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ABSTRACT
Summary: The Mutual Information of pairs of data vectors, for
example sequence alignment positions or gene expression profiles,
is a quantitative measure of the interdependence between the data.
However, data vectors based on a finite number of samples retain
non-zero Mutual Information values even for completely random data,
which is referred to as background or residual Mutual Information.
Estimates of the residual Mutual Information have so far been
obtained through heuristic or numerical approximations. Here we
introduce a simple analytical formula for the computation of the
residual Mutual Information that yields precise values and does not
require the joint probabilities between the vector elements as input.
Availability and Implementation: A C program arMI is available
at http://mathbio.crick.ac.uk/wiki/Software#arMI. Using an input
alignment in FASTA format or alternatively an internally created
random alignment of specified length and depth, the program
computes three types of Mutual information: (i) Shannon’s Mutual
Information between all pairs of alignment columns; (ii) the numerical
residual Mutual Information by using the same formula on the
randomised (shuffled) data; (iii) the analytical residual Mutual
Information introduced here. The package depends on the GNU
Scientific Library, which is used for vector and matrix operations,
factorial expressions and random number generation (Galassi et al.,
2009). Reference alignments and result data are included in the
program package in the folder ’tests’. The R environment was used
for statistics and plotting (R Core Team, 2014).
Contact: Jens.Kleinjung@crick.ac.uk
Supplementary Material: A detailed derivation of the analytical
formula is given in the Supplementary Material.

Structural and functional constraints have shaped biomolecules
and their functions over evolutionary times. This is reflected for
example in positional conservation of nucleotide and amino acid
sequences across multiple species or in gene expression profiles
present in related cell states. These types of correlation patterns can
be detected by computing the Mutual Information (Ix,y) between
pairs of data vectors. Shannon’s Mutual Information Ix,y =
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∑
x,y∈S p(x, y) log

(
p(x,y)
p(x) p(y)

)
(Cover and Thomas, 2006) scales

the joint probability p(x, y) to observe a specific element pair x and
y with the marginal probabilities p(x) and p(y). S is a base set
of symbols (alphabet) onto which the vector elements are mapped;
for biological sequence alignments that corresponds generally to
4 nucleotides (DNA, RNA) or 20 amino acids (proteins) and for
expression profiles typically to the number of genes under study.
We will use Ix,y is this sense throughout the paper.

A critical question for all methods using correlation signals
is whether the signal strength of the observed Ix,y is above
the background or residual Mutual Information Irx,y , which is
the Mutual Information between two fully independent alignment
positions. The theoretically desirable Irx,y value of zero is obtained
with a hypothetical random sample of infinite size, while in real
biological data two error sources lead to non-zero background
levels: i) under–sampling due to finite sample size and ii)
redundancy among data due to their phylogenetic or functional
relatedness, both yielding sampled frequency probabilities p̂(x),
p̂(y) and p̂(x, y) differing from expectation values. Heuristic
methods have been developed to estimate Irx,y or to derive
covariation values that have been corrected for background signals.
The ‘average product correlation’ evaluates a form of excess Ix,y
of two alignment positions versus the average Ix,y over all pairs
of alignment positions (Dunn et al., 2008). Alternatively, the
covariance of alignment positions can be quantified via estimation of
the sparse inverse covariance (Meinshausen and Bühlmann, 2006).
A term for the expected systematic error of Ix,y has been proposed
by Roulston (1999). A numerically inspired estimator of Irx,y is the
Ix,y value obtained from randomised (shuffled) data (Hempel et al.,
2011). In the following we will use this numerical residual Mutual
Information Inrx,y for comparison.

Here we present a simple analytical formula to compute the
analytical residual Mutual Information Iarx,y that has been derived
from Shannon’s formula under the basic assumption that p̂(x)
and p̂(y) were statistically independent of each other, which is
the essential condition to obtain Irx,y values (see Supplementary
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Material for the detailed derivation):

Îarx,y = log(N) +
∑
x ε S

∑
y ε S

p̂(x) p̂(y)

N−1∑
n=0

(
N − 1

n

)

· log(1 + n)
(
(p̂(x) p̂(y))n(1− p̂(x) p̂(y))N−1−n

− p̂(x)n (1− p̂(x))N−1−n − p̂(y)n (1− p̂(y))N−1−n
)
.

(1)

Equation 1 depends only on the sampled element probabilities
p̂(x) and p̂(y) and on the vector length (or sample size) N . The
assumption of statistical independence has led to the elimination of
the joint probabilities p(x, y) occurring in Shannon’s Ix,y formula,
simplifying the input to the probabilities of the base set symbols.
This has favourable practical implications, for example in sequence
analysis and design, where Irx,y can now be controlled by variation
of the composition of alignment profiles without the need to actually
create these alignments.

Fig. 1. (a) Root mean square deviation between Iarx,y and Inrx,y values for
random sequence alignments of length 10 and depth (sample size) 20 to
1000 and (b) the computational time per vector pair (Iarx,y : blue triangles,
Inrx,y : orange circles). (c) Iarx,yand Inrx,ybase set sizes 1 to 20 with even
element probabilities. (d) Comparison between Ix,y , Iarx,yand Inrx,y values
of an alignment of 100 sequences of the protein Ras (residues 57-66).

A direct comparison between the Iarx,y and Inrx,y measure, unbiased
by input data correlation, was obtained from a random sequence
alignment of length 10 and depths (sample sizes) between 20 and
1000. Figure 1a shows the root mean square deviation between Iarx,y
and Inrx,y over all computed values. It is apparent that the numerical
estimator Inrx,y significantly overestimates Irx,y below sample sizes
of about 500. However, the computational time per pair of data

vectors is almost unaffected by the sample size for Inrx,y (Figure 1b),
while it increases linearly with the sample size for the analytical
estimator Iarx,y . The absolute value of Irx,ydepends on the distribution
of the element probabilities in the base set as shown in Figure 1c,
where the total probability is evenly spread over varying base set
sizes from 1 to 20 elements (sample size 100). The absolute Irx,y
values and also the difference between Iarx,y and Inrx,y increase with
the size of the base set.

To illustrate the application of Iarx,y (equation 1) on biological
data, a short and gap–less alignment of the switch II region (residues
57–66) of the Ras protein was taken from the Pfam database
(Finn et al., 2014). The chosen sample size was 100 to emphasise
the differences between Iarx,y and Inrx,y . We computed the three
described types of Ix,y between all column pairs: (i) Shannon’s
Ix,y of the original alignments, yielding the biological correlation
signal (uncorrected for Irx,y); (ii) Inrx,y by application of Shannon’s
Ix,y formula on shuffled alignment columns, where randomisations
were repeated 100 times to estimate the mean and variance;
(iii) Iarx,y computed according to equation 1. Figure 1d shows the
resulting Ix,y (black diamonds), Inrx,y (orange circles, mean±sd)
and Iarx,y (blue triangles) values plotted over the array of all column
combinations (1:2, 1:3,. . . ,1:10, 2:3, 2:4,. . . ,9:10) for sample size
100. Ix,y values fluctuate depending on the correlation between
the particular combinations of alignment columns. arMI yields the
analytically correct residual values, while Inrx,y overestimates the
background correlation as described above.

In conclusion, the analytical Iarx,y equation 1 is a precise and
practical estimator of the residual Ix,y , in particular for sample sizes
below 500, where the usually employed numerical randomisation
deviates from appreciably from the expectation values. The results
suggest a pragmatic strategy for the computation of Irx,y , which is
to use the analytical formula for smaller samples and the numerical
approach for larger samples, because that strategy should yield
a high precision of the resulting Irx,y at low computational costs
across a wide range of sample sizes. Due to the fact that the
joint probabilities p(x, y) have been eliminated from the analytical
equation, the Iarx,y measure provides a means to explore Irx,y by
varying vector compositions without explicitly pairing the vector
elements.

Time Complexity
The time complextity of the underlying algorithms has two main
components, the combinatorics of the column pair comparisons and
the MI calculation. The former, N ∗ (N − 1)/2 pair comparisons,
have a time complexity of O(N2), which applies to both, Inrx,y and
Iarx,y computations.

Disregarding the combinatorial part, we focus on the MI
computation of single column pairs. The MI computation is
dominated by random shuffling in the case of Inrx,y and by the
evaluation of polynomial terms in the case of Iarx,y .

Random shuffling was performed using the GSL function
’gsl ran shuffle’, which is an implementation of the Durstenfeld
version of the FisherYates shuffle. The algorithm has time
complexity O(N), where N is the number of elements in the set
(Durstenfeld, 420) or the sample size in our context.

Contrastingly, the computational time spent on the Iarx,y
computation is dominated by the polynomials p(x)p(y)n and
p(x)p(y)N−1−n, which are evaluated (N − 1) times. Therefore,
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the time complexity is also O(N), but the actual time spent on
the respective subroutines is considerably different, with random
shuffling being about 25 times faster than evaluation of polynomial
terms at large N (Fig. 2).
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Fig. 2. Computational time for the computation of (a) Inrx,y and (b) Iarx,y for
a single column pair of sample size N . Each computation is repeated 10
times. The standard deviation is indicated by vertical bars.

ROC curve
To evaluate the difference in performance between Inrx,y and Iarx,y , a
benchmark test on biological data was performed.
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