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Abstract

Genotypic fitness landscapes are constructed by assessing the fitness of
all possible combinations of a given number of mutations. In the last years,
several experimental fitness landscapes have been completely resolved. As
fitness landscapes are high-dimensional, simple measures of their structure
are used as statistics in empirical applications. Epistasis is one of the most
relevant features of fitness landscapes. Here we propose a new natural mea-
sure of the amount of epistasis based on the correlation of fitness effects of
mutations. This measure has a natural interpretation, captures well the in-
teraction between mutations and can be obtained analytically for most land-
scape models. We discuss how this measure is related to previous measures
of epistasis (number of peaks, roughness/slope, fraction of sign epistasis,
Fourier-Walsh spectrum) and how it can be easily extended to landscapes
with missing data or with fitness ranks only. Furthermore, the dependence
of the correlation of fitness effects on mutational distance contains interesting
information about the patterns of epistasis. This dependence can be used to
uncover the amount and nature of epistatic interactions in a landscape or to
discriminate between different landscape models.
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1. Introduction

Fitness landscapes represent a successful metaphor to understand evo-
lution as a hill-climbing process. The seminal work of Sewall Wright [1]
inspired a vast amount of theoretical work in phenotypic and molecular evo-
lution [2, 3]. Furthermore, this metaphor contributed to the scientific ex-
change with other fields, especially with computer science [4] and physics
[5]. Recently, Wright’s idea of genotype-fitness landscapes moved from a
metaphor to an object of experimental studies, as several fitness landscapes
were experimentally resolved [3].

In evolutionary biology, fitness landscapes have been used to study adap-
tation. In a strong selection weak mutation regime [6], the evolutionary paths
followed by the populations are restricted to paths of increasing fitness. In
this perspective, it has been emphasized that many fundamental features of
adaptation depend on whether the landscape is smooth or rugged. Among
other things, the ruggedness and the properties of fitness landscapes have
been related to speciation processes [7, 8], to the benefits of sexual reproduc-
tion [9, 10, 11, 12], and more generally, to the repeatability of the adaptation
process (e.g. [13, 14, 15, 16]).

One of the most basic ingredients that characterize the structure of fitness
landscapes is epistasis. Epistasis can be broadly defined as the interaction
between the effects of mutations at different loci. It is usually defined as the
non-multiplicative part of the fitness effects of combined mutations, that is
the non-additive part, in log-scale. In the presence of epistasis, the fitness
effect of a mutation at a given locus depends on the genetic background
and consequenty, a mutation at a given locus changes the distribution of
fitness effects of other mutations at other loci. For the 2-loci 2-alleles case,
assuming that the genotype with the smallest fitness is labeled 00, epistasis
can be expressed (in logscale) as the departure from additivity : e = f(11)−
f(10)− f(01) + f(00), where f(ij) is the malthusian fitness of the genotype
ij (e.g. [17]).

Assuming random fitness values (i.e. NK landscapes), Kauffman [13]
showed a positive correlation between the amount of epistatic interactions
and the ruggedness of a landscape, defined as the density of peaks (geno-
types with no fitter neighbors). As the number of loci that interact together
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grows, the landscape is more rugged, and more local peaks end evolutionary
paths. At the maximum number of epistatic interactions, the fitnesses of
each genotype are completely uncorrelated, resulting in a so-called House-
of-Cards model [18, 19], for which several measures on paths of increasing
fitness were derived [19, 20, 21, 22].

Other measures such as r/s ratio (ratio of the roughness over additive
fitness), fraction of sign epistasis, fraction of nonlinear interactions in the
Fourier spectrum of the landscape, number of accessible paths to the maxi-
mum (see detailed description in the Appendix) were also proposed to char-
acterize the structure of fitness landscapes. As they all represent direct or
indirect measures of epistasis, all these measures were shown to be pairwise
correlated in experimental fitness landscapes [23].

Quite surprisingly, all these global measures of epistasis are only indirectly
related to the simplest definition of epistasis, namely the interaction of other
mutations with the fitness effect of a specific mutation. The measure that
is most related to this definition is the fraction of sign and reciprocal sign
epistasis, but this measure is sensitive only to strong epistasis, i.e. mutations
changing from beneficial to deleterious in different backgrounds. Other finer
measures like r/s and the fraction of nonlinear interactions in the Fourier
spectrum are actually more related to the global deviations from linearity and
their contributions to fitness variance than to the definition above. Therefore,
it is worth exploring the possibility of finding a natural measure of epistasis
that follows the definition above more closely.

Here, we describe new measures that can be used to characterize epistasis
and structure of fitness landscapes (Figure 1). In section 2.1 we present our
basic measure of the amount of epistasis, γ, that is the single-step correlation
of fitness effects for mutations between neighbor genotypes (Figure 1b). It is
a direct measure of epistasis, i.e. it measures how much the fitness effect of a
mutation is affected when a genotype experiences another mutation. We also
discuss how it can be applied to landscapes with missing data. In section 2.3
we discuss its properties. As all correlation measures, γ ranges from −1 to
+1 and is a very natural quantity to describe the amount of epistasis in the
landscape. In section 2.4 we show how to apply the measure to individual
mutations and in section 2.5 we extend it to landscapes where only the signs
of fitness effects of mutations are known.

In section 2.6 we discuss a larger class of measures, i.e. the correlation of
fitness effects of mutations across multiple mutations, and we study its de-
pendence on mutational distance. This dependence contains information on
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the epistatic effects of multiple mutations and depends both on the amount
and on the nature of epistatic interactions. In section 2.7 we compute ana-
lytically the mean of these quantities for a variety of landscape models (the
House of Cards, the Rough Mount Fuji and NK landscapes as well as Ising
and Eggbox models).

Finally, in section 3 we discuss the relation of γ with previous measure
of epistasis and in section 4 we show how the new measures can be used to
understand better the features of experimental landscapes.
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Figure 1: Measures of epistasis in fitness landscapes. We depict two measures on
the same fitness landscape (of 3 loci with 2 alleles each).
(a) Peaks, here in green, are genotypes with no fitter neighbors (whereas sinks are geno-
types with only fitter neighbors). The number of peaks is a classical measure of epistasis.
(b) γ is the pairwise correlation in fitness effect of mutation between neighbor genotypes.
It measures how much another mutation in a genotype affects the focal mutation, aver-
aged across all mutations and the whole landscape. Here the average correlation is good
(γ ≈ 0.7). γ→i is the correlation in fitness effect of mutation i between neighboring geno-
types. In the example, mutations at locus 1 are almost independent of the genotypes
(γ→1 ≈ 0.9), whereas the effects of the mutations at locus 3 show almost no correlation
across genotypes (γ→3 ≈ 0).

2. Epistasis as correlation of fitness effects: γ

2.1. Definition

In this section, we will derive and discuss a new measure that is a nat-
ural description of the amount of epistasis in fitness landscapes. This new
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measure, denoted by γ, is simply the correlation of fitness effects of the same
mutation in single-mutant neighbors (see Figure 1b and Figure 2). It mea-
sures how the effect of a focal mutation is altered by another mutation at
another locus in the background, averaged across the whole landscape.

g g[i]

g[j] g[ij]

sj (g) sj (g[i])

g g[i]

g[j] g[ij]

g g[i]

g[j] g[ij]

magnitude epistasis sign epistasis reciprocal sign epistasis
1 >  > 0 1 >  > -1/3 0 >  > -1

a) definitions

b) types of epistasis

g g[i]

g[j] g[ij]

Figure 2: (a) Notation: γ is the correlation between the fitness effects sj(g) and sj(g[i]) over
all genotypes g and mutations i, j in the landscape. (b) Types of epistasis, possible values
of γ and examples of the corresponding fitness graphs. In Figure (b), fitness increases in
the direction of the arrows.

In the following, we will define it properly in mathematical terms for
the bi-allelic case. We denote the (log-scaled) fitness of a genotype g by
f(g). We also define g[i], the genotype g where the locus i is mutated. The
fitness effect of a mutation at locus j, i.e. the log-scale selection coefficient
of the mutation, is denoted by sj(g) = f(g[j]) − f(g). The new measure γ
is then defined as the correlation between two fitness differences sj(g) and
sj(g[i]) measured from genotypes that are one mutation away, as illustrated
by Figure 2a.

5

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 1, 2016. ; https://doi.org/10.1101/042010doi: bioRxiv preprint 

https://doi.org/10.1101/042010
http://creativecommons.org/licenses/by-nc/4.0/


Noting that the average of sj(g) across all genotypes and mutations in
the landscape is 0, we define γ as:

γ = Cor[s(g), s(g1)] (1)

=
Cov[s(g), s(g1)]

Var[s(g)]

=

∑
g

∑
i

∑
j 6=i sj(g) · sj(g[i])

(L− 1)
∑

g

∑
j(sj(g))2

where g1 indicates a generic genotype that differs from g by a single mutation.
For multiallelic landscapes, the same definition γ = Cor[s(g), s(g1)] can be
immediately generalized to any number of alleles.

2.2. Landscapes with missing data

Even though γ is originally defined in term of fitness effects of the mu-
tations, it can be easily recomputed by only using the fitness values them-
selves. If we denote ρd = Cor[f(g), f(gd)] the fitness correlation function at
Hamming distance d, i.e. the correlation between the fitness of genotypes d
mutations apart, it is possible to rewrite γ by the simple formula (see proof
in the Appendix):

γ =
ρ1 − ρ2

1− ρ1

(2)

Besides its general interest, this formulation allows us to measure γ in the
presence of missing data. Indeed, fitness correlation functions do not need
fitness data for all combinations of some set of mutations in order to be
estimated.

The above formula can be applied in a straightforward way to landscapes
with missing data, by considering only pairs of genotypes with known fitness
in the computation of the correlations. The result provides an estimate of the
value of γ for the full landscape. However, the error of the estimate increases
with the fraction of genotypes of unknown fitness. For sparse landscapes, an
estimate can be obtained only if the fitness is known for a sufficient number
of pairs of genotypes at distance d = 1 (for ρ1) and 2 (for ρ2). Moreover,
these pairs should be randomly distributed across the landscape.
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2.3. Interpretation

To make clear that the above measure is a metric of epistasis, we rewrite
the above equation as

γ = 1− E[(s(g)− s(g1))2]

2E[s2]
(3)

= 1− E[e2]

2E[s2]

= 1−
∑

g

∑
i

∑
j 6=i(sj(g)− sj(g[i]))

2

2(L− 1)
∑

g

∑
j(sj(g))2

where e is the usual measure of epistasis defined in the Introduction and E[x]
denotes the expected value of the quantity x over genotypes and mutations.

When there is no epistasis, the fitness effects do not depend on the back-
ground and γ = 1, i.e. perfect correlation between fitness effects. The
deviation of γ from 1 is proportional to the square of eij = f(g[ij])− f(g[i])−
f(g[j]) + f(g), which is a standard measure of the amount of epistatic ef-
fect (for 2-alleles 2-loci), normalized by the average squared fitness effect.
Thanks to its normalization, this measure of epistasis is not affected by the
scale and the absolute level of fitness, but only by relative differences in fit-
ness. Shifting fitnesses by a multiplicative or additive factor does not change
this measure.

The measure γ is defined as a correlation, therefore it is bounded by
−1 ≤ γ ≤ 1, with γ = 1 in the case of no epistasis. The value of γ is related
to the prevalent type of epistatic interactions (see proof in the Appendix),
which are summarized in Figure 2b:

• magnitude epistasis refers to pairwise interactions that do not change
the signs of fitness effects. Magnitude epistasis would still result in a
positive correlation between fitness effects, therefore γ would still be
positive even if smaller than 1: 1 > γ ≥ 0;

• sign epistasis refers to pairwise interactions where the fitness effects
of one mutation change sign after the other mutation. Sign epistasis
would contribute with terms of both signs to the correlation, therefore
resulting in values centered around 0: 1 > γ ≥ −1/3;

• finally, reciprocal sign epistasis refers to pairwise interactions where
both fitness effects change sign. Reciprocal sign epistasis would imply
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a negative correlation between fitness effects, and therefore a negative
value of γ: 0 > γ ≥ −1.

The deviation of the mean value of γ from 1 for simple landscape models
measures epistasis as a function of the parameters of the models (see section
2.7 for more details). For example, in NK landscapes, the epistasis grows with
the parameter K describing the number of loci involved in each interaction
and, in fact we have the approximate equation

E[γ] ' 1− K

L− 1
. (4)

For the House of Cards (HoC) model, i.e. a maximally uncorrelated land-
scape, we have K = L− 1 and therefore

E[γ] ' 0, (5)

i.e. this model shows strong random epistasis.
For Rough Mount Fuji (RMF) models, which are combinations of an

additive landscape and a completely uncorrelated one, the correlation of
fitness effects is

E[γ] ' 1− 2σ2
HoC

µ2
a + σ2

a + 2σ2
HoC

(6)

where µa and σa are the mean and variance of the additive fitness effects and
σ2
HoC is the variance of the uncorrelated HoC component. Therefore, in this

case, the measure of epistasis is proportional to the variance contribution of
the uncorrelated component.

2.4. Epistasis for specific mutations

The correlation of fitness effects is also a useful measure of the interaction
between specific mutations. Some simple generalizations of the γ measure
are:

• γi→, which describes the epistatic effect of a mutation in locus i on
other loci:

γi→ = Cor[s(g), s(g[i])] =

∑
g

∑
j 6=i sj(g) · sj(g[i])∑
g

∑
j 6=i(sj(g))2

, (7)
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• γ→j, which describes the epistatic effects of other mutations on locus
j:

γ→j = Cor[sj(g), sj(g1)] =

∑
g

∑
i6=j sj(g) · sj(g[i])

(L− 1)
∑

g(sj(g))2
(8)

• γi→j, which is a matrix that describes the epistatic effect of locus i on
locus j:

γi→j = Cor[sj(g), sj(g[i])] =

∑
g sj(g) · sj(g[i])∑

g(sj(g))2
(9)

These measures can also be generalized easily to multiallelic landscapes by
considering pairs of mutations at different loci.

The measure γi→, γ→j and especially γi→j are useful for exploratory and
illustrative purposes, since they summarize the interactions between muta-
tions in a clear and compact way, as it can be seen in Figure 4.

It is also possible to use the more direct measure E[e2
ij] as an alternative

to γi→j. The difference lies in the normalization: γi→j = 1 − E[e2
ij]/2E[s2

j ],
therefore γi→j treats both large and small mutations in the same way while
E[e2

ij] is larger for large mutations. The choice of the most appropriate mea-
sure depends on the question, i.e. if the focus is on the interactions across
all mutations, or only the largest ones.

2.5. Correlation in signs (γ∗)

In many experimental situations, fitness is not clearly measurable on an
absolute scale, but it is possible to rank the genotypes in order of increasing
fitness, or at least to state if a mutation is deleterious or beneficial.

The fitness landscape can be then represented as an acyclic oriented
graph, i.e. an oriented network where links between genotypes represent
single, fitness-increasing mutations. Hereafter, we will refer to this graph
as the fitness graph. As an example, the fitness graphs corresponding to
different types of epistasis for 2 loci are illustrated in Figure 2b.

In this context, it is still possible to measure epistasis via the same method
by employing a modified measure γ∗ which uses just the sign of the fitness
effects, instead of their value. We define s∗j(g) as the sign of sj(g). A more
robust variant would be

s∗j(g) =


+1 for sj(g) > ε

0 for − ε ≤ sj(g) ≤ ε

−1 for sj(g) < −ε
(10)
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where ε is a tolerance parameter (possibly depending on the genotype, and
larger than the experimental errors). The measure γ∗ is defined as before:

γ∗ = Cor[s∗(g), s∗(g1)] =

∑
g

∑
i

∑
j 6=i s

∗
j(g) · s∗j(g[i])

(L− 1)
∑

g

∑
j(s
∗
j(g))2

(11)

If the landscape has no neutral mutations, we can show that this measure
is related to other commonly employed measures for fitness graphs. Consider
all possible pairwise mutational motifs in the fitness graph and classify the
type of epistasis in each motif as magnitude epistasis, sign epistasis and
reciprocal sign epistasis (see Figure 2b). We denote the fraction of motifs in
each class by φm, φs and φrs respectively. We have the relation (see proof in
the Appendix)

γ∗ = 1− φs − 2φrs (12)

What is even more interesting is that both in models and in real land-
scapes, the results of γ and γ∗ are often numerically close and highly corre-
lated (see below). The only exception is represented by landscapes with weak
epistatic interactions dominated by magnitude epistasis, where γ∗ = 1. This
suggests that γ∗ could be used in place of γ for landscapes where only fitness
ranks are known. These measures represent therefore a bridge between
fitness graph-based measures and quantitative measures based on absolute
fitness.

2.6. Decay of the correlation with distance

The γ measure provides information on the amount of epistasis but can-
not discriminate between different types or models of fitness landscapes, as
it occurs for any single measure of the amount/strength of epistatic interac-
tions. In fact, there are many landscapes with widely different structure but
with the same γ. For example, a HoC model realization would have γ = 0 as
would a landscape composed by an equal mixture of additive and reciprocal
sign epistatic interactions (like in an EMF model).

However, a natural and interesting extension of this measure is given
by the full decay of the correlation of fitness effects with distance d, which
correspond to the cumulative epistatic effect of d mutations and can be
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defined as:

γd = Cor[s(g), s(gd)] (13)

=

∑
g

∑
i1

∑
i2>i1

. . .
∑

id>id−1

∑
j 6=i1,i2...id sj(g) · sj(g[i1i2...id])(

L−1
d

)∑
g

∑
j(sj(g))2

where γ1 = γ. As with γ, γd can be expressed in terms of the fitness
correlation functions at distance d, ρd:

γd =
ρd − ρd+1

1− ρ1

(14)

The decay of γd with the Hamming distance d is an interesting object of
study in itself , since it describes how the epistatic effects of different mu-
tations interact with each other and their cumulative effect. The mean of
γd can be computed analytically in most models of fitness landscapes and it
brings extra information on the structure of the landscape. Different models
have a different behaviour (Figure 3): RMF and HoC models show an abrupt
fall already at d = 1 and then a flat profile, while NK models have a grad-
ual, approximately exponential decay with rate K/(L − 1) (Supplementary
Figure 1). The Ising model (based on pairwise reciprocal sign epistasis) de-
cays linearly until −1, while the eggbox (maximally epistatic, anticorrelated)
oscillates between −1 and 1.

2.7. Formulae for γd in model landscapes

Notation: a genotype g is a biallelic sequence of length L of alleles g =
(A1A2A3 . . . AL) with Ai ∈ {0, 1}. We assume an observed fitness f(g) given
by the model

f(g) =
L∑
i=1

µiAi + fe(g) + εg (15)

that is, an additive contribution
∑L

i=1 µiAi, an epistatic contribution fe(g)
from some fitness model, plus the effect of measurement errors εg. We assume
these errors to be unbiased and uncorrelated: E[εg] = 0, Cov[εg, εg′ ] = δgg′σ

2
g

where δgg′ is the Kronecker delta, i.e. δgg′ = 1 when g = g′ and 0 otherwise.

We define the mean squared additive effect µ2 =
∑L

i=1 µ
2
i /L and the mean

squared experimental error σ2
ε =

∑
g σ

2
g/2

L.
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Figure 3: Behaviour of the average correlation of fitness effects γd at different distances in
model landscapes with L = 5. The NK landscape has K = 2 and the RMF is a mixture
of 60% additive component and 40% HoC.
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The expected value of γd can be computed approximately by taking the
ratio of the expected values of numerator and denominator of eq. (13) rear-
ranged as eq. (3), instead of the expected value of the ratio (the ' sign in
all our formulae refers to this approximation). The result is

E[γd] ' 1− E[(se(g)− se(gd))2] + 4σ2
ε

2µ2 + 2E[(se(g))2] + 4σ2
ε

(16)

with se(g) = fe(g[j]) − fe(g) being the analogue of s(g) restricted to the
epistatic contribution. Note that E[(se(g)−se(gd))2] = 2(1−E[γed])E[(se(g))2]
if γed is the γd statistic of the epistatic contribution fe(g).

2.7.1. Additive model

In these models fe = 0 and the only reduction in correlation is due to
experimental noise:

E[γd] ' 1− 2σ2
ε

µ2 + 2σ2
ε

(17)

2.7.2. RMF and HoC models

In these models, fe(g) corresponds to the HoC model, i.e. they are i.i.d.
random variables. Denote by σ2

HoC the variance of the distribution of fitnesses
in the HoC model:

E[γd] ' 1− 2σ2
HoC + 2σ2

ε

µ2 + 2σ2
HoC + 2σ2

ε

(18)

Since µ2 = µ2
a + σ2

a for a Gaussian distribution of additive fitness effects, we
obtain equation (6) for d = 1 and σ2

ε = 0.

2.7.3. NK models

In these models, fe(g) =
∑L

i=1 Fi where the Fis are i.i.d. random variables
that depend on i and other K indices, randomly chosen. The Fis have mean
f0 and variance σ2

NK .
The fitness correlation function ρd is known exactly for the pure NK model

[24]: ρd = (L−K−1)!(L−d)!
L!(L−K−d−1)!

. With eq. (14) it is straightforward to compute

E[γed] from this. The variance E[se(g)2] is given by 2(K + 1)σ2
NK because on

average K+ 1 of the Fi change in a single mutation, each of these differences
having twice the variance of the fitness contribution (since the variance of
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the difference of two i.i.d. variables is twice their variance). The final result
is

E[γd] ' 1−
2(K + 1)σ2

NK

(
1− (L−1−d

K )
(L−1

K )

)
+ 2σ2

ε

µ2 + 2(K + 1)σ2
NK + 2σ2

ε

(19)

Substituting µ2 = σ2
ε = 0 and d = 1 yields equation (4).

2.7.4. Ising model

In the following, we define Si = 2Ai − 1 ∈ {−1,+1}. Using the above
notations, in these models, fe(g) =

∑
i JiSiSi+1 where the incompatibility co-

efficients Ji are randomly extracted from a Gaussian distribution with mean
µc and variance σ2

c . We define J2 = E[J2
i ] = µ2

c + σ2
c .

A mutation at locus i will invert contributions of the terms containing Ji
and Ji−1 adding 8J2 to E[(se(g))2]. At the edge of the genome, loci interacts
with only one neighbor, so this is reduced by a factor of 2, thus E[(se(g))2] =
8(L−1)J2

L
.

Only mutations at j−1 and j+1 affect the value of sj(g)−sj(gd). Choos-
ing d mutations out of L−1 and applying the hypergeometrical distribution,

there are probabilities
(L−3
d−2)

(L−1
d )

and
2(L−3

d−1)
(L−1

d )
to choose both or exactly one of them,

respectively. Each relevant mutation changes the effect of mutating j by

±4J . Thus (ignoring boundaries) E[(se(g)− se(gd))2] ≈ 16J2 2(L−3
d−2)+2(L−3

d−1)
(L−1

d )
=

32J2 d
L−1

. On the boundary only one mutation can influence sj, resulting in

a reduced contribution of 16J2 d
L−1

and so together:

E[(se(g)− se(gd))2] = 32J2 d

L− 1

L− 1

L
= 32J2 d

L

and therefore the result is

E[γd] ' 1− 16dJ2/L+ 2σ2
ε

µ2 + 8(L− 1)J2/L+ 2σ2
ε

(20)

More general results can be obtained for a generic spin glass model f(g) =∑L
K=2

∑
{i1...iK} Ji1...iKSi1 . . . SiK where {i1 . . . iK} are ordered sets. We define

J2
K = E(J2

i1...iK
) and n̄(K, d) = bmin((K − 2)/2, (d− 1)/2)c.

E[γd] ' 1−
8
∑L

K=2

(
L−1
K−1

)
J2
K

(∑n̄(K,d)
n=0

( d
2n+1)(

L−1−d
K−2n−2)

(L−1
K−1)

)
+ 2σ2

ε

µ2 + 4
∑L

K=2

(
L−1
K−1

)
J2
K + 2σ2

ε

(21)
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2.7.5. Eggbox model

In this model, fe(g) = f0 + µE
2

∏L
i=1(−1)Ai , i.e. each mutation switches

the fitness from the highest value (f0 +µE/2) to the lowest (f0−µE/2) or the
other way. The difference in the epistatic fitness effects from two genotypes
separated by an odd number of mutations is ±µE, while it is 0 from two
genotypes separated by an even number of mutations, therefore

E[γd] ' 1−
µ2
E

(
1− (−1)d

)
+ 2σ2

ε

µ2 + µ2
E + 2σ2

ε

(22)

2.7.6. Block models

We define a general block model withB blocks by the fitness f(g|L, p,B) =∑B
i=1 fi(g|L/B, p), where each contribution fi(g) comes from an i.i.d. block

of length L/B described by any model (NK, Rough Mt. Fuji, etc) with
parameters p. Denote by γblockd (L, p) the average correlation of fitness differ-
ences for the pure model. The average correlation of fitness differences for
the full block model can be obtained as

E[γ(L, p,B)] ≈ 1− L/B − 1

L− 1

(
1− E[γblock(L/B, p)]

)
(23)

so the block structure reduces the epistasis roughly speaking by a factor 1/B,
which corresponds to the probability that the second mutations act on the
same block as the first.

Similarly, the general result for the decay with distance is

E[γd(L, p,B)] ≈ 1−
d∑

d′=1

(
L/B−1
d′

)(
L−L/B
d−d′

)(
L−1
d

) (
1− E[γblockd′ (L/B, p)]

)
(24)

where the hypergeometric distribution counts the number of mutations in
the same block of the first mutation.

3. Relations between measures of epistasis

In this section we discuss the relations existing between the newly pro-
posed measures of epistasis and the existing ones.

We expect that γ and γ∗ would be correlated to other measures of epis-
tasis. In fact, we already discussed how they are related to some of the
existing measures. In particular, (i) for pairs of loci, γ is directly related
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to the common definition of epistasis e as 1 − γ ∝ e2: in fact, for the
whole landscape we have γ = 1− E[e2]/2E[s2], while for a pair of mutations
γi→j = 1− E[e2

ij]/2E[s2
j ]; (ii) for the whole landscape, γ can be rewritten as

a function of the fitness correlation functions ρd as γd = (ρd− ρd+1)/(1− ρ1);
(iii) γ∗ is directly related to the number of square motifs with sign and re-
ciprocal sign epistasis as γ∗ = 1− φs − 2φrs.

Furthermore, it is possible to show that γ is a function of the Fourier
spectrum of the landscape, provided that the standard orthonormal basis is
used for the Fourier series. If we denote by WJ the normalized weight of the
coefficients of order J in the Fourier spectrum, i.e. the sum of the squared
coefficients of all J-loci interactions normalized by the sum of all squared
coefficients, the relation is

γd = 1−
2
∑L

J=2 J
[∑

{m odd}
(
d
m

)(
L−1−d
J−1−m

)
/
(
L−1
J−1

)]
WJ∑L

J=1 JWJ

(25)

(see proof in the Appendix). Our measure of epistasis is therefore

γ = 1− 2

∑L
J=2 J(J − 1)WJ∑L
J=1 J(L− 1)WJ

(26)

which resembles the usual measure of epistasis from Fourier expansion, i.e.
the fraction of non-linear interactions in the Fourier spectrum fFWnonlin =∑L

J=2WJ/
∑L

J=1 WJ [23], showing again the close relation with previous mea-
sures of epistasis. The main difference is the weight of higher-order interac-
tions: the contribution of J-loci interactions to γ grows like J2 for large J ,
so that the effect of interactions is stronger if they involve more loci.

To evaluate in a more systematic way the relations between these and
other measures, we perform a correlation analysis similar to [23] but using
models instead of experimental landscapes. We select the number of peaks,
the roughness/slope ratio (ratio between epistatic “noise” and additive com-
ponent, see Appendix), γ and γ∗ as measures of epistasis. We compute the
Spearman correlation coefficients of all pairs of measures in the RMF land-
scape model varying the model parameters (in particular, the ruggedness).

The pairwise correlations (Table 1) confirm the intuition that the mea-
sures related to epistasis are all strongly correlated, the strongest correlation
being between γ and γ∗ as expected.

Similar conclusions apply to the Ising and eggbox models with a “Mount
Fuji” component (IMF and EMF), which represent different kinds of epistatic
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peaks sinks r/s γ γ∗

RMF model
peaks 1 - - - -
sinks 0.53 1 - - -
r/s 0.60 0.62 1 - -
γ 0.73 0.71 0.76 1 -
γ∗ 0.77 0.73 0.71 0.88 1

IMF model
peaks 1 - - - -
sinks 0.69 1 - - -
r/s 0.72 0.45 1 - -
γ 0.73 0.46 0.99 1 -
γ∗ 0.72 0.73 0.72 0.73 1

EMF model
peaks 1 - - - -
sinks 1.00 1 - - -
r/s 0.74 0.74 1 - -
γ 0.74 0.74 0.97 1 -
γ∗ 0.99 0.99 0.74 0.74 1

Table 1: Spearman ρ2 correlation of pairs of measures across 104 realizations of the RMF,
IMF and EMF models with L = 5, σHoC = 1 (for RMF), µI = 1 and σI = 0.2 (for IMF),
µE = 1 and σE = 0.2 (for EMF), σa = µa/10 and µa log-uniformly distributed in [0.01,10].
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interactions. Interestingly, γ seems to be strongly related to r/s in these
models while γ∗ is highly correlated with the number of peaks and sinks.
This is probably due to the extreme compensatory interactions present in
these models.

Each measure of epistasis has its own advantages and disadvantages. γ
has several interesting features:

• γ has a natural and direct interpretation in terms of epistasis. Other
measures (number of peaks and number of accessible paths) are only
indirectly related to epistasis and more focused on evolution on the
landscape.

• γ is a fine-grained and robust measure of epistasis. It is less noisy
than discrete measures like the number of peaks, and it is able to mea-
sure also magnitude epistasis unlike fitness graph-based measures like
φs, φrs.

• γ weights epistatic interactions according to their structure, not only
their strength. A complex interaction involving many loci in a land-
scape is weighted much more than a single compensatory interaction
between two loci, even if their fitness variance is the same. This does
not occur with measures like r/s or the fraction of non-linear interac-
tions fFWnonlin in the Fourier-Walsh spectrum. In fact, as discussed above,
γ weights the spectrum according to the square of the number of loci
involved in the interaction. On the other hand, the usual spectrum
measure fFWnonlin weights all interactions equally.

The last point is probably the most important reason to use γ in addition
to other statistics. In practice, r/s, fFWnonlin are mostly sensitive to the global
epistatic contribution to the variance, so even a single pairwise epistatic
interaction of large effect would result in a strong signal. In contrast, γ would
show strong epistasis only if the interaction would involve many loci, while
for a pairwise interaction it would show weak epistasis even if the interaction
would dominate the fitness variance.

As an example, a landscape of size L with additive fitness effects s2 and
a single compensatory interaction of strength e between locus 1 and 2 has
fFWnonlin = e2/(e2 +Ls2), r/s = |e|/2

√
s2 and γ = 1−16e2/[(8e2 + Ls2)(L−1)].

For example, for L = 5 and s2 = e2, we have fFWnonlin = 0.17, r/s = 0.5 and
γ = 0.7. The same landscape, but with a maximal compensatory interaction
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(eggbox) of strength e across all loci, has the same values of fFWnonlin = 0.17
and r/s = 0.5 but a negative correlation (i.e. much stronger epistasis) γ =
1− 8e2/(4e2 + s2) = −0.6.

4. Epistasis in two experimental landscapes

As an example of application of the new measures, we use them to analyze
two complete experimental landscapes of size L = 5. These landscapes are
illustrated in Figure 4.

The first landscape is the landscape of antibiotic (cefotaxim) resistance of
β-lactamase mutations in an Escherichia coli plasmid from Weinreich et al.
[26] (Figure 4 left). The 5 mutations have a very strong effect that together
give a 4 × 104 increase in antibiotic resistance and were therefore selected
together. Given the huge selective advantage of the combined mutations,
this landscape is single-peaked, where the peak corresponds to the five-point
mutant. It also has a single sink, that interestingly does not correspond to
the wild type.

The second is one of the four L = 5 complete sublandscape (csI) [20] of a
larger landscape (L = 8) of deleterious mutations in Aspergillus niger from
de Visser et al. [27] (Figure 4 right). This landscape is a combination of un-
related deleterious mutations where epistatic interactions were not filtered by
natural selection. This landscape has 4 peaks and 2 sinks; in fact, at present
it is one of the most rugged among the completely resolved landscapes.

As the landscapes were derived in completely different settings (co-selected
beneficial for β-lactamase and random deleterious for Aspergillus), we might
not be surprised to find that these landscapes exhibit very different struc-
tures. Indeed theoretical arguments support the intuition that landscapes
of co-selected mutations differ radically from landscape of random muta-
tion [28, 29, 30]. The difference in ruggedness between β-lactamase and
Aspergillus landscapes is confirmed by the values of γ (0.85 vs 0.33) and
r/s (0.43 vs 0.89).

To further explore the landscapes, we compute the γi→j matrices to il-
lustrate and summarize the interactions between mutations (Figure 4b). In
the β-lactamase landscape, there are some clear interactions between mu-
tations (between the 2nd or the 4th and the 1st mutations, or between the
5th and the 4th) but none of these interactions is characterized by strong
sign epistasis (no red cell). On the other hand, the Aspergillus landscape
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Figure 4: Values of several measures applied to two experimental landscapes. a) Illus-
trations of the landscapes using Magellan [25]. b) (left) Interactions between pairs of
mutations γi→j : blue = no interaction, white = strong random interaction, red = strong
interaction in sign; (right) Decay of γd with Hamming distance. c) Measures for the
landscape.
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contains several examples of interactions dominated by strong sign epistasis
(for example, between the 2nd or the 4th and the 1st or the 5th mutations).

Similar conclusions come from the analysis of the decay of γ with distance.
The decay in the β-lactamase landscape is immediate but decays slowly after
the first mutation (Figure 4b left), resembling the behavior of RMF models.

An interesting example of the power of γd is represented by theAspergillus
landscape (Figure 4b right). This landscape shows a non-monotonic decay,
with correlation γd bouncing up and down. This points to a compensatory
structure of reciprocal sign epistasis, which is not only due to pairwise com-
pensation, but extends to distance 4, i.e. to the whole landscape. In fact,
the behavior of γd suggests a mixture of an RMF landscape and an extreme
case of compensatory interactions, like the Eggbox model. This surprising
result does not come out in a straightforward way while looking at other
measures, even when looking at the Fourier spectrum [31]. Indeed, although
the coefficient of the highest order in the Fourier decomposition measures the
amount of eggbox, it compares to coefficients of smaller orders that have a
complex intermingling when epistasis is not purely reciprocally signed at all
orders. These coefficients contribute as well to the behaviour of γd.

5. Discussion

In this work, we presented a new set of landscape measures of epistasis
which have a simple interpretation and cover a range of potential applica-
tions. These measures among others have been implemented in MAGEL-
LAN, a graphical tool to explore small fitness landscapes [25].

The first application is the measure of epistasis in a comparable way across
landscapes. The correlation of fitness effects γ is a natural measure for this.
This measure can be used also for pairs of mutations, to explore the strength
of epistatic interactions between mutations in a compact way. While γ is a
natural and direct measure of epistasis, there are other possible measures,
and different measures have different strengths. The interpretation of γ is
clear: as correlation of fitness effects, it measures how epistatic interactions
affect the fitness effect of a single mutation. The alternative measures of
epistasis r/s and fFWnonlin should be used instead when the focus is on the
epistatic contribution to fitness variance in the landscape. Loosely speaking,
γ measures local epistasis while r/s and fFWnonlin measure global epistasis.

In terms of γ, there is a natural scale for the strength of epistatic interac-
tions, from purely additive interactions (γ = 1), through random interactions
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(γ = 0, e.g. HoC) to a fully compensatory landscape (γ = −1, e.g. eggbox).
Interactions in landscapes with γ < 0 are dominated by strong sign and re-
ciprocal sign epistasis between most loci, therefore we expect such landscapes
to be rare and possible only for some sets of mutations, as selection tends to
favor mutations with positive interactions. In fact, the two experimental fit-
ness landscapes analyzed have positive values of γ. Yet, the amount/strength
of epistasis in the landscape by de Visser et al. is remarkably high: γ = 0.33
means that the fitness effect of a mutation in a given genotype, is a poor
predictor of the fitness effect of the same mutation in a neighbor genotype
that only differs by a single mutation.

The quantity γ can only be defined for genotype spaces where for each
mutation from a given genotype, there is a corresponding mutation from
each of the neighbour genotypes (except the final genotype of the mutation
itself). This is the case of nucleotide or protein sequences, which underlie
most molecular fitness landscapes. Note that the presence of a mutation in
the landscape has nothing to do with its fitness effect being measured or not;
in fact, γ is well defined also in DNA or protein landscapes with missing
data, even if in this case the fitness data allow only an uncertain estimation
of it.

From the mathematical point of view, there is a natural geometric in-
terpretation for γ in terms of differential geometry on lattices. In fact, γ
reinterprets the epistasis as eij = sj(g[i]) − sj(g), that is the local parallel
transport of the vector of fitness effects of mutations sj across the genotype
network. In other words, we use the correspondence between mutations at
different genotypes to “transport” their fitness effects from one genotype to
the other and finally to compare them. We emphasize that this interpreta-
tion is crucial for γ. Mathematically, the correlation of fitness effects can
be defined only for some types of genotype spaces, like Hamming graphs,
lattice graphs or more general Cartesian products of graphs. These are the
only spaces where γ, which can always be defined by equation (14), could be
interpreted as epistasis. This class includes all genotype spaces composed of
multiple loci, multiple alleles at each locus and mutations acting on a sin-
gle locus at a time, i.e. all spaces corresponding to DNA, RNA or protein
sequences.

Correlations of fitness effects are not only useful to quantify epistasis.
Their decay γd contains information on the nature of epistatic interactions
and can reveal interesting signals. An example of that is the Aspergillus
landscape studied here. The correlations γd for this landscape show an os-
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cillatory behaviour instead of the expected decay for random epistasis (i.e.
HoC like) or for incompatibilities (i.e. Ising like), pointing towards a strong
contribution of “eggbox-like” epistasis (reciprocal sign epistasis across multi-
ple mutations). While the presence of pairwise reciprocal sign epistasis is not
strange - it is actually quite common in compensatory interactions - the fact
that reciprocal sign epistasis involves the whole landscape is quite surpris-
ing. In other words, starting from a first mutation chosen to be deleterious,
it is not unreasonable that the second mutation could have a compensatory
effect, but the mechanism behind the deleterious effect of the third mutation
and the compensatory effect of the fourth mutation is obscure. It relate to
complex pathways of interactions at the molecular level.

Many measures can only be computed if one has fitnesses for all combi-
nations of the set of mutations (or subsets of). For example, the number of
peaks lose meaning in a landscape with missing data, since the definition of
a fitness maximum requires the knowledge of the fitness of all its neighbors.
Since the fitness correlation functions ρd can be computed even with missing
data, the correlation of fitness effects can be estimated from equation (14)
even for very sparse landscapes. The sparseness of the landscape could in-
crease the error on the estimate, however this effect could be compensated
by the larger size of the landscape. Landscapes containing a larger num-
ber of mutations would be also more representative of real gene or protein
landscapes.

For some landscapes, only fitness ranks or the beneficial/deleterious na-
ture of the fitness effects can be experimentally determined. Our measure γ∗

is appropriate for these landscapes. While γ depends not only on positive and
negative epistasis, but it is sensitive to its strength, γ∗ is based essentially on
the fitness graph and therefore depends only on the sign of epistasis. γ and
γ∗ are strongly correlated across fitness landscape models. Thus a mismatch
between γ and γ∗ in real landscapes could point to some peculiar nature of
epistatic interactions.

Finally, the γ and γd measures could also be useful to estimate param-
eters of theoretical landscape models from empirical data, thanks to the
availability of approximate analytical formulae for these quantities. For ex-
ample, assuming that the underlying model of a landscape is the NK model,
the measures K̂ = (L − 1)(1 − γ) is an approximately unbiased Method-
of-Moments estimator of the parameter K, i.e. E[K̂] ' K (see eq. 4). A
similar approach can be used for the parameters of other landscape models.
The potential of these measures for model inference and goodness-of-fit tests
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is yet to be studied.
We are still far from predicting evolution on real landscapes based on

their measures, partly because of the incomplete knowledge of the structure
of real landscapes, and partly because of the lack of measures with a natu-
ral evolutionary interpretation. In the future, we expect to witness a strong
increase in the number of published empirical landscapes that will be exper-
imentally resolved. The measures that we propose here will therefore find
applications in the understanding and classification of these landscapes, as
well as in studies of model landscapes. The correlation of fitness effects is
a natural measure of epistasis that is comparable across landscapes, while
the decay of correlations with mutation distance could be a useful tool to
discriminate and classify these landscapes.
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Appendix A. Common landscape measures

In this section we present some common landscape measures that can be
applied as statistics for experimental landscape data. Notation: a genotype
g is a sequence of alleles g = (A1A2A3 . . . AL) of length L. For biallelic
landscapes, Ai ∈ {0, 1} and Si = 2Ai − 1.

Some of the most common measures for fitness landscapes f(g) are:

• number of peaks [32]: it is the number of genotypes such that all their
neighbours have lower fitness, i.e. the number of local fitness maxima.

• r/s (roughness/slope) ratio [33]: the landscape is fitted to a linear
model (a linear combination of Ais plus a constant) by least squares.
The slope s is the average modulus of the coefficients of the Ais. The
roughness r is the quadratic mean of the residuals of the regression.
The measure of epistasis is their ratio r/s.
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• fraction of epistatic interactions [34, 35]: the fraction of all pairs of
mutations from all possible genotypes that show magnitude, sign or
reciprocal sign epistasis.

• number of accessible paths [26]: assume that the absolute fitness max-
imum corresponds to the genotype g = (111 . . . 1). Count the number
of paths of mutations 0→ 1 starting from g = (000 . . . 0) to (111 . . . 1)
such that fitness increases after each mutation. This is the number of
direct accessible paths to the maximum from its antipodal genotype.

• Fourier expansion and spectrum [36, 37, 31]: The coefficients ai1...iJ
of the Fourier expansion are uniquely defined in terms of the Fourier
decomposition

f(g) = f0 +
1

2N/2

L∑
J=1

∑
{i1...iJ}

ai1...iJSi1 . . . SiJ (A.1)

where {i1 . . . iJ} are ordered sets. The Fourier spectrum is defined
by the sum of squared coefficients for interactions of J loci: BJ =∑
{i1...iJ} a

2
i1...iJ

. Epistasis is usually measured by the fraction of non-
linear interactions

fFWnonlin =

∑
J≥2BJ∑
J≥1BJ

(A.2)

More details can be found in the review by Szendro et al. [23].

Appendix B. Models of fitness landscapes

In this section we briefly illustrate some common models of fitness land-
scapes that will be used in this study. Most of them are illustrated in Figure
B.5. Please note that we only considered here models of L biallelic loci. A
mathematical formulation of these models is given in the main text.

Appendix B.1. The Additive model (a.k.a. multiplicative model)

This is a model for non-interacting mutations with independent fitness
effects. The fitness is simply the product of the fitness contributions of
each locus: fitness effects of different mutations are multiplied. In log-scale,
this corresponds to summing the fitness effect of each mutation; for this
reason this models is called “additive”. Here, the fitness effects of different
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mutations are randomly drawn from a Gaussian distribution with mean µa
and variance σ2

a. As there an independent contribution of each locus, the
dimension of interaction is 1 (since each locus “interacts” only with itself).

In terms of Fourier decomposition, in this landscape all coefficients of
second order and higher are zero.

Appendix B.2. The House-of-Cards (HoC) model

This is a model for random, uncorrelated fitness landscapes [18]. The
fitness of each genotype is independent on the fitnesses of other genotypes.
Here, it is randomly drawn according to a Gaussian of mean 0 and variance
σ2
HoC . As this models corresponds to full interaction between the loci, the

dimension of interaction is L.
In terms of Fourier decomposition, the coefficients are random variables

with a marginal Gaussian distribution centered in 0.

Appendix B.3. The Rough Mount Fuji (RMF) model

This model interpolates between additive and uncorrelated fitness land-
scapes by adding the two [38]. The fitness is computed as the sum of an
additive contribution and a HoC contribution. Here, the model is tuned by
three parameters: mean µa and variance σ2

a for the additive part and variance
σ2
HoC for the HoC part. (In the literature, this model is often defined with

constant additive fitness effects, i.e. σ2
a = 0). The model converges to an ad-

ditive model when σ2
HoC � µ2

a+σ2
a and to a HoC model when σ2

HoC � µ2
a, σ

2
a.

The dimension of interactions is a mixture of dimension 1 and dimension L.
The Fourier decomposition is a linear function of the landscape, so it is

a combination of the additive and the HoC decompositions.

Appendix B.4. The NK model

This landscape model with N = L loci interpolates between additive and
uncorrelated fitness landscapes by combining uncorrelated fitness contribu-
tions (i.e. small HoCs) from L groups of K + 1 loci in an additive way [39].
There are different ways to choose the groups of interacting loci and while
several properties such as mean number and mean height of local optima de-
pend only weakly on the particular choice made [32], others seem to behave
quantitatively different for some interaction choices [40]. Nonetheless it has
been shown that the fitness correlation function is strictly independent of
the interaction choice [24] and consequently γ does not depend on it either,
while the number of chains may still be influenced by it. The number of
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interacting loci is K + 1 and the interpolation is controlled by the parameter
K ∈ {0, 1 . . . L− 1}: K = 0 corresponds to an additive model with indepen-
dent contributions from each locus, while K = L− 1 corresponds to an HoC
model. The dimension of interaction is K + 1.

Appendix B.5. The Ising, IMF and spin glass models

This model originates from statistical physics [41], but has an immediate
interpretation in terms of pairwise allele incompatibilities. In this model,
each pair of interacting loci with different alleles causes a reduction in fit-
ness. Here, loci interact only if they are neighbors in the genotype sequence
(locus i interacts only with locus i − 1 and i + 1) and the first and the last
locus have a single interaction (loci are arranged on a string). The fitness
cost for each pair is drawn from a Gaussian with mean µc and variance
σ2
c . More general models based on allelic incompatibilities correspond to

the Sherrington-Kirkpatrick model and other spin glass models in statistical
physics [41]. The dimension of interaction is 2 as interactions only occurs
between pairs. We also combined incompatibility interactions (Ising model)
with an independent fitness contribution (additive model) in an “Ising Mount
Fuji” (IMF) model in the same way the RMF is set.

In terms of Fourier decomposition, in this landscape all coefficients of
third order and higher are zero.

Appendix B.6. The Eggbox and the EMF models

This model represents the extreme example of reciprocal sign epistasis
of highest dimension. In this model, all genotypes in the landscapes have
either low or high fitness. All the neighbours of a high-fitness genotype
have low fitness, and vice versa. Therefore, in this landscape, each mutation
is either deleterious (from high to low fitness) or compensatory (from low
to high fitness). Fitnesses are given by a Gaussian with mean f0 ± µE/2.
The dimension of interactions in this landscape is L. We also combine the
eggbox interactions with independant contributions in an “Eggbox Mount
Fuji” (EMF) landscape that is built like the RMF or the IMF.

In terms of Fourier decomposition, this landscape is dominated by the
contribution of the Lth-order term (that is, the term of highest order).
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Appendix C. Proofs

Appendix C.1. Relation between γ and type of epistasis

The most extreme values of γ for different types of epistasis are obtained
in the case L = 2. Denote by f00, f10, f01, f11 the log-fitness values. The
function γ is defined as

γ =
2[(f11 − f10)(f01 − f00) + (f11 − f01)(f10 − f00)]

(f11 − f10)2 + (f01 − f00)2 + (f11 − f01)2 + (f10 − f00)2

Since γ is a correlation, −1 ≤ γ ≤ 1. γ is a continuous function and it is
also invariant under permutations of loci and alleles, so from now on we will
restrict to the subspace with f00 ≤ f01 ≤ f10. Each of the three partitions of
this subspace corresponding to magnitude, sign and reciprocal sign epistasis
is connected, therefore the image of each one of them under γ is an interval.

By definition, magnitude epistasis results in γ ≥ 0 since all fitness jumps
have the same sign. The extreme values 0 and 1 are both realized: γ = 0
in landscapes with f00 = f01 = f10 < f11, while γ = 1 in landscapes with
f11 = f10 + f01 − f00. Therefore, for magnitude epistasis, 0 ≤ γ ≤ 1.

Reciprocal sign epistasis require that all fitness jumps change in sign after
a mutation, therefore results in γ < 0 by definition. The extreme case γ = −1
is realized in the landscape f01 = f10 > f00 = f11, while the other extreme
case γ → 0 is realized for the landscapes with f00 < f01 = f10 > f11 for
(f00 − f01)→ 0. Therefore, for reciprocal sign epistasis, −1 ≤ γ < 0.

Finally, sign epistasis can have both signs of γ. It is easy - although
tedious - to show that there are no critical points of γ inside the space of
landscapes with sign epistasis (with L = 2), therefore the extremal values
should appear on the border. There are essentially two borders: (f11−f10)→
0 and f11 = f01. On the first border, we have γ > 0 and the upper limit
is γ → 1 for the landscapes with f00 = f01 < f10. On the second border,
we have γ = − 2(f10−f11)(f11−f00)

(f11−f10)2+(f10−f00)2+(f11−f00)2
that reaches the minimum value

γ = −1/3 at the landscapes with f10−f11 = f11−f00 (imposing the derivative
with respect to f10 to be null). Therefore, for sign epistasis, −1/3 ≤ γ < 1.

Appendix C.2. Relation (14) between γd and the fitness correlation function

Denote the fitness correlation function at distance d by ρd = Cor[f(g), f(gd)].
We use the identity

sj(g)sj(g[i1i2...id]) = f(g[j])f(g[ji1i2...id])− f(g)f(g[ji1i2...id])

−f(g[j])f(g[i1i2...id]) + f(g)f(g[i1i2...id])
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Averaging over the all mutations and all genotypes, the above terms give rise
to:

E[sj(g)sj(g[i1i2...id])] = 2(E[f(g)f(gd)]− E[f(g)f(gd+1)])

= 2(Cov[f(g), f(gd)]− Cov[f(g), f(gd+1)])

= 2(ρd − ρd+1)Var[f(g)]

Summing over genotypes and mutations, the numerator of (13) becomes
2LL

(
L−1
d

)
2(ρd − ρd+1)Var[f(g)]. The denominator of (13) can be computed

in a similar way by choosing d = 0, obtaining
(
L−1
d

)
2LL · 2(ρ0− ρ1)Var[f(g)].

γd is their ratio

γd =
ρd − ρd+1

ρ0 − ρ1

and since ρ0 = Cor[f(g), f(g)] = 1, we obtain the result (14).

Appendix C.3. Relation (12) between γ∗ and the fractions of square motifs

We consider a landscape without ties (i.e. all genotypes have different fit-
ness values). In this case, (s∗j)

2 = 1 and therefore γ∗ = 1
2LL(L−1)

∑
g

∑
i,j 6=i(s

∗
j(g)·

s∗j(g[i])) = E[s∗(g) · s∗(g1)] where the average is over all genotypes and pairs
of mutations, or equivalently over all square motifs and over their sides. The
average over the two sides of a motif is E[s∗(g) · s∗(g1)] = (1 + 1)/2 = 1 with
magnitude epistasis, (1− 1)/2 = 0 with sign epistasis and (−1− 1)/2 = −1
with reciprocal sign epistasis. To obtain the global average, we multiply these
results by the fraction of motifs of each kind, i.e. γ∗ = 1 ·φm + 0 ·φs− 1 ·φrs.
Since they sum to 1, we have φm = 1−φs−φrs and substituting it we obtain
the relation (12).

Appendix C.4. Relation (25) between γ and the Fourier spectrum

We define n̄(J, d) = bmin((J − 2)/2, (d− 1)/2)c. Since the Fourier basis
is orthonormal, each component of the spectrum gives an independent con-
tribution to the numerator and denominator of γ. The contribution of each
BJ to the denominator of (3) is 4J since there are J nonzero mutations with
fitness effect ±2ai1...iJ each. For the numerator, there is again a factor J con-
tributions (from nonzero mutations) multiplied by the square of the fitness
effect of each term (averaged over the choice of the other d mutations). The
fitness effect is ±4ai1...iJ if an odd number of the d mutations lie within the
indices i1 . . . iJ , and 0 otherwise. The probability that this number is odd
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is given by the sum of odd terms of the hypergeometric distribution with
parameters d, J − 1, L− 1, therefore we have

E[γd] ' 1−
2
∑L

J=2 JBJ

(∑n̄(J,d)
n=0

( d
2n+1)(

L−1−d
J−2n−2)

(L−1
J−1)

)
∑L

J=2 JBJ

(C.1)

and since WJ = BJ/
∑N

I=1BI , we have the equation (25).
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a) Additive ( A=1, A=0.1) b) House of Cards ( =1)

c) Kau!man NK ( ) d) Rough Mount Fuji ( =1, =0.1, =1)

e) Ising Model ( C=1, C=0.1) f ) Eggbox ( E=1, E=0.1)

Genotype Sink Peak

gain
loss

Figure B.5: Models of fitness landscapes. Realizations of random landscapes obtained
from the models discussed in the introduction, using Magellan [25].
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