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Abstract

We investigate the dependence of the site frequency spectrum (SFS) on

the topological structure of genealogical trees. We show that basic popula-

tion genetic statistics – for instance estimators of θ or neutrality tests such

as Tajima’s D – can be decomposed into components of waiting times be-

tween coalescent events and of tree topology. Our results clarify the relative

impact of the two components on these statistics. We provide a rigorous in-

terpretation of positive or negative values of neutrality tests in terms of the

underlying tree shape. In particular, we show that values of Tajima’s D and

Fay and Wu’s H depend in a direct way on a measure of tree balance which

is mostly determined by the root balance of the tree. We also compute the

maximum and minimum values for neutrality tests as a function of sample

size.
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Focusing on the standard coalescent model of neutral evolution, we dis-

cuss how waiting times between coalescent events are related to derived

allele frequencies and thereby to the frequency spectrum. Finally, we show

how tree balance affects the frequency spectrum. In particular, we derive

the complete SFS conditioned on the root imbalance. We show that the

conditional spectrum is peaked at frequencies corresponding to the root im-

balance and strongly biased towards rare alleles.

Introduction

Coalescent theory (Kingman, 1982; Hein et al., 2004; Wakeley, 2009) provides

a powerful framework to interpret the mutation patterns in a sample of DNA

sequences. Grounded in the neutral theory of molecular evolution (Kimura, 1985),

binary coalescent trees are the dual backward representations of the continuous-

forward-time diffusion model of genetic drift. In this view, sequences are related

by a genealogical tree where leaf nodes represent the sampled sequences at present

time and internal nodes (coalescent events) represent last common ancestors of

the leaves underneath. In particular, the root node represents the most recent

common ancestor of the whole sample.

In species phylogeny and epidemiology, tree structure is often used to compare

different models of evolution or to fit model parameters (Bouckaert et al., 2014).

Two summary statistics are routinely used to characterize tree structure: the γ

statistic relates to the waiting times (Pybus et al., 2000) and the β statistic to

tree balance (Blum and François, 2006). Importantly, these statistics can only

be computed after the tree structure was independently inferred – typically by

phylogenetic reconstruction methods (Felsenstein, 2004).

In population genetics, the historical relationship among non-recombining se-

quences is represented by a single genealogical tree. The tree is completely deter-

mined by the waiting times and the branching order of coalescent events. The wait-

ing times determine branch lengths, the branching order determines tree shape.

Population genetic statistics, such as estimates of the scaled mutation rate or tests

of the neutral evolution hypothesis (neutrality tests) are sensitive to waiting times
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and tree shape.

The site frequency spectrum (SFS) is one of the most used statistics in pop-

ulation genetics. The site frequency spectrum ξ = (ξ1, ..., ξn−1) of a sample of n

sequences is defined as the vector of counts ξi, i ∈ {1, ..., n−1}, of all polymorphic

sites with a derived allele (“mutation”) at frequency i/n. The SFS is a function of

both tree structure and mutational process. For a given mutational process, the

SFS carries information on the underlying, but not directly observable, genealog-

ical trees and therefore on the forward process that has generated the trees. In

absence of recombination, the SFS carries information on the realized coalescent

tree and can be used to estimate tree structure (both waiting times and topology).

Recombination leads to a fragmentation of the sequences into haplotype blocks.

Each such block has its own - albeit not independent - genealogy. The genealo-

gies of neighboring blocks are strongly correlated, and sometimes even identical,

depending on the type of the recombination event and its location in the tree. It

can be shown that, under neutrality, most recombination events affect the lower

part of the tree, while only a few affect upper branches with a “drastic” effect on

the tree structure (Ferretti et al., 2013).

A convenient model for the coalescent with a moderate number of recombina-

tion events is the ancestral recombination graph (ARG) (Griffiths and Mar-

joram, 1996; Wiuf and Hein, 1999), that tracks the genealogy of all haplo-

type blocks. At a genome scale, the number of recombination events is however

enormous and, consequently, the number of haplotype blocks and associated ge-

nealogies is also extremely large. The SFS observed in simulated or experimental

genome-scale data is therefore an average over many quasi-independent realiza-

tions of possible trees. There may be no single tree representative for the history

of the entire sequences. Still, the SFS characterizes the ‘average’ coalescent tree,

carrying information about average waiting times and topologies.

Variation over time in the effective population size affects the expected waiting

times between coalescent events. In the past much attention in theoretical works

has been paid to the relation between waiting times and population size variation.

For example, skyline plots (Pybus et al., 2000) are directly used to infer variation
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of population size (Ho and Shapiro, 2011). More generally, formulae of the SFS

can be generalized to include deterministic changes of population size (Griffiths

and Tavaré, 1998; Zivkovic and Wiehe, 2008; Liu and Fu, 2015). In contrast,

the influence of tree shape on the SFS has not yet been tackled analytically.

The shape of a tree can range from completely symmetric trees, in which all

internal nodes evenly split the lineages, to caterpillar trees, in which each node

isolates exactly one lineage. In the standard neutral model – as well as in any

other equal-rate-Markov (ERM) or Yule model (Yule, 1925) – both of these ex-

treme cases are very unlikely to appear by chance (Blum and François, 2006).

In fact, since the number of binary tree shapes (enumerated by the Wedderburn-

Etherington numbers, Sloane and Plouffe (1995)) grows rapidly with the num-

ber of sequences n, any specific tree shape is arbitrarily improbable if n is suffi-

ciently large. Nonetheless, tree topology is a major determinant of the SFS. For

example, a caterpillar shape leads to a large excess of singleton mutations, while

a completely symmetric tree leads to an over-representation of intermediate fre-

quency alleles.

This study aims at a providing a systematic analysis of the impact of the

structure of coalescent trees upon the SFS. First, we will introduce the theoretical

framework for neutrality tests and tree balance. Then, we will present the decom-

position of the SFS in terms of waiting times and tree shape. We will start by the

case of a single non-recombining locus assuming a single realized tree (fixed topol-

ogy). As recombination affects mostly lower branches of the tree, this constitutes

also an excellent approximation for a locus with a low level of recombination. We

will then study the case of infinite recombination (average topology), providing

a framework for genome-wide analyses. As an application, we will present the

interpretation of neutrality tests in terms of tree topology and we will derive their

maximum and minimum values. Finally, we will explicitly compute the impact of

both the waiting times and the tree balance on the average SFS.

A qualitative summary of the results about the interpretation of neutrality test

is given in Table 3.
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Theoretical framework

Estimators of θ and neutrality tests

A fundamental population genetic quantity is the scaled mutation rate θ = 2pNeµ,

where p is the ploidy (typically p = 1 or 2), µ is the mutation rate per generation

per sequence and Ne is the effective size of the population. θ is the key parameter

of the neutral mutation-drift equilibrium. Usually, it cannot be measured directly,

but only be estimated from observable data. For example, under the standard

neutral model (i.e. constant population size) an unbiased estimator of θ is Wat-

terson’s θ̂S = S/an, where S is the number of observed polymorphic sites in a

sequence sample of size n (“segregating sites”), and an =
∑n−1

i=1 1/i is the (n−1)th

harmonic number (Watterson, 1975).

More generally, it has been shown that many of the well-known θ-estimators

can be expressed as linear combinations of the components ξi of the SFS (Tajima,

1983; Achaz, 2009; Ferretti et al., 2010). For example, θ̂S =
∑n−1

i=1
1
an
ξi or

Tajima’s θπ =
∑n−1

i=1
2i(n−i)
n(n−1)

ξi. Other estimators are presented in Table 1. Fur-

thermore, the classical neutrality tests (in their non-normalized version) can be

written as a difference between two θ-estimators, hence as a linear combination of

the ξi. For instance, the non-normalized Tajima’s D (Tajima, 1989) is θ̂π − θ̂S,

while Fay and Wu’s H (Fay and Wu, 2000) is θ̂π − θ̂H . The most common tests

are presented in Table 2.

Their expression as linear combinations of the ξi helps to understand discrep-

ancies between these tests through their weight functions. For instance, from the

weight functions it is immediately clear that H assigns large negative weight only

to ξi with large i (high frequency derived alleles), while D assigns negative weight

to ξi with small and large i (rare alleles).

Coalescent trees

The coalescent trees considered here are binary trees with labelled histories. This

means that all internal nodes have two descendant lineages and are uniquely or-
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dered by time. Such coalescent trees can be divided into time segments (“levels”)

delimited by the nodes. Each level is unambiguously characterized by its number

of lineages k, 2 ≤ k ≤ n. The most recent level has n lineages, the most ancient

level (from the root to the next internal node) has 2 lineages.

The waiting times between subsequent coalescent events, i.e. the level heights,

are denoted by tk. Under neutrality and constant population size the tk are ex-

ponentially distributed with parameter k(k − 1), when the time is measured in

2pNe generations (Wakeley, 2009). Two summary tree statistics are the height

h =
∑n

k=2 tk, that is the time from the present to the most recent common ances-

tor, and the total tree length l =
∑n

k=2 ktk. Basic coalescent theory states

E(h) = 1− 1/n and

E(l) = an .

Hereafter, the branches and internal nodes close to the root will be referred to

as ‘upper part’ of the tree; conversely, the ‘lower part’ is close to the leaves.

Tree topology

Branch size and its moments in fixed trees. Following Fu (1995), we define

the size σk of a branch from level k as the number of leaves that descend from that

branch. Any mutation on this branch is carried by σk sequences from the present

sample. We denote by P (σk = i|T ) the probability that a randomly chosen branch

of level k is of size i, given tree T . The complete set of distributions P (σk = i|T )

for each i and k determines uniquely the shape of the tree T .

The mean number of descendants across all branches from level k is E(σk) =∑n−k+1
i=1 iP (σk = i|T ) = n/k. This holds for any tree, since all n present-day

sequences must descend from one of the k branches from that level.

In contrast, the size variance, Var(σk), depends on the tree topology: at all

levels, it is almost zero in completely balanced trees and maximal in caterpillar

trees, where all nodes isolate one leaf from the remaining subtree. Var(σk) also

varies greatly from level to level: for example, the variance of the uppermost level
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Var(σ2) ∈ [0, n2/4 − n + 1], whereas Var(σn) = 0 for all trees because σn = 1 for

all branches.

More generally, the maximum variance at a given level k is obtained in trees

where k− 1 lineages lead to exactly one leaf and one lineage has n− k+ 1 descen-

dants. For this case, we compute

max
T

Var(σk) =
k − 1

k
12 +

1

k
(n− k + 1)2 −

(n
k

)2

= (k − 1)
(n
k
− 1
)2

.

(1)

Minimum variance at level k is obtained when all lineages have either1 bn/kc or

bn/kc+ 1 descendants and it is always ≤ 1/4:

min
T

Var(σk) = (n/k − bn/kc) · (bn/kc+ 1− n/k) . (2)

We propose an informative statistics on tree balance based on Var(σk). Given

a random point on the tree, we can compute the variance in its branch size given

its level. Then, we average the variance across the whole length of the tree. Fixing

a tree T , the average variance in branch size across all levels k is

Var(σ) =

∑n
k=2 k tkVar(σk)∑n

k=2 k tk
=

1

l

n∑
k=2

k tkVar(σk) . (3)

This summary statistic contains the natural weights k tk, that is the amount of

branch lengths at level k. Note that this average is different from the total variance

in offspring number, i.e. when the variance of sizes is taken across all branches,

irrespective of their level.

Random trees. We consider trees generated by the equal-rates Markov (ERM)

or Yule model (Yule, 1925), i.e. at a splitting event all lineages have the same

probability to split.

The probability P (σ∗k = i|n) that a branch of level k has size i in a random

ERM tree of total size n is given by Fu (1995)

P (σ∗k = i|n) =

(
n−i−1
k−2

)(
n−1
k−1

) (4)

1We denote by bxc the floor of x, i.e the largest integer smaller or equal to x.
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As noted above, the mean is

E(σ∗k) =
n−1∑
i=1

i

(
n−i−1
k−2

)(
n−1
k−1

) = n/k ,

independent of topology. Furthermore, the variance is

Var(σ∗k) =
n(k − 1)(n− k)

k2(k + 1)
=
k − 1

k + 1

(n
k
− 1
) n
k

(5)

and the average variance across levels becomes

Var(σ∗) =
1

l

n∑
k=2

k tkVar(σ∗k) . (6)

Node size and balance. The notion of size can be easily extended to internal

nodes. The size of an internal node, denoted |νk| for the node νk (k ∈ (1, n− 1)),

is the size of its incoming (i.e. parental) branch. For instance, the size of ν1 – the

root – is |ν1| = n; the size of the most recent internal node is |νn−1| = 2. The size

of a node can be further divided into the number of left and right descendants,

λk and ρk, respectively. Let ωk = min(λk, ρk). Then, we have 1 ≤ ωk ≤ b|νk|/2c.
Unbalanced nodes have ωk = 1, completely balanced nodes have ωk = b|νk|/2c.
Under neutrality ωk are (quasi-)uniform random variables and their standardized

sum is approximately normal. This fact can be used to construct tests of neutrality

(Li and Wiehe, 2013).

Decomposition of the Site Frequency Spectrum (SFS)

Let the vector ξ = (ξ1, ..., ξn−1) denote the site frequency spectrum (SFS). For

each component ξi the product i ξi is an unbiased estimator of θ = 2pNµ. Hence,

given weights w = (w1, ..., wn−1), the weighted linear combination

θ̂wi
=

1∑
wi

n−1∑
i=1

wi i ξi (7)

is also an unbiased estimator of θ. For instance, Watterson’s estimator θ̂S = S/an

follows from setting wi = 1/i in eq (7); Tajima’s estimator θ̂π (Tajima, 1983) is
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obtained by letting wi = (n − i). In fact, one can write all usual θ estimators

(Tajima, 1989; Fu and Li, 1993; Fay and Wu, 2000) as linear combinations of

the SFS with adequate weights (Achaz, 2009) detailed in Table 1.

Given topology, given waiting times. In this section we discuss the depen-

dence of the average spectrum ξ on tree topology.

The SFS is determined by the number of mutations of size i, 1 ≤ i ≤ n− 1. A

mutation has size i if it appears on a branch of size i. We assume that mutations

occur along branches according to a homogeneous Poisson process with rate µ per

unit time. Fixing a tree with respect to shape and branch lengths, we can average

over the mutation process and obtain for the mean frequency spectrum (Fu, 1995)

Eµ(ξi|T ) = θ

n∑
k=2

k tk P (σk = i|T ) . (8)

The probabilities P (σk = i|T ) represent the distribution of σk, the number of

descendants of the branches of level k, therefore they depend only on the shape of

the tree T and not on waiting times.

Replacing ξi by their mean according to eq (8), we obtain the general expression

for the mean of SFS-based θ-estimators

Eµ(θ̂w|T ) =
θ∑
wi

n−1∑
i=1

n∑
k=2

i wi k tk P (σk = i|T ) . (9)

Interestingly, several common estimators can be written in terms of a general

weight function of the form wi = αi + β + γ/i with appropriate values of α, β, γ.

For instance, θ̂S has α = β = 0 and γ = 1, while θ̂π has α = −1, β = n and γ = 0.

With this special weight function, equation (9) becomes

Eµ(θ̂w|T ) =
θ

Nα,β,γ,n

n−1∑
i=1

n∑
k=2

(αi2 + βi+ γ) k tk P (σk = i|T ) . (10)

with Nα,β,γ,n = αn(n−1)
2

+β(n−1)+γan. Using
∑n−1

i=1 iP (σk = i|T ) = E(σk) = n/k

and
∑n−1

i=1 i
2P (σk = i|T ) = Var(σk)+E2(σk) and exchanging the order of the sums,

this becomes

Eµ(θ̂w|T ) =
θ

Nα,β,γ,n

(
αVar(σ)l +

n∑
k=2

tk

(
α
n2

k
+ βn+ γk

))
(11)
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Average topology, given waiting times. To dissect the effect of branch

lengths and topology on the SFS, we now assume an arbitrary ERM-generated

tree and study the impact of coalescent waiting times on the SFS. This is applica-

ble to temporal changes in population size, since they affect the waiting times but

not the average tree topology. This will help us to understand the contributions

of the different levels of the genealogy to the SFS, to the estimators of θ and to

the neutrality tests derived from them.

From basic coalescent theory we know that E(tk) = 1/k(k − 1) for constant

population size. The general case of non-constant population size is treated in

Griffiths and Tavaré (1998), and formulae for the mean and covariance of

waiting times are derived in Zivkovic and Wiehe (2008).

Genealogies of unlinked loci can be treated as independent replicates of the

same process. When moving across the genome, trees from different (unlinked)

loci are then samples from the same distribution. Since fluctuations in population

size do not affect the distribution of tree shapes, the SFS pooled from different

loci represents an average over topologies.

For the average topology, equation (8) has the simple form

E(ξi|t2 . . . tn) = θ
n∑
k=2

k tk P (σ∗k = i|n) . (12)

Furthermore,

Eµ(θ̂w|t2 . . . tn) =
θ∑
wi

n−1∑
i=1

n∑
k=2

i wi k tk P (σ∗k = i|n) (13)

As the variance of σ∗k can be explicitly computed under the ERM model from

equation (6), setting the weight to wi = αi+β+γ/i the previous equation reduces

to:

Eµ(θ̂w|t2 . . . tn) =
θ

Nα,β,γ,n

n∑
k=2

tk

(
α
n(2n− k + 1)

k + 1
+ βn+ γk

)
(14)
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Applications

Estimators of θ and related neutrality tests

The above results lead to a simple interpretation of the usual test statistics in terms

of tree shape and balance. We consider first the case of a given tree topology and

then the average case. The tests are summarised in Table 2 and their interpretation

in Table 3.

Interpretation for a given genealogy

In this section we consider a single locus with a fixed genealogy.

Tajima’s D statistic is the most used neutrality test. It is proportional to the

difference θ̂π − θ̂S.

We compute Watterson’s estimator from eq (11) by setting α = β = 0 and

γ = 1, obtaining

Eµ(θ̂S) = θ
l

an
. (15)

Note that Eµ(θ̂S) is proportional to the total length of the tree, divided by the

mean length. As such, it is independent from the tree topology.

Similarly, letting α = −1, β = n and γ = 0, Tajima’s θπ is

Eµ(θ̂π) = θ
2

n(n− 1)

[
−Var(σ)l + n2

n∑
k=2

tk(1− 1/k)

]
. (16)

Note that Eµ(θ̂π) can be decomposed into two components: one that is a linear

combination of tree lengths, independent from the topology, plus a component

that contains the quantity Var(σ)l. The latter is strongly related to tree balance.

In fact, once “normalised” by l, it represents the average imbalance along the tree

as explained before.

As Tajima’s D is the difference between these two estimators – up to normal-

ization depending only on n and θ – it can be re-expressed as:

Eµ(D) ∝ − 2

n(n− 1)
Var(σ)l +

n∑
k=2

tk

(
2n

(n− 1)

(
1− 1

k

)
− k

an

)
. (17)
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In qualitative terms,

D ' − tree imbalance + length of upper branches − length of lower branches.

Tajima’s D is the sum of an imbalance term with negative sign plus terms that

give positive weight to the ancient waiting times and negative weight to the recent

ones. Therefore, Tajima’s D is large and positive when there are long branches

close to the root. It is strongly negative when the tree is unbalanced and/or when

recent branches are long. Tajima’s D is thus sensitive to both unbalanced trees

and trees with long branches close to the leafs (when negative) and balanced trees

with long branches close to the root (when positive). The former are typical trees

for recently increasing populations or loci under directional selection, the latter

are typical under balancing selection or for structured populations.

Fay and Wu’s H test was specifically designed to detect selective sweeps at

partially linked loci, as most weight is given to derived alleles with high frequency.

Strongly negative H is caused by an excess of high-frequency derived alleles, which

is a signature of a locus “hitchhiking” on a nearby sweep locus (Fay and Wu,

2000). To compute Eµ(H), we substitute α = 1, β = γ = 0 in eq (11) and obtain

Eµ(θ̂H) = θ
2

n(n− 1)

(
Var(σ) l + n2

n∑
k=2

tk
k

)
. (18)

Then, the H test has the property

Eµ(H) ∝ − 4

n(n− 1)
Var(σ) l +

2n

n− 1

n∑
k=2

tk(1− 2/k) . (19)

Its qualitative interpretation is

H ' − tree imbalance + length of lower branches.

Like Tajima’s D, H contains the imbalance term with negative sign. However,

it has another contribution that weights negatively the waiting times close to

the root and positively the waiting times close to the leafs – which is opposite to

Tajima’s D. Therefore, H is strongly negative for (i) large imbalance, and (ii) long
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branches close to the root. This is precisely the signal expected by hitchhiking

in the proximity of strong selective sweeps, i.e. when the sweep locus itself is

uncoupled from the locus under consideration by one (or a few) recombination

event(s).

Zeng’s E is another test designed to detect selective sweeps. However, it is

known to be less powerful than H (Zeng et al., 2006). The estimator θ̂L is defined

by setting β = 1 and α = γ = 0. The mean is

Eµ(θ̂L) = θ
n

n− 1
h (20)

and the E-test θ̂L − θ̂S has the property

Eµ(E) ∝ n

n− 1
h− l

an
. (21)

The qualitative interpretation is

E ' + tree height − tree length,

that can be rephrased as

E ' + length of upper branches − length of lower branches.

Like Fay and Wu’s H, the E-test is focused on high-frequency alleles. However, it

uses no topological information, but depends only on waiting times. This explains

its lower power compared to other tests. Furthermore, the qualitative analysis

shows that E compares upper and lower branches, i.e. height and length of the

tree. Hence, E can be naturally interpreted as a test for star-likeness of a tree. In

star-like trees the length is n times the height.

Fu and Li’s DFL is one of several tests based on singletons. Its mean is

Eµ(DFL) ∝ l −
n∑
k=2

ktkPn,k(1|T ) (22)

This test has the qualitative interpretation

DFL ' + length of internal branches − length of external branches (23)
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It measures the relative contribution of external branches to total tree length. In

complete star-like trees total length and external branch length are identical.

Despite its intuitive interpretation, negative values of Fu and Li’s DFL can be

misleading if interpreted in terms of tree shapes. The reason is that these values of

the test can be a result of purifying selection - non-neutral mutations that decrease

fitness and therefore can only reach low frequencies before disappearing from the

population. These mutations appear mostly as singletons concentrated on the

lower branches. This scenario violates the assumption of mutational homogeneity

along the tree and therefore the interpretation of eq (23) is not valid anymore.

Interpretation for average topology, given waiting times

For large genomic sequences – and with limited population structure – recombi-

nation effectively leads to an averaging over tree shapes. It is therefore interesting

to determine the test statistics for such a scenario.

In this section we will present the interpretation of the tests for an average

topology. The results are linear in the waiting times, therefore it is trivial to

average over times as well, by substituting tk with E(tk).

Tajima’s D: Averaging over tree shapes, θ̂S does not change, as it does not

depend on tree shape. In contrast, for θ̂π we have

Eµ(θ̂π) = θ
2

(n− 1)

n∑
k=2

tk
(n+ 1)(k − 1)

k + 1
. (24)

Thus, D becomes

Eµ(D) ∝ θ

[
2
n+ 1

n− 1

n∑
k=2

tk
(k − 1)

k + 1
− l

an

]
(25)

The interpretation of D is different once topologies are averaged: it weights

positively the old branches and negatively the young branches, so it measures

starlikeness similar to Zeng’s E, but with less weight on the root branches.
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Fay and Wu’s H: θ̂H depends on tree shape. In case of an average tree it

becomes

Eµ(θ̂H) = θ
2

n− 1

n∑
k=2

tk
2n− k + 1

k + 1
. (26)

Thus, the interpretation of Fay and Wu’s H is also affected. Now, we find that

Eµ(H) ∝ θ
2

n− 1

n∑
k=2

tk
k + 1

[n(k − 3) + 2(k − 1)] , (27)

i.e. the young branches are weighted positively, while most negative weight is

attributed to the root branches (k = 2).

Zeng’s E: Neither θ̂S nor θ̂L depend on shape, so the interpretation of Zeng’s E

is the same as for fixed trees.

Fu and Li’s DFL: Once averaged over shapes, ξ1 becomes

Eµ(θ̂ξ1) =
θ

n− 1

n∑
k=2

k(k − 1)tk (28)

and DFL tends to weight positively the younger branches, as expected:

Eµ(DFL) ∝ θ

(
1

n− 1

n∑
k=2

k(k − 1)tk −
l

an

)
(29)

Extreme values of neutrality tests

In this section we derive a simple approximation for the extreme positive and

negative values of neutrality tests.

From the results of the previous sections, it is easy to obtain the average values

of the tests Eµ(θ̂w|T, S) conditioned both on the tree T and on the number of

segregating sites S, simply by substituting θ with S/l. Then we are able to com-

pute the maximum and minimum value of Eµ(θ̂w|T, S), which correspond to the

maximum and minimum value of the statistics neglecting the Poisson mutational

noise.
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The numerators of the tests depend linearly on θ and therefore on S, while

the denominators of the tests are of the form
√
αnS + βnS(S − 1) (Tajima, 1989;

Zeng et al., 2006).

The maximum and minimum of the tests across all trees T depend on n and S;

however, for large S, they depend only on the sample size n. The extreme values

are presented in Figure 2 as a function of n and for different values of S.

Since the tests are distributed with mean 0 and variance 1 under the null neutral

model, a maximum close to or less than 2 would suggest that the distribution is

compressed around its maximum (i.e. the upper bound of any confidence interval

would fall close to the maximum itself) and the test would probably have reduced

power on the positive tail. Analogous reasoning is valid for minimum values close

to or larger than −2.

In the derivations of this section we neglect the contribution of minimum im-

balance, minT Var(σ), approximating it with 0.

Tajima’s D: its maximum corresponds to a tree with maximally balanced topol-

ogy and length concentrated in the upmost branches (k = 2) while its minimum

corresponds to maximally unbalanced trees with length concentrated in the upmost

and lowest branches (k = 2, n).

max
T

Eµ(D|T, S) =

(
n

2(n−1)
− 1

an

)
S√

αDn S + βDn S(S − 1)
−→
S�1

n
2(n−1)

− 1
an√

βDn
−→
n�1

3

2
√

2
log(n)

(30)

min
T

Eµ(D|T, S) =

(
2
n
− 1

an

)
S√

αDn S + βDn S(S − 1)
−→
S�1

2
n
− 1

an√
βDn

−→
n�1

− 3√
2
≈ −2.1

(31)

where the first arrow in each equation represents the limit of large number of

segregating sites, and the second the asymptotic behaviour for large sample size.

Our results suggest that Tajima’s D could be a very good test to detect bal-

anced trees with long upper branches, but is not as good in detecting unbalanced

trees with long upmost and/or lowest branches. It is actually well-known that
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its null distribution is skewed and compressed for negative values. However, our

results suggest that it is generally difficult to detect significant deviations from the

Kingman coalescent by negative values of Tajima’s D, unless there is an excess

of rare mutations due to non-homogeneous processes (e.g. background/purifying

selection).

Fay and Wu’s H: its maximum corresponds to a tree with maximally balanced

topology and length concentrated (surprisingly) in branches at k = 4, while its

minimum corresponds to maximally unbalanced trees with length concentrated in

the upmost branches (k = 2).

max
T

Eµ(H|T, S) =

n
4(n−1)

S√
αHn S + βHn S(S − 1)

−→
S�1

n
4(n−1)√
βHn

−→
n�1

log(n)

4
√
π2 − 88/9

(32)

min
T

Eµ(H|T, S) =
− (n−2)2

n(n−1)
S√

αHn S + βHn S(S − 1)
−→
S�1

−
(n−2)2

n(n−1)√
βHn

−→
n�1

− log(n)√
π2 − 88/9

(33)

Our results suggest that Fay and Wu’s H test works very well at both extremes,

especially for maximally unbalanced trees.

Zeng’s E: its maximum corresponds to a tree with length concentrated in the

upper branches (k = 2), while its minimum corresponds to star-like trees (i.e.

length concentrated in the lowest branches k = n).

max
T

Eµ(E|T, S) =

(
n

2(n−1)
− 1

an

)
S√

αEnS + βEn S(S − 1)
−→
S�1

n
2(n−1)

− 1
an√

βEn
−→
n�1

√
3

π2 − 9
log(n)

(34)

min
T

Eµ(E|T, S) =

(
1

n−1
− 1

an

)
S√

αEnS + βEn S(S − 1)
−→
S�1

1
n−1
− 1

an√
βEn

−→
n�1

−
√

3

π2 − 9
≈ −1.9

(35)

Our results suggest that Zeng’s E test could work well to detect tree with long

upper branches, but not so well to detect star-like trees.
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Impact of the waiting times on the SFS

The decomposition of the SFS can also be interpreted in terms of the frequency

spectrum itself, instead of neutrality tests. When averaging over tree shapes, the

frequency spectrum is directly informative with respect to the waiting times tk.

For an average topology, the relation between the mean spectrum and waiting

times is given by eq (12). The average variation in the spectrum due to a small

change δtk in time is

E

[
δξi
δtk

]
= θk

(
n−i−1
k−2

)(
n−1
k−1

) . (36)

The variation due to a relative change in tk is

E

[
δξi

δtk/tk

]
= θkE(tk)

(
n−i−1
k−2

)(
n−1
k−1

) (37)

This expression represents the sensitivity of the spectrum to a relative change in

waiting times. Interestingly, it also corresponds to the average contribution of the

mutations at level k to the ith component of the frequency spectrum. For constant

population size, we have

E

[
δξi

δtk/tk

]
= θ

(
n−i−1
k−2

)
(k − 1)

(
n−1
k−1

) (38)

This captures the sensitivity of the spectrum to a relative change in waiting times

with respect to the case of constant population size.

The relative sensitivity (equation 38) is shown in Figure 1 as a function of

frequency i and level k. Obviously, information about the waiting times for the

lowest levels, close to the leaves, are mostly contained in the number of rare mu-

tations. In other words, a change in the waiting times of lower parts (e.g. tn or

tn−1) would mostly impact the low frequency components of the SFS. These com-

ponents of the spectrum are also sensitive to relative variations of all other waiting

times. On the contrary, variations on the times close to the root is spread across

all frequencies, but is dominant for high frequencies. A change in the waiting time

t2 would impact all frequencies of the SFS equally – but a change in the highest

component of the frequency spectrum can be unequivocally traced to a variation

of that waiting time.
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Impact of the topology on SFS

To better characterize the impact of topology on SFS, we first decomposed Var(σ)

into the contributions from different levels. These contributions can be considered

either as contributions per unit time – i.e. variances are weighted by the number

of lineages k – or contributions per level – i.e. variances are weighted by the

length at level k, kE(tk), which is 1/(k− 1) for constant population size. We show

the contributions in Figure 3. It is clear that the largest contributions to Var(σ)

come from the levels close to the root. In particular, the dominant contribution

from the uppermost level depends strongly on the root balance ω1, which has been

previously recognised as a meaningful global measure of tree balance (Ferretti

et al., 2013; Li and Wiehe, 2013).

Since Var(σ) is dominated by the root balance ω1, we consider now the mean

frequency spectrum conditioned on ω1. The equation for the mean SFS, averaged

over waiting times, shape and the mutation process, but conditioned on ω1, is

E(ξi|ω1) =

∑
{T |Ω1(T )=ω1} E(ξi|T )P (T )∑

{T |Ω1(T )=ω1} P (T )
= θ

n∑
k=2

kE(tk)

∑
{T |Ω1(T )=ω1} P (σk = i|T )P (T )∑

{T |Ω1(T )=ω1} P (T )

= θ
n∑
k=2

kE(tk)P (σk = i|ω1) . (39)

The distribution of the number of descendants P (σk = i|ω1) has been obtained

in Ferretti et al. (2013). It is based on combinations of probabilities for the

number of descendants of a set of lineages, using the theory of Polya urn models.

These probabilities are then summed over the unknown number of left (x) and

right (k − x) descendants of the root at level k:

P (σk = i|ω1) =

ω1∑
x=1

(
P (i|x, ω1)

x

k
+ P (i|k − x, n− ω1)

k − x
k

)
P (x|ω1, k, n) , (40)

where

P (i|x, ω1) =

(
ω1−i−1
x−2

)(
ω1−1
x−1

) + δi,ω1δx,1 (41)

and P (x|ω1, k, n) = Hypω1−1,k−2;n−2(x−1) is the hypergeometric distribution. (An

alternative, closed form of (40) can be found in Ferretti et al. (2013)).
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The resulting spectrum for constant population size is plotted in Figure 4 for

different values of ω1. For any fixed value of ω1, the spectrum has two strong

peaks at i = ω1 and i = n − ω1. The rest of the spectrum is dominated by rare

alleles at low frequencies i < ω1. Curiously, in this range of frequencies, it shows

a universal behaviour (independent on ω1). For ω1 < i < n− ω1, the spectrum is

slightly more biased towards rare alleles than the neutral unconditioned spectrum

θ/i, while there are no mutations with i > n− ω1.

Discussion and conclusions

The ancestry of the sequences in a sample from a single locus, or an asexual pop-

ulation, is described by a single genealogical tree. The same is not true for multi-

locus analyses of sexual species: recombination generates different trees along the

genome. Inferring these trees is possible only if there are enough mutations per

branch. However, in most sexual and asexual populations, lower branches are

typically short compared to the inverse mutation rate. Moreover, in many eu-

karyotic genomes, the mutation and recombination rates are of the same order of

magnitude, which means that there are just a few segregating sites in each non-

recombining fragment of the genome. The paucity of mutations, caused by the

interplay of genetic relatedness within a population (hence short branches) and

recombination, does not allow a full reconstruction of the trees. Therefore, sum-

mary statistics are often used for population genetics analysis. These statistics are

often more directly related to the mutation pattern of the sequences rather than

to their genealogy. In this work, we clarified the precise correspondence between

the SFS summary statistics and the features of the genealogical trees.

It is well known that the frequency spectrum is sensitive to tree topology and

branch lengths. Interestingly, several estimators and neutrality tests built on the

SFS – such as Watterson θS, Tajima’s D, Fay and Wu’s H – show a quite simple

dependence on tree imbalance and waiting times. A new measure of tree imbalance

– the variance in the number of descendants of a random mutation – plays an

important role in the interpretation of these neutrality tests. The simplicity of
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these results stem from the simple weights of these estimators and tests: the SFS

is multiplied by functions of the frequency that are constant (Watterson), linear

(Zeng) or quadratic polynomials (Fay and Wu, Tajima).

The interpretation of common estimators and tests is summarised in Table

3. Our results are rigorous and consistent with intuition. Our methods help to

understand the peculiarities of the different tests. For example, we re-interpret

Zeng’s Z as a test for star-likeness, and understand its reduced power to detect

selection compared to Fay and Wu’s H as a consequence of its insensitivity to tree

imbalance and of the compressed distributions of its negative values.

The imbalance measure Var(σ) is also related to other balance statistics pro-

posed recently, namely the root balance ω1 and the standardized sum ω1 +ω2 +ω3

(Li and Wiehe, 2013), which can also be inferred quite reliably from sequence

data. In contrast, balance statistics such as Colless’ index (Colless, 1982), which

considers the average balance of the tree across all internal nodes, are less suited

for population genetic applications, since balance at lower nodes can usually not

be estimated from sequence data, due to the paucity of polymorphisms which sep-

arate closely related sequences. Furthermore, recombination affects mostly the

lower part of the tree, hence it introduces additional noise preventing accurate

reconstruction of its topology.

We have also characterized the sensitivity of the SFS to waiting times at dif-

ferent levels and how the spectrum changes with root imbalance. For the average

topology, we show that singletons and other rare mutations can be born at any

level, while high frequency mutations occurred most probably close to the root

and are therefore sensitive to the first waiting times only.

On the other hand, we have shown that the spectrum of highly unbalanced trees

tends to be biased towards rare mutations, with a strong excess of mutations at

frequencies corresponding to the numbers of left and right descendants of the root.

This excess of mutations corresponds exactly to mutations located on the root

branches of the genealogical tree. While these results were obtained conditioning

the coalescent on the root balance ω1, it would be interesting to find an explicit

algorithm to build coalescent trees with a given (root) balance.
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The limitation of the approach presented here lies in the assumption that mu-

tations are mostly neutral and the mutation rate is constant, i.e. mutations should

occur randomly on the tree. This assumption fails for the case of purifying selec-

tion, when deleterious mutations can be more abundant than neutral ones and

tend to accumulate on the lower branches of the tree. In fact, for sequences under

purifying selection, the topology of the tree itself depends on the deleterious mu-

tations. Therefore our approach could not work for tests aimed at detecting rare

alleles under purifying selection, like Fu and Li’s tests (or extreme negative values

of Tajima’s D).

Beyond clarifying the interpretation of existing tests, our results open some

possibilities for building new neutrality tests to explore different aspects of tree

shape. Existing tests are sensitive to the variances Var(σk), but one could imagine

other tests sensitive e.g. to the skewness or kurtosis of P (σk = i|T ) or other

combinations. While the variance is a direct measure of imbalance and especially

to the imbalance of the upper branches, other combinations could be sensitive

to different features of the tree. Our results on extreme values could also give

some indication about the effectiveness of these combinations. Alternatively, our

approach can be used to understand the average structure of the genealogical trees

generated by models for which the expected SFS is known.

Finally, some of our results could find application in phylogenetic studies of

closely related species or populations, where the reconstruction of the phylogenetic

tree could be difficult or ambiguous.
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Estimator formula weights wi α β γ reference

θ̂S
∑n−1

i=1 ξi
an

1/an 0 0 1 Watterson (1975)

θ̂π
2
∑n−1

i=1 i(n−i)ξi
n(n−1)

i(n− i)/
(
n
2

)
-1 n 0 Tajima (1983)

θ̂L
∑n−1

i=1 iξi
n−1

i/(n− 1) 0 1 0 Zeng et al. (2006)

θ̂H
2
∑n−1

i=1 i2ξi
n(n−1)

i2/
(
n
2

)
1 0 0 Fay and Wu (2000)

θ̂ξ1 ξ1 δi,1 - - - Fu and Li (1993)

Table 1: Selected unbiased linear estimators of θ.

Test formula weights wi reference

D θ̂π − θ̂S i(n− i)/
(
n
2

)
− 1/an Tajima (1989)

H θ̂π − θ̂H i(n− 2i)/
(
n
2

)
Fay and Wu (2000)

E θ̂L − θ̂S i/(n− 1)− 1/an Zeng et al. (2006)

DFL θ̂ξ1 − θ̂S δi,1 − 1/an Fu and Li (1993)

Table 2: Neutrality tests discussed in this paper.
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Table 3: Interpreting neutrality tests

Test: Tajima’s D Fay and Wu’s H Zeng’s Z

Spectrum: common vs

rare alleles

common vs

high-frequency alleles

high-frequency vs

low-frequency alleles

Interpretation: - tree imbalance

+ length of upper

branches

- length of lower

branches

- tree imbalance

+ length of lower

branches

height - length

( = length of upper

branches

- length of lower

branches )

Tree:

test > 0

population structure:

balanced tree,

long root branches

balanced tree,

starlike

long root branches

Example:

test > 0

Tree:

test < 0

starlike or

unbalanced tree

hitchhiking:

unbalanced tree,

long root branches

starlike

Example:

test < 0
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Figure 1: Barplot of the relative sensitivity δξi/(δtk/tk) of the different components

of the spectrum to the waiting times of different levels k = 2 . . . 20, for a sample

with n = 20 and θ = 1. This corresponds also to the decomposition of the spectrum

in contributions from the different levels k.
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Figure 2: Maximum and minimum values of neutrality tests as a function of n for

S = 10, 100. The minimum of Fay and Wu’s H is not shown since its decreases

from about −10 to −30 in the range of sample sizes of the plot.
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Figure 3: Plot of the mean, maximum and minimum contributions of different

levels k = 2 . . . 20 to the variance Var(σ) · l, for a sample with n = 20. In black

the contribution per unit waiting time; in red, the total contribution per level.
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Figure 4: Normalized frequency spectrum ξi(ω)/(θ/i) as a function of i for ω1 =

3, 6, 10 and n = 20.
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A Derivation of the variance of σ∗k

Some properties of the Binomial coefficients

The Upper Summation of the Binomial coefficients states that:

n∑
i=k

(
i

k

)
=

(
n+ 1

k + 1

)
(42)

From there, one can easily show that:

n∑
i=k

(
i

k

)
=

1

k

n∑
i=k

i

(
i− 1

k − 1

)
(43)
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and therefore that:

n∑
i=k

i

(
i− 1

k − 1

)
= k

(
n+ 1

k + 1

)
(44)

n∑
i=k

(i+ 1)

(
i

k

)
= (k + 1)

(
n+ 2

k + 2

)
=

(n+ 2)(k + 1)

(k + 2)

(
n+ 1

k + 1

)
(45)

n∑
i=k

i

(
i

k

)
=
((n+ 2)(k + 1)

(k + 2)
− 1
)(n+ 1

k + 1

)
(46)

With a similar logic, one can show that:

n∑
i=k

i2
(
i− 1

k − 1

)
= k

n∑
i=k

i

(
i

k

)
(47)

n∑
i=k

(i+ 1)2

(
i

k

)
=
{(n+ 2)(k + 1)

(k + 2)

[(n+ 3)(k + 2)

(k + 3)
− 1
]}(n+ 1

k + 1

)
(48)

Mean and variance of σ∗k

We want to derive the mean and variance of σ∗k, which distribution is given by:

P (σ∗k = i|n) =

(
n−i−1
k−2

)(
n−1
k−1

) (49)

Setting X = n− i− 1 and using the above equations, the mean becomes:

E(σ∗k) =
1(
n−1
k−1

) n−k+1∑
i=1

i

(
n− i− 1

k − 2

)

=
1(
n−1
k−1

) n−2∑
X=k−2

[
n− (X + 1)

]( X

k − 2

)

=
1(
n−1
k−1

)[n n−2∑
X=k−2

(
X

k − 2

)
−

n−2∑
X=k−2

(X + 1)

(
X

k − 2

)]
= n+

n(k − 1)

k
(50)

=
n

k
(51)
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Similarly, the second moment of the distribution is:

E(σ∗k
2) =

1(
n−1
k−1

) n−k+1∑
i=1

i2
(
n− i− 1

k − 2

)

=
1(
n−1
k−1

) n−2∑
X=k−2

[
n− (X + 1)

]2( X

k − 2

)

=
1(
n−1
k−1

)[n2

n−2∑
X=k−2

(
X

k − 2

)
− 2n

n−2∑
X=k−2

(X + 1)

(
X

k − 2

)
+

n−2∑
X=k−2

(X + 1)2

(
X

k − 2

)]
= n2 − 2n

n(k − 1)

k
+
n(k − 1)

k

[(n+ 1)k

(k + 1)
− 1
]

=
n

k(k + 1)
(2n− k + 1) (52)

It follows that:

Var(σ∗k
2) =

n

k(k + 1)
(2n− k + 1)− n2

k2
(53)

=
n(k − 1)(n− k)

k2(k + 1)
(54)
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