such has a fundamental impact on traits30, both due to its influence on cell size and 
the masking of recessive alleles in diploids31,32. The Phased Outbred Lines (POLs) presented here 
circumvent the shortcomings of haploid screens by offering decomposition of diploid traits with 
previously unattainable exhaustiveness. The capacity of the approach follows from generating a very 
large array of fully phased diploid genomes based on short read sequencing of an only moderate number 
of haploids. The alternative, acquiring phased genomes from direct sequencing of diploids, would require 
long-read sequencing of thousands of isolates and will remain economically unfeasible even in model 
organisms for years to come33. As a direct consequence of the experimental design, each POL shares one 
haploid genome with siblings spawned from the same haploid parent. This sharing of half a genome had 
surprisingly large effects on trait similarity, greatly aiding both trait prediction from relatives23 and the 
partitioning of trait variation into its additive, dominant and epistatic components. In contrast, it 
somewhat restricted our ability to distinguish the weaker effects of individual loci and the calling of those 
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QTLs. The large impact that sharing one haploid genome has on trait similarity among diploids, and the 
associated benefits and drawbacks, may or may not manifest in other model organisms. Beyond the 
removal of the sex-switch and introduction of sex-specific auxotrophic markers, POLs impose no 
requirements on the yeast genotypes used; the design is lineage agnostic. The diploid hybrids have 
identical marker composition, avoiding marker effects that confound many haploid crossing designs34,35. 
The framework allowed partitioning diploid trait variation into its major components with little room for 
confounding effects, due to nearly all trait variation being accounted for. Additive effects explained the 
vast majority of phenotypic variation, with approximately equal variance contributions from dominance 
and pairwise interactions at slightly less than 10%. The large explanatory power of additive genetics is 
well in line with findings in haploid screens10,29. Third order epistasis explained less than 2% of the trait 
variation, comparable to, or somewhat less than, estimated for third11, or third and higher12 order 
interactions in haploid yeast. Thus, although examples where three-way interactions affect trait variation 
can be found12,36,37, they generally account for little trait variation. Despite the lower overall contribution 
of nonadditive than additive genetics to trait variation, we found nonadditive QTLs to outnumber additive 
QTLs. The weaker mean effect of nonadditive QTLs partially explains this discrepancy. In addition, 
subtle differences in how QTLs were called means that we cannot completely exclude that we detected 
nonadditive effects with somewhat better power.  
A stable haploid phase, indefinite storage as frozen stocks and easy mating will remain distinct 
advantages of yeast. Nevertheless, POLs can be employed in most higher model organisms, with only 
slight modifications to the approach. Panels of extensively recombined offspring can be generated using 
two or more founder parents in mouse, plants, flies and worm38,39. Successive inbreeding or selfing is 
common practice to produce recombinant inbred lines (RILs). The gametes of these sequenced RILs can 
be paired by designed mating to generate the final array of POLs to be phenotyped. To attain 
exhaustiveness while avoiding confounding effects from uncontrolled environmental variation, the cost-
effectiveness of the genotyping needs to be matched by a phenotyping approach that achieves both scale 
and accuracy. The here reached broad sense heritability, with a lower bound mean estimate of 91%, may 
remain challenging to match in most species. Nevertheless, phenomics is advancing on broad fronts and 
simultaneous high throughput and accuracy is on the horizon in most model organisms40.  
 
METHODS 
A full description of the methods is available in the online version of the paper. 
 
ACKNOWLEDGEMENTS 
JH was supported by the Labex SIGNALIFE (ANR-11-LABX-0028-01) and KM was supported by the 
European Regional Development Fund through the BioMedIT project, FS was supported by ATIP-Avenir 
(CNRS/INSERM), Becas Chile, FONDECYT (3150156) and MN-FISB (NC120043) postdoctoral 
fellowships. This study was funded by the Swedish Research Council (325-2014-6547 and 621-2014-
4605), the Research Council of Norway (222364/F20) to JW; by a Marie Curie International Outgoing 
Fellowship, the Wellcome Trust, and Estonian Research Council (IUT34-4) to LP; ATIP-Avenir 
(CNRS/INSERM), ARC (grant number PJA20151203273), FP7-PEOPLE-2012-CIG (grant number 
322035), ANR (ANR-13-BSV6-0006-01 and Labex SIGNALIFE ANR-11-LABX-0028-01), 
Cancéropôle PACA (AAP émergence 2015) and DuPont Young Professor Award to GL. 
 
REFERENCES 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 3, 2016. ; https://doi.org/10.1101/042176doi: bioRxiv preprint 

https://doi.org/10.1101/042176


7 

1. Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. 
Am. J. Hum. Genet. 90, 7–24 (2012). 

2. Eichler, E. E. et al. Missing heritability and strategies for finding the underlying causes of 
complex disease. Nature Publishing Group 11, 446–450 (2010). 

3. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human 
height. Nat. Genet. 42, 565–569 (2010). 

4. Lehner, B. Molecular mechanisms of epistasis within and between genes. Trends Genet. 
27, 323–331 (2011). 

5. Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing heritability: 
Genetic interactions create phantom heritability. Proc. Natl. Acad. Sci. U.S.A. 109, 1193–
1198 (2012). 

6. Abney, M., McPeek, M. S. & Ober, C. Estimation of variance components of quantitative 
traits in inbred populations. Am. J. Hum. Genet. 66, 629–650 (2000). 

7. Lehner, B. Genotype to phenotype: lessons from model organisms for human genetics. 
Nature Publishing Group 14, 168–178 (2013). 

8. Liti, G. & Schacherer, J. The rise of yeast population genomics. C. R. Biol. 334, 612–619 
(2011). 

9. Warringer, J. & Blomberg, A., chapter: Yeast Phenomics -- Large-scale Mapping of the 
Genetic Basis for Organismal Traits in book Phenomics. 172-209 (ed. Hancock, J.) (CRC 
Press, 2014). doi:10.1201/b16437 

10. Bloom, J. S. et al. Genetic interactions contribute less than additive effects to quantitative 
trait variation in yeast. Nature Communications 6, 8712–6 (2015). 

11. Bloom, J. S., Ehrenreich, I. M., Loo, W. T., Lite, T.-L. V. & Kruglyak, L. Finding the 
sources of missing heritability in a yeast cross. Nature 494, 234–237 (2013). 

12. Young, A. I. & Durbin, R. Estimation of epistatic variance components and heritability in 
founder populations and crosses. Genetics 198, 1405–1416 (2014). 

13. Parts, L. et al. Revealing the genetic structure of a trait by sequencing a population under 
selection. Genome Research 21, 1131–1138 (2011). 

14. Cubillos, F. A. et al. High-resolution mapping of complex traits with a four-parent 
advanced intercross yeast population. Genetics 195, 1141–1155 (2013). 

15. Illingworth, C. J. R., Parts, L., Bergström, A., Liti, G. & Mustonen, V. Inferring genome-
wide recombination landscapes from advanced intercross lines: application to yeast 
crosses. PLoS ONE 8, e62266 (2013). 

16. Zackrisson, M. et al. Scan-o-matic: high-resolution microbial phenomics at a massive 
scale. bioRxiv 031443 (2015). doi:10.1101/031443 

17. Warringer, J. et al. Trait variation in yeast is defined by population history. PLoS Genet 7, 
e1002111 (2011). 

18. Ibstedt, S. et al. Concerted evolution of life stage performances signals recent selection 
on yeast nitrogen use. Molecular Biology and Evolution 32, 153–161 (2015). 

19. Warringer, J., Anevski, D., Liu, B. & Blomberg, A. Chemogenetic fingerprinting by 
analysis of cellular growth dynamics. BMC Chem Biol 8, 3 (2008). 

20. Joshi, P. K. et al. Directional dominance on stature and cognition in diverse human 
populations. Nature 523, 459–462 (2015). 

21. Magwene, P. M. et al. Outcrossing, mitotic recombination, and life-history trade-offs 
shape genome evolution in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 108, 
1987–1992 (2011). 

22. Wang, Q.-M., Liu, W.-Q., Liti, G., Wang, S.-A. & Bai, F.-Y. Surprisingly diverged 
populations of Saccharomyces cerevisiae in natural environments remote from human 
activity. Mol. Ecol. 21, 5404–5417 (2012). 

23. Märtens, K., Hallin, J., Warringer, J., Liti, G. & Parts, L. Predicting quantitative traits from 
genome and phenome with near perfect accuracy. bioRxiv 029868 (2015). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 3, 2016. ; https://doi.org/10.1101/042176doi: bioRxiv preprint 

https://doi.org/10.1101/042176


8 

doi:10.1101/029868 
24. Bergström, A. et al. A high-definition view of functional genetic variation from natural 

yeast genomes. Molecular Biology and Evolution 31, 872–888 (2014). 
25. Cubillos, F. A. et al. Assessing the complex architecture of polygenic traits in diverged 

yeast populations. Mol. Ecol. 20, 1401–1413 (2011). 
26. Plech, M., de Visser, J. A. G. M. & Korona, R. Heterosis is prevalent among domesticated 

but not wild strains of Saccharomyces cerevisiae. G3 (Bethesda) 4, 315–323 (2014). 
27. Zörgö, E. et al. Life history shapes trait heredity by accumulation of loss-of-function 

alleles in yeast. Molecular Biology and Evolution 29, 1781–1789 (2012). 
28. Ehrenreich, I. M. et al. Dissection of genetically complex traits with extremely large pools 

of yeast segregants. Nature 464, 1039–1042 (2010). 
29. Lorenz, K. & Cohen, B. A. Small- and large-effect quantitative trait locus interactions 

underlie variation in yeast sporulation efficiency. Genetics 192, 1123–1132 (2012). 
30. Zörgö, E. et al. Ancient evolutionary trade-offs between yeast ploidy states. PLoS Genet 

9, e1003388 (2013). 
31. Gerstein, A. C. & Berman, J. Shift and adapt: the costs and benefits of karyotype 

variations. Curr. Opin. Microbiol. 26, 130–136 (2015). 
32. Gerstein, A. C. & Otto, S. P. Ploidy and the causes of genomic evolution. J. Hered. 100, 

571–581 (2009). 
33. Chaisson, M. J. P., Wilson, R. K. & Eichler, E. E. Genetic variation and the de novo 

assembly of human genomes. Nature Publishing Group 16, 627–640 (2015). 
34. Perlstein, E. O., Ruderfer, D. M., Roberts, D. C., Schreiber, S. L. & Kruglyak, L. Genetic 

basis of individual differences in the response to small-molecule drugs in yeast. Nat. 
Genet. 39, 496–502 (2007). 

35. Mülleder, M. et al. A prototrophic deletion mutant collection for yeast metabolomics and 
systems biology. Nat. Biotechnol. 30, 1176–1178 (2012). 

36. Gerke, J., Lorenz, K. & Cohen, B. Genetic interactions between transcription factors 
cause natural variation in yeast. Science 323, 498–501 (2009). 

37. Taylor, M. B. & Ehrenreich, I. M. Transcriptional Derepression Uncovers Cryptic Higher-
Order Genetic Interactions. PLoS Genet 11, e1005606 (2015). 

38. Nordborg, M. & Weigel, D. Next-generation genetics in plants. Nature 456, 720–723 
(2008). 

39. Mackay, T. F. C. Epistasis and quantitative traits: using model organisms to study gene-
gene interactions. Nature Publishing Group 15, 22–33 (2014). 

40. Hancock, J. M. et al. Phenomics. (CRC Press, 2014). doi:10.1201/b16437 
41. Liti, G. et al. Population genomics of domestic and wild yeasts. Nature 458, 337–341 

(2009). 
42. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide 

complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011). 
43. Broman, K. W. & Sen, S. A Guide to QTL Mapping with R/qtl. 1–401 (Springer New York, 

2009). doi:10.1007/978-0-387-92125-9 
44. Lippert, C., Casale, F. P., Rakitsch, B. & Stegle, O. LIMIX: genetic analysis of multiple 

traits. bioRxiv 003905 (2014). doi:10.1101/003905 
 
 
ONLINE METHODS 
Generation of Phased Outbred Lines: F12 outbred lines were derived from a two way intercross 
between ancestors of the North American (YPS128) and West African (DBVPG6044) populations, as 
described13. Ancestral strains differed at 0.53% of nucleotide sites41. Following random sporulation of 
F12 diploids, 86 haploids of each mating type were randomly selected and their mating type and 
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auxotrophies determined. Haploid genotypes were selected to allow systematic crossing: MATa, 
ura3::KanMX, ho::HygMX and MATα; ura3::KanMX; ho::HygMX; lys2::URA3. Haploids of different 
mating types were robotically mated on rich medium (1% yeast extract, 2% peptone, 2% glucose, 2% 
agar) in all pairwise combinations combining their complementary LYS and URA auxotrophies using a 
RoToR HDA (Singer Ltd, UK). Diploid hybrids were selected twice on Synthetic Minimal (SM) medium 
(0.14% Yeast Nitrogen Base, 0.5% ammonium sulphate, 2% (w/v) glucose and pH buffered to 5.8 with 
1% (w/v) succinic acid, 2% agar). The theoretical maximum amount of POLs from our experimental 
design was 7396 (86x86), however, one F12 haploid strain was contaminated prior to mating and all 86 
hybrids spawning from this cross was therefore discarded (7310 were retained). 
Genotype construction: The haploid F12 parents were sequenced by short read sequencing15, and 
mapped to parental genomes in order to call segregating sites, infer genotypes and characterise the 
recombination landscape. All segregants were homoplasmic, carrying the non-recombined WA mtDNA 
genome. This excludes confounding mtDNA effects. Phased genomes of their diploid hybrid offspring 
was reconstructed in silico using custom R code. Diploid hybrids with chr. IX aneuploidies were excluded 
for the QTL mapping (6642 were retained). 
High resolution growth phenotyping: High resolution growth phenotyping on solid agar medium was 
performed using a 1536-colony plate layout. Each plate (Plus plate, Singer Ltd, UK) was cast with exactly 
50mL of Syntetic Complete medium at 50C (as SM above with added 0.077% Complete Supplement 
Mixture (CSM, formedium)). Casting was performed on an absolutely leveled surface with drying for ~1 
day. The base medium was supplemented with additional stressors or alternative carbon or nitrogen 
sources as indicated (Supplementary Table SI). The 7310 POLs were distributed over 1152 positions 
across eight plates. We used n = 4 replicates for each experimental plate, with replicates initiated from 
two different pre-cultures and run in different instruments and plate positions to minimize bias. Their 172 
haploid F12 parents (n = 6 replicates on each plate, two plates) and their diploid NA and WA ancestral 
lineages (n = 72 replicates on each plate, two plates) were phenotyped separately. Every 4th position was 
reserved for internal controls (diploid NA ancestral strains). These 384 controls were interleaved with 
experiments on pre-culture plates, ensuring equal treatment of controls and experiments. High resolution 
population size growth curves were obtained using Epson Perfection V700 PHOTO scanners (Epson 
corporation, UK) and the Scan-o-matic framework16. Scanners were maintained in a 30ºC, high humidity 
environment that minimized light influx and evaporation. Experiments were run for 72h, with automated 
transmissive scanning and signal calibration in 20 min intervals. Calibrated pixel intensities were 
transformed into population size measures by reference to cell counts obtained by flow cytometry. Raw 
population growth curves were slightly smoothed to remove noise. Poor quality curves (0.3%) were 
rejected following manual inspection. Retained population growth curves were broken down into two 
growth phenotypes i) maximum growth rate, extracted using linear regression from the steepest slope of 
the population’s exponential phase, and ii) total growth, extracted as the population size gain between the 
first (0h) and the last measure (72h). To capture spatial bias on each 1536 plate, the two growth 
phenotypes were normalized to the internal controls using the Scan-o-matic principle16. The final 
phenotypes used were the average phenotype across all replicates. Detailed protocols are available16. To 
circumvent the problem of calculating Coefficients of Variation (CoV) for normalized growth phenotypes 
spanning over both negative and positive values, these were reverted back into actual doubling times and 
yields, before CoV calculations. This reversion was performed by multiplying each normalized value with 
the median control trait value and reversion of the log transformation. 
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Phenotype Variance Partitioning: We estimated additive relatedness from genotypes, derived formulae 
for covariance due to dominance, pairwise and third order interaction effects and fitted the model using 
restricted maximum likelihood, as in Yang et al. (2011)42. As third order interactions biased estimates of 
other variance components, these were analyzed and reported separately. Details are available in 
Supplementary Note SI. 
QTL mapping: QTL calling was made using the scanone function with the marker regression 
method in R/qtl43 with estimated diploid parent phenotypes (additive genetic background contribution to 
traits) and POL deviations from the estimated diploid parents values (variation not explained by additive 
effects of parental background) respectively using 52,466 markers. Diploid parental phenotypes were 
estimated as the median of all hybrids descended from that parent. Using the deviations from expected 
midparent phenotype for the POLs has the additional critical benefit of effectively accounting for 
population structure by removing the additive effect of the more similar genetic composition due to 
shared parents. Significance thresholds were given by permutations (x1000), 95% Bayesian credible 
intervals were calculated for each QTL using the bayesint function in R/qtl. QTL calling by linear 
mixed models, also accounting for population structure, was performed and used as verification. For 
these, in order to test each QTL, we constructed the realised genetic relationship matrix by discarding the 
SNPs within the 50kb neighbourhood of the SNP under consideration; these models were fitted with 
LIMIX44 as in Märtens, Hallin et al. (2015)23. Consecutive markers having the same genotype across all 
individuals were removed for increased computation speed, leaving 10,726 segregating sites23. 
Heterosis: We used a Student’s t-test to detect POLs significantly deviating (p < 0.01) from the mean 
parent phenotype, either overperforming (positive mid parent heterosis) our underperforming (negative 
mid parent heterosis). The parent phenotypes used were estimated from all POLs descending from the 
given parent as described under “QTL mapping” in Online Methods, the variance of the mean parent 
phenotype was set to equal that of the most variable parent. POLs deviating from the mean parent were 
then tested using a Student’s t-test (p < 0.01) for positive deviations from the strongest parent (best parent 
heterosis, BPH) and for negative deviations from the weakest parent (worst parent heterosis, WPH) 
Dominance, overdominance and underdominance contributions to heterosis: To test for 
overdominance contributions to best parent heterosis we compared the expected and observed number of 
heterozygous genotypes among best parent heterotic POLs (defined as above). This was performed for 
each QTL separately using a χ2 test. Entries were: observed number of heterozygotes and observed 
number of homozygotes (summed) among BPH POLs and the corresponding expected numbers, given 
distributions among all POLs. A range of cut-offs for significance was tested and the stability of results 
across cut-offs ascertained. We cannot completely exclude that pseudo-overdominance, i.e. tightly linked 
loci with dominance of opposite parental alleles, confuse some assignments of overdominance. However, 
given the small linkage regions, we expect pseudo-overdominance to be rare and the associated 
overestimation of overdominance to be small. We tested for dominance similarly, but pooling the weaker 
homozygote state with the heterozygote state and calling significant enrichment of the better homozygote 
among BPH POLs. Underdominance contributions to worst parent heterosis were called as for 
overdominance, but as enrichments of the heterozygous genotype among worst parent heterotic POLs. 
 
SUPPLEMENTARY INFORMATION 
Supplementary Figure S1 | Growth phenotype distributions 
Supplementary Figure S2 | Extent of genome-wide homozygosity has no impact on yeast growth 
Supplementary Figure S3 | QTL maps for each trait 
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Supplementary Figure S4 | Phenotype distributions as a function of genotype for key QTLs 
Supplementary Figure S5 | Dominance, overdominance and underdominance in heterotic POLs 
Supplementary Table SI | Environment description 
Supplementary Table SII | Variance decomposition 
Supplementary Table SIII | QTL summary 
Supplementary Data SI | Genotypes 
Supplementary Data SII | Phenotypes 
Supplementary Data SIII | Variance decomposition simulations 
Supplementary Note SI | Supplementary Methods describing the partitioning of trait variation into its 
genetic components   
 
 
SUPPLEMENTARY FIGURE LEGENDS 
Supplementary Figure S1 Growth phenotype distributions. (a) Variation in degree of stress in the 
different environments for maximum growth rate (left panel) and total growth (right panel). Note that 
actual population doubling time (hours), and total growth (cells), are shown to allow a direct biological 
interpretation of values. The transformation, from normalized trait values to actual doubling times and 
total growth, was achieved by multiplying normalized values with the median control trait value and 
reversion of the log-transformation for each environment. (b) Frequency distribution of normalized 
phenotypes for POLs (blue) and estimated diploid F12 parents (gray). 
  
Supplementary Figure S2 Extent of genome-wide homozygosity has no impact on yeast growth. 
Each point represents one POL in one environment (colors), with maximum growth rate (left panel) and 
total growth (right panel) in different panels. x-axis shows mean heterozygosity, across all the segregating 
sites in the genome. y-axis shows the normalized growth phenotype.  
 
Supplementary Figure S3 QTL maps for each trait. Four QTL mapping approaches were used for 
each trait: nonadditive QTL mapping, using residuals from the estimated diploid F12 parents (top panel); 
dominance, testing for significance of the dominance term using linear mixed models (second panel from 
the top); additive QTL mapping, using estimated diploid F12 parents (third panel from the top); and 
finally, additive QTL mapping, using linear mixed models (bottom panel). y-axis = LOD score, x-axis = 
genetic position. 
 
Supplementary Figure S4 Phenotype distributions as a function of genotype for key QTLs. (a) Left 
panel: distribution of total growth in allantoin, as a function of genotype composition at the QTL at chr. 
IX. Right panel: total growth in galactose, as a function of genotype composition at the QTL on chr. IV. 
(b) Tukey boxplots for growth traits as a function of genotype composition at the near universal chr. IX 
QTL, penetrating in all but one environment with antagonistic effects on maximum growth rate and total 
growth. Note: on average, homozygote WA is the strongest genotype for maximum growth rate. 
However, as shown (Fig S5) heterozygotes are heavily enriched among the best performing POLs. Thus, 
dominance, gives way to overdominance, in some genetic backgrounds. 
 
Supplementary Figure S5 Dominance, overdominance and underdominance in heterotic POLs. (a) 
Frequency of POLs not significantly different from their corresponding estimated diploid parents (y-axis) 
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as a function of different FDR q-values (x-axis) where the red label (0.01) indicates FDR q-value used for 
downstream analysis. (b) For each growth phenotype (black label = growth rate, red label = total growth) 
the genotype frequencies for best parent heterotic POLs (BPH), all POLs and worst parent heterotic POLs 
(WPH) at the pleiotropic chr. IX QTL. Best parent heterotic POLs for growth rate at this segregant site 
are significantly overrepresented for the heterozygous genotype compared to all POLs in most 
environments (p < 0.01, exception of NaCl, glycine and caffeine) and are significantly underrepresented 
for the NA homozygous genotype (exception of NaCl and isoleucine). Conversely, best parent heterotic 
POLs in total growth are in all environments overrepresented for homozygous NA (χ2 test, p<0.01) and 
underrepresented for the heterozygote. (c) The percentage of WPH explained by underdominance as a 
function of FDR. 
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Figure 1 | A novel experimental framework for high-powered analysis of diploid traits. (a) Experimental design. Left 
panel: Advanced intercrossed lines were construceted by multiple rounds of random mating and sporulation of North 
American (NA) and West African (WA) genomes. Midlle panel: We sequenced 172 of the resulting segregants and 
paired these to generate an array of 7310 diploid hybrids (POLs). Right panel: The POLs and their F12 haploid parents 
were growth phenotyped in nine environments, providing high resolution growth curves. (b) Frequency of 
homozygotes (red: WA/WA, blue: NA/NA), heterozygotes (purple: NA/WA) and missing genotypes (white, mostly 
attributed to chr. IX aneuploidies) at each segregating site among the 7310 POLs. Deviations from 50% heterozygosity 
are explained by selection (numbers 1, 4-8) against one allele in the F12 haploid parent construction, or by forced 
heterozygosity at the LYS2 (number 2) and MAT (number 3) loci. (c) Maximum growth rate distributions of POLs 
(blue), their haploid F12 parents (orange) and the diploid parent estimates (gray, Online Methods). (d) Correlations 
(Pearson's r) between the maximumgrowth rate and total growth for POLs within environments (lower left to upper 
right diagonal; orange boarders),between maximum gorwth rates (above diagonal) and total growth (below diagonal) in 
pairs of environments. Color intensity (3-color scale: dark yellow to white to dark blue) and number indicate the degree 
of correlation (r)

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 3, 2016. ; https://doi.org/10.1101/042176doi: bioRxiv preprint 

https://doi.org/10.1101/042176


0.00

0.06
0.04
0.02F

ra
ct

io
n 

of
 v

ar
ia

nc
e 

ex
pl

ai
ne

d

0.00

0.50

0.25

0.75

1.00

all
an

to
in

all
an

to
in

gly
cin

e

ga
lac

to
se

ga
lac

to
se

ca
ffe

ine

ca
ffe

ine

ra
pa

m
yc

in

ph
leo

m
yc

in

ph
leo

m
yc

in
NaC

l

NaC
l

iso
leu

cin
e

iso
leu

cin
e

hy
dr

ox
yu

re
a

hy
dr

ox
yu

re
a

gly
cin

e

ra
pa

m
yc

in

Additive Dominance Second order Third order

Figure 2 | Near complete decomposition of diploid traits into their genetic componenets. DEcomposing the total variance in 
growth traits across 6642 diploids into additive (gray, upper panel), dominance (yellow, upper panel), second order epistatic 
(blue, upper panel) and third order epostatic (green, lower panel) genetic contributions. Black label = growth rate, red label = 
total growth. Error bars = S.E.M
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Figure 3 | Cost-efficient QTL mapping in yeast POLs. QTLs were mapped across 6642 genomes and 18 traits based on 
additive and nonadditive contributions. QTLs were validated as additive or dominant genetic contributions using Linear 
MIxed Models (LMM). (a) QTL signal strength (LOD score, y-axis) as a function of genomic position (x-axis) , for 
maximum growth rate on allantoin as sole nitrogen source, using additive (LMM and non-LMM; lower panel) and 
nonadditive (non-LMM and LMM only capturing dominance; upper panel) models. Red dots indicate significant (FDR, q 
= 10%) QTL calls. White/grey fields indicate chromosome spans. (b) Venn diagram of significant QTLs capturing 
additive and nonadditive genetic contributions. All 18 (growth rate and total growth over nine environments) were 
considered, with pleiotropic QTLs counted multiple times. (c) Tukey boxplot showing the fraction of total variance in a 
trait explained by additive (purple) and nonadditive (blue) significant QTLs (non-LMM models). (d) Histogram of 
pleiotropic QTLs. A QTL was counted as shared across environments if peaks were within 10 kb of each other. No QTLs 
were significant in 4, 5, 6 or 7 environments.
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Figure 4 | Explaining parent-offspring discordance by intralocus interactions. Abbreviations: worst 
parent heterosis (WPH); mid parent heterosis (MPH); best parent heterosis (BPH). (a) Frequencies of the 
heterotic POLS (y-axis) as a function of a range of FDR significance cut-off (q) values (x-axis). Line 
color = type of heterosis. Red text = FDR q-value chosen for downstream analysis (b,c). (b) Left panel: 
example of QTLs called as contributing to best parent heterosis by dominance (dark orange) and by 
overdominance (light orange) respectively. Dominance was called as enrichment of strongest 
homozygote and overdominance as enrichment of heterozygous state among BPH POLs as compared to 
all POLs (left panel). Right panel: phenotype (top: allantoin, bottom: galactose) distribution depending 
on genotype composition at the same QTLs. (c) The frequency of QTLs called as contributing by 
dominance and overdominance respectively (y-axis) as a function of FDR significance cutoff (q) values 
(x-axis). Red label = FDR q-value chosen for downstream analysis. 
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