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ABSTRACT 

Although large-scale efforts for molecular profiling of cancer samples provide multiple data types for many 

samples, most approaches for finding candidate cancer genes rely on somatic mutations and DNA copy 

number only. We present a new method, OncoScape, which, for the first time, exploits five complementary 

data types across 11 cancer types to identify new candidate cancer genes. We find many rarely mutated 

genes that are strongly affected by other aberrations. We retrieve the majority of known cancer genes but 

also new candidates such as STK31 and MSRA with very high confidence. Several genes show a dual 

oncogene- and tumor suppressor-like behavior depending on the tumor type. Most notably, the well-

known tumor suppressor RB1 shows strong oncogene-like signal in colon cancer. We applied OncoScape 

to cell lines representing ten cancer types, providing the most comprehensive comparison of aberrations 

in cell lines and tumor samples to date. This revealed that glioblastoma, breast and colon cancer show 

strong similarity between cell lines and tumors, while head and neck squamous cell carcinoma and 

bladder cancer, exhibit very little similarity between cell lines and tumors. To facilitate exploration of the 

cancer aberration landscape, we created a web portal enabling interactive analysis of OncoScape results. 

INTRODUCTION 

Cancer is one of the biggest public health problems with an estimated number of 14.1 million new 

diagnoses and 8.2 million deaths worldwide in 2012 according to GLOBOCAN 

(http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx). Large-scale initiatives such as The Cancer 

Genome Atlas (TCGA) (1) and the International Cancer Genome Consortium (ICGC) (2) have been 

established specifically with the aim to determine the mechanisms underlying the development and 

progression of all major cancer types. To this end, large numbers of tumors and matched normal samples 

of different cancer types were extensively molecularly characterized. Using these data, candidate cancer 

genes were identified, most often relying on significantly elevated somatic mutation rates (3) rather than 

integration of different data types. Several published analyses combined somatic mutations across cancer 

types in order to increase the power for discovering potential cancer genes (4–6). However, even 

approaches relying on partially overlapping somatic mutation data sets (5, 6) show limited agreement in 

their results. A few other studies integrated mutation and DNA copy number data (7) or gene expression, 
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copy number and DNA methylation data (8). Recently, Sanchez-Garcia and colleagues developed a new 

method that first identifies regions with recurrent copy number gain and then prioritizes the contained 

genes using data from exome sequencing, shRNA screens and gene expression (9). 

Cancer cell lines are important tools for basic cancer research and efforts are currently underway to 

molecularly characterize large cell line panels representing a highly diverse set of cancer types (10–12). 

Since cell lines grow in an artificial environment, it is often unclear how well they represent primary 

tumors. Recent studies concluded that colorectal cell lines represented tumors well (13), while some 

ovarian lines showed features uncharacteristic of primary tumors (14) and bladder cancer cell lines also 

differed significantly from primary tumor samples [].  

In this study, we describe OncoScape, a new method for integrating gene expression, somatic 

mutations, DNA copy-number and methylation as well as data from shRNA knock-down screens. To the 

best of our knowledge, this is the first approach to integrate such diverse data types for identifying cancer 

gene candidates. Applying OncoScape to 11 cancer types, we provide a more accurate picture of the 

landscape of molecular aberrations of human tumor samples. We specifically aim to identify novel 

candidate cancer genes that are aberrated in several cancer types and exhibit aberrations in different data 

types. Our method analyzes data for each cancer type separately and then aggregates the results on a 

gene level across cancer types. In contrast to most previous analyses, we classify candidate cancer 

genes as potential oncogenes or tumor suppressor genes based on the observed types of aberrations. 

Our results correlate well with the literature in the sense that known oncogenes and tumor suppressor 

genes are scored highly by OncoScape. Importantly, we identify many highly aberrated genes in different 

cancer types that have not been implicated in cancer so far. As it is known that aberrations cause 

(in)activation of specific pathways in cancer (15, 16), we analyzed aberrations across pathways, which 

shows a birds-eye view of the aberration landscape and facilitates the identification of functional themes in 

each cancer type. We performed the same analysis for cell lines of ten cancer types providing the most 

comprehensive comparison of the aberration landscapes of cancer cell lines and primary tumor samples 

to date. We identified several cancer types, such as ovarian, breast and colon cancer, for which primary 

tumors and cell lines show high similarity. However, in other cancer types, especially bladder cancer and 

head and neck squamous cell carcinoma, cell lines exhibited only limited similarity with tumor samples, 

emphasizing the importance of carefully selecting in vitro model systems. 

MATERTIALS AND METHODS 

Data acquisition and accessibility 

Gene expression, DNA copy-number and methylation data for primary tumor samples and matched 

normal samples were obtained from data freeze 4.7 of the TCGA Pan-Cancer (1) project entry hosted in 

Sage Bionetworks’ Synapse (Synapse accession doi:10.7303/syn300013). In all analyses, only tissue-

matched normal samples were used. If a dataset contained one primary tumor sample and a recurrent or 

metastasis sample of the same patient, only the primary sample was retained. If several primary samples 

were available for one patient, we removed all samples from the dataset. Somatic mutations for TCGA 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 2, 2016. ; https://doi.org/10.1101/041962doi: bioRxiv preprint 

https://doi.org/10.1101/041962
http://creativecommons.org/licenses/by/4.0/


	
  

tumor samples were also downloaded from Synapse (Synapse accession doi: 10.7303/syn1710680.4). 

We divided mutations in the colorectal dataset into separate sets for colon and rectal cancer. We obtained 

shRNA knock-down data from Project Achilles (12) on 20 June 2013. Gene expression, mutation and DNA 

copy-number data for cancer cell lines were downloaded on 12 March 2012 from the CCLE web site. Cell 

lines were assigned to cancer types based on their tissue type annotation (Tables S8 and S9). In total, we 

matched 327 cell lines to one of ten cancer types included in our analysis; there were no rectal cancer cell 

lines in the dataset. For DNA copy number and gene expression data, we corrected for systematic 

differences between CCLE and TCGA utilizing the ComBat function in the sva package (version 3.6.0). 

For DNA copy number data, we applied ComBat on the combined matrix containing all CCLE and TCGA 

samples correcting for the batch variable (CCLE or TCGA) while taking into account tissue type and 

disease state (cancer or normal) as outcome of interest. Batch correction for gene expression was 

performed in the same way but separately for tissue types with RNA sequencing- or chip-based 

expression data. For the analysis of colorectal subtypes, we utilized the random forest subtype labels from 

(17). We did not use shRNA data for this analysis as no clear assignment of cell lines to subtypes was 

available. Pathway definitions were taken from the Kyoto Encyclopedia of Genes and Genomes (18) on 

25 February 2014 using version 1.0.1 of the KEGGREST package. Gene IDs were translated using 

version 2.16.0 of the biomaRt package (19). All results of our analyzes are publicly accessible in Synapse 

(https://www.synapse.org/, Synapse accession doi:10.7303/syn2518467). 

OncoScape 

Data processing and visualization was performed using the R statistical programming environment (20). 

We implemented a new package, named OncoScape, for data processing and prioritization of candidate 

cancer genes. Source code of the package and all other scripts used for data handling and visualization 

can be freely downloaded from Github at https://github.com/andreas-schlicker/OncoScape. The package 

provides functionality to assess alterations of single genes for each data type and each cancer type 

individually (Figure 1). Tumor samples are compared with normal samples to identify significant 

differences. If a gene is found to be altered, this gene receives a score of 1 for this data type and else a 

score of 0. Details on the scoring for each data type are given below. Activating and inactivating 

alterations are both scored independently for each gene, and the sums of the activating and inactivating 

aberrations yielded an oncogene score and a tumor suppressor gene score, respectively. Additionally, we 

calculated the difference between oncogene score and tumor suppressor gene score, referred to as 

overall score, and the sum between oncogene and tumor suppressor scores, referred to as aberration 

score. Genes were then ranked based on one of these scores to be classified as potential new oncogene 

or tumor suppressor gene. Pathway alteration scores were calculated by averaging scores for all genes 

assigned to the same pathway. Aberrations in cancer cell lines were assessed by comparing the cell lines 

with normal samples available from TCGA using the same approach as for tumor samples.  

Gene expression analysis 
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Normalized gene expression data for tumor and normal samples, either from an Illumina sequencing 

platform or Agilent arrays depending on availability for each cancer type, were obtained from TCGA. We 

compared expression levels for each gene between tumors and matched normal samples using paired 

Wilcoxon tests and corrected nominal p-values using the Benjamini-Hochberg procedure. If a gene was 

significantly (FDR < 0.05) differentially expressed (lower or higher) in tumor samples, it received a +1 

towards tumor suppressor or oncogene score, respectively.  

Copy-number analysis 

Segmented DNA copy-number data for tumor and normal samples were obtained using Affymetrix SNP6 

arrays by TCGA. We compared log-ratio copy number values between tumor samples and matched 

normal samples using paired Wilcoxon tests and corrected p-values using Benjamini-Hochberg’s 

procedure. We required genes to have a mean copy number difference larger than 0.1 between tumors 

and normal to prevent small effects becoming significant because of a large number of samples. For 

genes with significant difference in copy-number (FDR < 0.05), we calculated the Spearman correlation 

between copy-number and gene expression. A gene was scored as potential tumor suppressor or 

oncogene if 1) its copy-number value in tumor samples was significantly lower or higher than in normal 

samples and 2) the copy-number was significantly (FDR < 0.05) positively correlated with gene expression 

across the tumor samples.  

DNA methylation analysis 

We analyzed DNA methylation data in a probe-wise fashion. For each probe, we compared methylation 

values in tumor and tissue-matched normal samples using unpaired Wilcoxon tests and corrected p-

values using the Benjamini-Hochberg procedure. For each probe with a mean difference of methylation 

beta valus greater than 0.1 between tumors and normals and the difference being significant (FDR < 

0.05), we computed the Spearman correlation between methylation level and expression of the genes 

annotated to that probe according to the Illumina annotation across all tumor samples. Correlations with 

FDR < 0.05 were regarded as significant. A gene was scored as tumor suppressor gene if 1) at least one 

associated methylation probe in the gene body exhibited significantly lower methylation in tumors and 2) 

the methylation was positively correlated with gene expression, or if at least one other associated 

methylation probe showed gain of methylation in tumors and gene expression was negatively correlated. 

In contrast, a gene was scored as oncogene if 1) at least one probe in the gene body showed gain of 

methylation and 2) was positively correlated with expression or any other associated probe exhibited lower 

methylation in tumors and methylation was negatively correlated with gene expression.  

Mutation analysis 

Mutations were scored according to the 20/20 rule published by Vogelstein and colleagues (21), including 

classification of mutations into oncogene or tumor suppressor mutations, respectively, and the applied cut-

offs. We divided mutations according to their classification into oncogene mutations (missense mutations 
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and in frame deletion/insertions) and tumor suppressor mutations (frame-shift deletions/insertions, 

nonsense mutations and splice site mutations). Then, we calculated an oncogene mutation rate (OGMR) 

and a tumor suppressor mutation rate (TSMR) for each gene. The OGMR was defined as one minus the 

number of distinct oncogene mutations divided by the total number of mutations. The TSMR was defined 

as distinct tumor suppressor mutations divided by the number of total mutations. As suggested in [], genes 

with an OGMR > 0.2 and TSMR < 0.05 were scored as oncogene. A gene was scored as tumor 

suppressor if its TSMR > 0.2 or if the OGMR > 0.2 and the TSMR > 0.05. We required a minimum of five 

oncogene or tumor suppressor mutations in order to score a gene as oncogene or tumor suppressor, 

respectively. 

Analysis of shRNA knock-down screens 

Project Achilles assessed cell viability after knocking down genes using different shRNA hairpins. In order 

to minimize off-target effects, Project Achilles integrated knock-down results of several hairpins targeting 

the same gene into so called “gene solutions”, providing a cell viability score for each gene and cell line 

combination. We used only genes for which only a single gene solution was provided. For each gene, we 

derived a distribution of viability values across all cell lines. A gene was scored as potential oncogene for 

one cancer type if at least 25% of the cell lines for this cancer type had a knock-down viability score that 

was lower than the 25th percentile across all cell lines. If at least 25% of the cell lines had a knock-down 

viability score greater than the 75th percentile for that gene, it was scored as potential tumor suppressor 

gene.  

Estimation of affected samples 

In order to estimate which samples were affected by alterations in gene expression, DNA copy number or 

methylation of a specific gene, we first obtained the distribution of differences between tumor and normal 

samples. For paired analyses, we simply subtracted the value of the matched normal samples from the 

value of the tumor samples. For unpaired analyses, we subtracted the average value across all normal 

samples from the values of the tumor samples. A sample was called affected if its data value was more 

than one standard deviation away from the mean value of the distribution of differences.  

RESULTS 

Prioritization method 

In order to obtain a comprehensive characterization of the molecular aberration landscape of different 

cancer types, we developed OncoScape, an algorithm integrating gene expression, DNA copy number, 

DNA methylation and somatic mutation data, as well as shRNA knock-down screens. Figure 1 provides a 

schematic overview of the workflow – a detailed description is given in the Methods section. Briefly, 

OncoScape prioritizes genes as potential oncogenes or tumor suppressor genes by identifying molecular 

aberrations based on a comparison of tumor and normal (same tissue) samples. For each cancer type, we 
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identify genes whose mRNA expression, DNA copy number or methylation patterns differ significantly 

between tumor and tissue-matched normal samples. Patterns of somatic mutations along the gene and 

results of shRNA knock-down screens provide additional evidence. Calling aberrations for each gene and 

cancer type separately, enables us to identify cancer type-specific aberrations. Aberrations in the different 

data types are weighted equally; activating aberrations contribute towards an oncogene score and 

inactivating aberrations towards a tumor suppressor score. These scores are used to rank genes per 

cancer type, with higher scores signaling higher confidence in the prediction. Importantly, we primarily 

focus on finding genes with aberrations in different data types rather than those with only one type of 

aberration. Furthermore, we calculate a combined score as the difference between the oncogene and 

tumor suppressor scores.  

The global aberration landscape of tumors 

The main goal of our study was to provide a comprehensive map of the global aberration landscape 

across 11 human cancer types. To this end, we prioritized all genes in the human genome taking into 

account five different data types (Table 1). Figure 2a summarizes the number of genes with aberrations in 

the different cancer and data types. Across cancer types, the number of affected genes was similar for 

activating (oncogene-like) and inactivating (tumor suppressor-like) aberrations but highly dependent on 

the data type. Consistent with previous analyses, relatively few genes were frequently mutated in each 

cancer type (5), while aberrations in DNA methylation were found at a much higher frequency (8). 

Interestingly, only glioblastoma (GBM), colon adenocarcinoma (COAD) and kidney renal clear cell 

carcinoma (KIRC) had appreciable numbers of genes with statistically significant expression changes. 

Considering only one data type, most genes were found to be aberrated in at least one cancer type (Table 

S1). However, only 1196 genes had either activating or inactivating aberrations in at least three data types 

in at least one cancer type. Few genes were aberrated in four data types in some cancer types (Table S2), 

including the well-known tumor suppressor genes RB1, BRCA2 and PTEN.  

Arranging genes by chromosomal location revealed large aberration patterns corresponding to 

chromosome arms or whole chromosomes (Figure 2b). Genes located on Chromosome 1p, for instance, 

exhibited primarily inactivating aberrations across different cancer types, while genes on Chromosome 1q 

were mostly targeted by activating aberrations (Figure 2c). Investigating contributions of individual data 

types showed that this pattern was primarily caused by large-scale DNA copy number changes (Figures 

S1-S5). However, in these large regions, specific genes had higher scores than the surrounding genes 

showing that these genes are hit by different types of aberrations. This suggests that these genes could 

be the targets of such large-scale copy number events while the remaining genes in these regions have a 

passenger role (Figure 2c,d). Chromosome 9, for example, largely targeted by inactivating alterations, 

contained individual genes showing activating aberrations. Across all cancer types, CA9 had the highest 

average oncogene score on Chromosome 9. CA9 is a known hypoxia marker and cancer drug target (22), 

contributes to AKT activation in kidney cancer (23) and is associated with distant metastasis in early-stage 

cervical cancer if highly expressed (24), supporting its high oncogene score.  
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Overall our results revealed a highly complex picture of the aberration landscape of human cancer. 

Integrating different data and cancer types allowed prioritizing a short list of highly relevant candidate 

cancer genes. We found evidence that frequent focal events highlight probable cancer gene candidates, 

thus suggesting that the genomic context of aberration patterns provides valuable information. 

Known cancer genes receive high scores  

To validate cancer gene prioritization by OncoScape, we analyzed the scores of genes in three types of 

datasets: 1) frequently mutated cancer genes (4–6), 2) databases of known cancer genes (3, 25) and 3) 

all human genes and their cancer associated publications. First, we analyzed the prioritization scores of 

cancer gene candidates frequently mutated in breast or colon cancer (4), across twelve (5) or twenty one 

(6) different cancer types. The somatic mutation datasets used in our study were also included in the two 

latter studies. In all cases, the prioritization scores of these genes were significantly higher than the scores 

of all other genes using the Wilcoxon test (Tables S3-S7). Although these lists against which we validated 

had been derived using somatic mutation data only, the other data types included in our analysis also 

showed significantly more aberrations for these genes (Tables S3-S7). OncoScape predicted a number of 

new candidate oncogene- and tumor suppressor-like genes scoring higher than all but one gene in the 

previously published lists. For example, we identified the ribosome biogenesis protein BOP1 and RNA-

binding protein 39 (RBM39) as new high scoring oncogene candidates. BOP1 has been shown to 

contribute to tumorigenesis in colorectal cancer (26) and RBM39 has been shown to interact with estrogen 

receptors and c-JUN (27), which are known for their relevance to cancer.  

Second, we investigated the scores of the 513 genes in the Cancer Gene Census (CGC) (2) and found 

that their aberration scores, calculated as the sum of the oncogene and tumor suppressor scores, were 

significantly higher than the scores of human genes not included in CGC (Wilcoxon p-value < 2.2*10-16, 

Figure 3a). We also found many additional genes with scores comparable to CGC genes suggesting that 

these genes are important candidate cancer genes. In total, eleven genes had more extreme combined 

scores than any CGC gene. These new candidate genes included Bcl-2-like protein 1 (BCL2L1), which is 

a potent inhibitor of cell death (28). In addition, the 716 genes in the Tumor Suppressor Gene Database 

(TSGene) (25) had a significantly higher tumor suppressor gene score than other genes (Wilcoxon p-value 

= 1.95*10-8, Figure 3b). These results show that our scoring successfully recovered known cancer genes. 

Moreover, known tumor suppressor genes were mostly classified as tumor suppressor genes supporting 

the distinction between activating and inactivating aberrations.   

Finally, for a global analysis, we utilized the number of cancer-related publications as indicator for a 

gene’s relevance for cancer development and progression. Overall, we found a good correlation between 

the aberration score and the number of cancer-related publications (Spearman correlation = 0.37, Figure 

3c). This analysis highlighted well-known tumor suppressors and oncogenes with high prioritization scores 

and a large number of cancer-related publications. These include RB1 and EGFR, the top-scoring tumor 

suppressor and oncogene, respectively (Figures 3d,e). Furthermore, two particularly interesting groups of 

genes emerged from this analysis. First, many genes were associated with a large number of cancer-
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associated publications, but were only rarely aberrated in tumor samples. Such genes included CDK1, 

important for cell cycle regulation, and IL8, an important immune system signaling molecule. Second, 

many genes with high prioritization scores were not frequently described before in the cancer literature. 

The predicted oncogene STK31 (Figures 3d,S6), in the top 20 oncogene candidates with a total oncogene 

score of 20 across the 11 cancer types, is a largely uncharacterized protein kinase. It was mentioned in 

only five cancer-related publications implicating it as frequently mutated in melanoma (29) and as potential 

drug target for colorectal cancer (30). MSRA scored highly as tumor suppressor gene in several cancer 

types (Figures 3e,S6), which was supported by its protective role against protein oxidation and the finding 

that its down-regulation resulted in a more aggressive phenotype in several human cancers (31, 32). 

Taken together, these results show that OncoScape successfully recovered known cancer genes while 

assigning high scores to new genes that likely play an important role in cancer development and 

progression. We identified a group of genes which had not been frequently mentioned in the cancer-

related literature but proved to be highly aberrated across several cancer types. Importantly, several of 

these genes were not commonly mutated but often targeted by different kinds of aberrations attesting to 

the advantage of integrating different data types and the power of our approach to identify interesting 

leads for further studies.  

Context-dependent oncogenes and tumor suppressor genes  

The scoring of known tumor suppressor genes demonstrated that our approach allows to distinguish 

between genes showing oncogene- and tumor suppressor-like behavior. However, we identified 

potentially activating aberrations for several known tumor suppressor genes. Some genes in TSGene, for 

instance, had higher oncogene scores than tumor suppressor scores (Figure 3b), which could be 

explained by tissue type-dependent functions and dual roles for certain genes. NOTCH1 is one of the 

genes known to act as oncogene or tumor suppressor in a tissue type-dependent manner (33). Indeed, 

NOTCH1 was classified as a tumor suppressor in six tissues (breast invasive carcinoma [BRCA], head 

and neck squamous cell carcinoma [HNSC], kidney renal clear cell carcinoma [KIRC], lung squamous cell 

carcinoma [LUSC], ovarian serous cystadenocarcinoma [OV] and uterine corpus endometrial carcinoma 

[UCEC]) in our analysis and as oncogene in two other tissues (colon adenocarcinoma [COAD] and lung 

adenocarcinoma [LUAD]). Overall, we found 739 genes indicated as oncogene and tumor suppressor 

based on at least two different data types for different cancer types. A particularly interesting example was 

the well-known tumor suppressor gene RB1, which was scored as oncogene-like in COAD (Figure S7). 

This unexpected finding is concordant with previous reports (34, 35) and suggestions that it acts as 

oncoprotein in colorectal cancer (36). PUF60, which ranked among the top ten oncogene candidates 

across all cancer types (sum of TS scores=7, sum of OG scores=19) (Figure 3d), but in BRCA, its TS 

score is as high as its OG score. PUF60 was described to repress MYC expression (37), while one 

specific isoform has been shown to inhibit apoptosis and enable higher expression of MYC (38). PTK2B 

was ranked among the ten genes with highest tumor suppressor score (sum of TS scores=20, sum of OG 

scores=9), mostly because of DNA copy number and methylation changes (Figure 3e), but has also been 
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linked to increased proliferation and invasiveness of hepatocellular carcinoma (39) and MAP kinase 

pathway activation (40). In KIRC, it received a TS score of 3 and an OG score of 2 indicating conflicting 

evidence for this cancer type. These examples show that many genes might act as oncogenes or tumor 

suppressors depending on the cellular context. Our analysis provides a rich resource to identify such 

cases and the types of aberrations for these genes found in various cancer types.  This resource is made 

available through a web interface (http://oncoscape.nki.nl) where users can explore the best candidates in 

each cancer type but also annotate a list of genes of interest with tumor suppressor and oncogene results. 

Pathway aberration patterns 

Cancer is a disease of pathways, which can be affected by aberrations in different genes (15, 16), for 

example mutations in BRAF and KRAS leading to activation of the MAP kinase pathway (41). To facilitate 

the identification of broader biological categories targeted by aberrations, we calculated pathway scores 

by averaging combined scores of all genes belonging to one pathway (Figure 4a). Pathway scores for 

some cancer types were skewed towards higher tumor suppressor scores, for example BRCA and COAD, 

while in other cancers, like GBM and OV, oncogene pathway scores were generally higher. A similar 

observation could be made for individual pathways. Calcium signaling, recognized for its importance in 

cancer (42, 43), was targeted by inactivating aberrations in most genes with the exception of growth factor 

receptors and PLC-beta isozymes (Figures 4,S8). Aberration profiles of other pathways, such as NF-

Kappa B signaling, were clearly dependent on cancer type (Figure S9). Importantly, in some pathways 

such as PI3K-AKT signaling, individual branches seemed to be targeted consistently across cancer types, 

while other parts were found to be more heterogeneous (Figure S11).  

Subtypes specific aberrations in colorectal and breast cancer 

An interesting application of OncoScape is the identification of genes that are aberrated in specific 

subtypes of a disease. As an example, we performed an analysis of the recently published four consensus 

subtypes of colorectal cancer (17) and were able to recapitulate many described characteristics of these 

subtypes. Guinney and colleagues described consensus subtypes CMS1 and CMS3 as having few copy 

number changes while samples in CMS2 had many copy number alterations. In line with this, OncoScape 

scored no genes for copy number changes in CMS1 and only 34 genes in CMS3. In contrast, copy 

number changes were identified for more than 2100 genes in CMS2, including amplifications of HNF4A as 

described previously. We also identified the mutations in BRAF as being specific for CMS1. CMS4 was 

described as having altered TGF-beta signaling, which was the pathway with the highest OncoScape 

pathway score for this subtype. Importantly, we could also identify new subtype-specific events. 

OncoScape found the serine/threonine-protein kinase Nek3 to be targeted by loss of DNA methylation and 

copy number gains unique to CMS2. NEK3 has been described to regulate motility of breast cancer cells 

and to be overexpressed in breast cancer tissue (44). Our results suggest it as being deregulated in a 

specific suptype of colorectal cancer, which could represent a specific vulnerability for a subset of tumors. 
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These results show that OncoScape can identify aberrations that are specific to individual subtypes and 

that could be targeted in this patient subpopulation.   

OncoScape was also used to identify drivers of two subtypes of invasive lobular breast cancer: the 

Hormone Related (HR) subtype and the Immune Related (IR) subtype (45). Michaut and colleagues found 

four potential drivers of the HR subtype: PGR, GATA3 and FN1, were up-regulated at the mRNA and 

RPPA level. Similarly, YAP1 was deleted and down-regulated in HR, suggesting a possible role as driver 

of this subtype. 

 

Comparing cell lines to primary tumors 

As cancer cell lines are important models for studying the biology of cancer, we compared the molecular 

aberration landscape of cancer cell lines to that of tumor samples. To this end, we mapped cancer cell 

lines from the Cancer Cell Line Encyclopedia (CCLE) (10) based on their tissue of origin to the eleven 

TCGA cancer types included in our analysis. We performed the analysis using the 327 cancer cell lines 

that could be mapped to one of these cancer types (see Methods for details). Several differences between 

the datasets have to be considered when interpreting the results of this comparison. Rectal cancer was 

not represented in the cell line set, leaving 10 cancer types for the comparison. Since no matched normal 

samples were available for cell lines, we compared cell lines to tissue-matched normal samples from 

TCGA. DNA methylation data were not available for the cell lines and the mutation data were limited to 

about 1,650 genes. 

The overall number of aberrated genes was similar between cell lines and tumor samples, as was the 

number of genes with aberrations in the different data types (Figure S11). Few genes were found 

frequently mutated in the cell lines and a substantially higher number of genes were affected by DNA copy 

number alterations and gene expression changes, similar to the observations in tumors. Significantly 

altered gene expression was especially common in GBM and COAD, as observed before for tumor 

samples. With the exception of HNSC, genes with maximal scores in tumors were also found to be 

aberrated in cancer cell lines (Table 2), although the obtained scores were generally lower in cell lines. 

These results suggest that individual genes generally show comparable aberration profiles in cell line 

panels of most cancer types analyzed here. The comparison of pathway scores between cell lines and 

tumors revealed large differences between cancer types (Figure 4). We found a high correlation between 

pathway scores for instance for GBM, BRCA and COAD indicating that the available cell lines represented 

the set of tumors very well.  Other cell line panels showed little correspondence with tumor samples, most 

notably HNSC and BLCA.  

Our results stress the importance of carefully selecting an in vitro model system. Cell lines of several 

cancer types, such as GBM, BRCA and COAD, have a high overall correspondence with tumor samples 

implicating a good coverage of the tumor aberration space. Importantly, our analysis highlighted several 
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cancer types (HNSC and BLCA, in particular) and pathways with only little similarity between tumors and 

cell lines which demands greater caution when choosing particular cell lines as model systems.  

OncoScape web portal 

We implemented a web portal (http://oncoscape.nki.nl) for exploring OncoScape results interactively. It 

allows accessing detailed scoring results for all cancer types and visualizing them in different types of 

plots. A pre-defined gene list can also be uploaded and annotated with oncogene and tumor suppressor 

gene prediction scores in all cancer types. Additionally, the web portal provides functionality for directly 

comparing results from tumor samples and cell lines. All source code can be downloaded from GitHub 

(https://github.com/andreas-schlicker/OncoScape); result files can be accessed through Sage 

Bionetwork’s Synapse (doi:10.7303/syn2518467). 

DISCUSSION 

We presented OncoScape, a new method for integrating several genome-wide datasets in order to 

characterize the molecular aberration landscape of human cancer. Many identified genes were rarely 

mutated but frequently affected by other aberrations such as DNA copy number alterations or methylation 

changes. These genes would not have been detected by methods that rely solely on somatic mutations, 

thus proving the value of integrating different genome-wide datasets. In contrast to most previous 

approaches, we prioritized genes as potential oncogenes or tumor suppressor genes based on the type of 

aberrations found. It should be borne in mind that we prioritize genes based on a score aggregated across 

different data types. This scoring system favors genes that show aberrations in multiple data types over 

genes that are almost exclusively aberrated in a single data type. Therefore, we would not identify genes 

that are often mutated but do not show any other alterations. The analysis of aberration scores across 

pathways highlighted some pathways, like calcium signaling, activated or inactivated across all cancer 

types, which could implicate them as targets for therapeutic intervention in many different cancer types.  

Others exhibited tissue-specific aberration patterns suggesting that corresponding compounds would have 

tissue-specific activity. 

By analyzing data for available cancer cell lines of 10 cancer types, we provide the first large-scale 

comparison of the molecular aberration landscapes of tumors and cell lines. Although data availability 

slightly differed for tumors and cell lines, the overall characteristics of the results indicate that they were 

comparable. We did not perform a comparison for single cell lines as presented previously for ovarian 

cancer (14). Overall, we found a good similarity between the aberration landscapes of ovarian cell lines 

and tumors, but we also observed several pathways with apparent differences, including TGF-beta 

signaling and insulin secretion. Aberrations found in the panel of colon cancer cell lines closely resembled 

colon tumors, which is in line with previous results (13). Our analysis also highlighted some cancer types 

for which available cell lines and tumor samples differ to a large degree, notably HNSC and BLCA. For 

bladder cancer, our results agree with recent findings published by Earl et al. [10.1186/s12864-015-1450-

3]. They identified significant differences in the mutation rates of important oncogenes and tumor 
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suppressor genes between tumors and cell lines. In their analysis of gene expression subtypes, Earl and 

colleagues noted that while aggressive subtypes are not that common in patients they were predominant 

in the analyzed bladder cancer cell lines. Together with our results, this stresses the importance of 

carefully selecting cell lines as in vitro models for investigation of these cancer types.  

In summary, we provide a comprehensive overview of the molecular aberration landscape of tumors of 

11 cancer types and cell lines of 10 cancer types obtained using our new method OncoScape. Our results 

stress the value of integrating different data types when identifying candidate cancer genes and suggest 

many new leads for further investigation. The comparison between tumors and cell lines provides a 

valuable resource for researchers to guide the selection of cell lines for research into mechanisms of 

oncogenesis as well as for the development of new therapeutics. Importantly, OncoScape can be applied 

in many additional contexts, such as the comparison of patients responding or being resistant to specific 

treatments or to identify specific characteristics of different subtypes of a certain disease. 
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TABLE AND FIGURE LEGENDS 

 

Table 1: Number of available primary tumor and matched normal samples per cancer type. Each row 

contains the number of samples available for the specified data type. Rows 5 and 6 contain the number of 

samples with available mRNA expression data and copy-number data or DNA methylation data, 

respectively. The last row contains the number of cell lines available in CCLE for each cancer type. 

 

Table 2: Cell line aberration status of the highest scoring genes for tumor samples. Genes are classified 

as aberrated in cell lines if they received an oncogene or tumor suppressor score of at least one. 

 

Figure 1: Schematic overview of the OncoScape prioritization method and the data types used. The input 

to the method consists of a list of genes scored for aberrations in five data types. Aberrations in copy 

number (CNA), gene expression (Expr) and DNA methylation (Meth) are identified as statistically 

significant differences between tumor and normal samples. Somatic mutations (Mut) are scored based on 

the type of mutations and their clustering along the gene (clustered mutations contribute to the oncogene 

score, while broadly distributed mutations contribute to the tumor suppressor score). Gene knockdown 

(shRNA) results are assessed using the change in cell line growth before and after knockdown. Filled 

boxes in the output table indicate aberrations identified for individual genes in each data type. Inactivating 

aberrations count for the tumor suppressor score while activating aberrations count for the oncogene 

score. This analysis is executed for each cancer type separately. 

 

Figure 2: Overview of the molecular aberration landscape. (a) Number of genes with oncogene-like and 

tumor suppressor-like aberrations in the different data types across all cancer types. Data types are 

depicted in panels and cancer types in rows. The row labeled “any” indicates the number of genes with an 

aberration in any cancer type. (b) Two-dimensional overview of prioritization scores averaged across all 

11 cancer types. Genes are plotted column-wise sorted according to chromosomal location, starting with 

the telomere of Chromosome 1p in the upper left corner. Lines delineate the different chromosomes and 

numbers indicate chromosome names. Potential oncogenes have positive scores and potential tumor 

suppressor genes have negative scores. (c, d) Depiction of the average combined scores and average 

percentage of affected samples across Chromosomes 1, 9 and 20. Red and blue arrows point to predicted 

oncogenes and tumor suppressor genes, respectively, which are targeted by focal events. Panel (c) 

depicts the average prioritization scores for the genes; panel (d) shows the average percentage of 

samples affected by aberration in these genes. For clarity, percentages of samples affected by inactivating 

alterations are depicted as negative numbers. 

 

Figure 3: Comparison of prioritization scores with cancer gene databases and publications, and detailed 

aberration profiles of the highest scoring genes. (a) All human genes are sorted according to the sum of 

their oncogene and tumor suppressor scores across all cancer types. CGC genes, marked with gray lines, 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 2, 2016. ; https://doi.org/10.1101/041962doi: bioRxiv preprint 

https://doi.org/10.1101/041962
http://creativecommons.org/licenses/by/4.0/


	
  

show a trend towards high prioritization scores. (b) All human genes are sorted according to their tumor 

suppressor scores summed over all cancer types. Known tumor suppressor genes (according to TSGene) 

were marked and show a significant trend towards prioritization as tumor suppressors. (c) Boxplot 

comparing prioritization scores with number of cancer-related publications. On the x-axis, genes are 

categorized using the sum of their oncogene and tumor suppressor gene scores across all cancer types. 

The y-axis depicts log10 of the number of cancer-related publications. Each box summarizes the genes 

with the same prioritization score. Some well-known cancer genes are labeled. Aberration profiles of the 

top scoring oncogenes (d) and tumor suppressor genes (e) across all cancer types. Colored boxes 

indicate that the given gene was aberrated for the respective data type in the associated cancer. Marginal 

histograms indicate the number of different cancer types with aberrations in the given gene. 

 

Figure 4: Prioritization scores for 34 selected pathways in tumor samples and cell lines as (a) heatmap 

and (b) scatter plot. Pathway scores were calculated by averaging scores of all genes belonging to a 

certain pathway. No rectal cancer cell lines were available. In the scatter plot, each dot represents one 

pathway. Pathway scores in tumor samples and cell lines are shown on the x-axis and y-axis, 

respectively. Correlation values are Pearson correlation coefficients between tumor sample and cell line 

scores. 
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