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 11 

We developed a statistical method, BIOSEA, able to identify molecules that are capable of 12 

reproducing a desired cellular phenotype, by scanning a large compound collection based on 13 

biological similarity. Our method leverages highly incomplete and noisy compound bioactivity 14 

signatures from historical high-throughput screening campaigns. We applied our approach in a 15 

phenotypic screening workflow and found novel nanomolar inhibitors of cell division that reproduce 16 

the mode of action of reference natural products. In a drug discovery setting, our biological hit 17 

expansion protocol revealed new inhibitors of the NKCC1 co-transporter for autism spectrum 18 

disorders.  Furthermore, we demonstrate BIOSEA’s capabilities to predict novel targets for old 19 

compounds. We report new activities for the drugs nimedipine, fluspirilene and pimozide applicable 20 

for compound repurposing and rationalizing drug side effects. Our results highlight the opportunities 21 

of reusing public bioactivity data for prospective drug discovery applications where the target or 22 

mode of action is not known.  23 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 1, 2016. ; https://doi.org/10.1101/041947doi: bioRxiv preprint 

https://doi.org/10.1101/041947


 

Page 2 of 27 
 

The last two decades have witnessed a dramatic change in our understanding of the interactions 1 

between small molecules and biological systems
1
. We are currently experiencing an important shift 2 

from reductionism
2
, to a more pragmatic vision of living organisms as complex entities whose study 3 

cannot be effectively tackled by treating each part in isolation
3
. In this new framework, phenotypic 4 

screening has reemerged as a practical solution to finding novel chemical entities, which provide 5 

insights into the underlying cellular processes leading to new opportunities for drug discovery
4
. 6 

However, phenotypic screening brings about its own challenges such as the identification of the 7 

mechanism of action (MoA) and the effective target or targets responsible for these phenotypes
5
. 8 

Target and MoA identification play a fundamental role, paving the way to lead optimization via 9 

structural approaches, structure-activity relationships (SAR) rationalization and also by improving 10 

awareness about ADME (absorption, distribution, metabolism and excretion), safety liabilities and 11 

drug-drug interactions. The chemical biology and genomics fields have stood up to the challenge 12 

producing elegant solutions for these problems
6
, such as CRISPR/Cas9 gene editing

7
 and chemical 13 

proteomics-based techniques
8
 that yet, bear inherent limitations such as chemical modification of the 14 

compounds, challenging specificity or high costs
8
. In the light of these advances, novel computational 15 

efforts are now in order to support phenotypic screening. In this work, we demonstrate how to 16 

leverage historical bioassay data as compound biological signatures to facilitate phenotypic 17 

deconvolution tasks, such as target identification and phenotypic library design. We report here a 18 

novel target and chemical structure-independent screening technique to find new chemical compounds 19 

to modulate a desired phenotype in a drug discovery setting. 20 

Large amounts of pharmacological and bioactivity data accumulate both in public repositories and in 21 

proprietary databases in the pharmaceutical industry. A few approaches have attempted to use 22 

historical compound annotation data for target identification. For example, the TarFishDock
9
, 23 

TargetHunter
10

, Similarity Ensemble Approach
11,12

, ChemMapper
13

 and HitPick
14

  methods, rely on 24 

either 2D or 3D chemical information of ligands or targets and an established molecular structure 25 
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similarity metric. These methods have been exploited with success in tasks such as the prediction of 1 

targets responsible for drug side effects
15

. However, an important limitation is the fact that these 2 

methods depend on the availability of crystal structures for the target, or the structural similarity 3 

between the compounds and previously known target ligands which confines their performance to 4 

well-explored areas in chemical space.  5 

In recent years, it has been demonstrated that the cellular phenotype of compounds can be described, 6 

and even predicted, by a compound’s biological signature: an array of numbers representing the 7 

perturbation caused by a chemical entity of interest measured throughout several cellular and 8 

biochemical assays
14

. In this context, compounds sharing a similar biological profile tend to modulate 9 

similar targets, without necessarily having similar chemical structure
16

. In the past, we and others
17-22

 10 

have proposed the use of historical high-throughput screening (HTS) activity data to represent 11 

molecules in the biological space. The so-called HTS fingerprints (HTSFP) have proven successful 12 

for the identification of new targets for known compounds
22

. Since they are structure-independent, 13 

HTSFP enable scaffold-independent linking of drug-like molecules to less frequently explored regions 14 

in chemical space such as those of complex natural products
16,22

.  15 

By integrating external pharmacological sources of information and HTS data, we have implemented 16 

BIOSEA – Biological Similarity Ensemble Approach – a novel statistical classifier that is able to 17 

establish new relationships between targets and small molecules on the basis of the mutual 18 

information between compound biological signatures. Algorithmically, BIOSEA was inspired by the 19 

method developed by Pearson
23

 for sequence similarity searches (BLAST) and the Similarity 20 

Ensemble Approach (SEA) developed  by Keiser et al.
11

 to compare chemical structures. 21 

In this work, first we report an unprecedented phenotypic screening workflow in which BIOSEA was 22 

applied to find compounds that modulate a desired cellular phenotype across large molecular libraries. 23 

We validated this procedure in two projects: (1) the discovery of drug-like inhibitors of cell division 24 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 1, 2016. ; https://doi.org/10.1101/041947doi: bioRxiv preprint 

https://doi.org/10.1101/041947


 

Page 4 of 27 
 

and (2) the identification of novel chemical entities to alter intracellular ion concentration by 1 

inhibiting the Na
+
K

+
2Cl

-
 co-transporter (NKCC1) for the indication of autism. In a following section, 2 

we demonstrate the application of BIOSEA for target identification, validated with both retrospective 3 

data and prospective experiments that shed light on the polypharmacology of known drugs.  4 

Consistently throughout these applications, BIOSEA revealed new relationships between molecules 5 

and targets, which are difficult to detect even by a trained chemist’s eye. 6 

RESULTS 7 

BIOSEA identifies molecules that reproduce a desired cellular phenotype 8 

BIOSEA enables phenotypic screening without the need of information about the chemical structure 9 

of the target or associated ligands (Fig. 1a). This capability was used in two drug discovery workflows 10 

to find novel chemotypes that: (i) inhibit cell division and (ii) block NKCC1 mediated modulation of 11 

intracellular ion concentration. In the first scenario, the cellular phenotype was characterized, and 12 

both target and MoA of the proposed compounds were identified using cellular and biochemical 13 

assays. In the second scenario, we applied BIOSEA for biological hit expansion with a NKCC1 14 

cellular assay and compared its performance to standard methods that rely on chemical structure. 15 

Phenotypic screening with BIOSEA: inhibition of cell division 16 

As a reference set, we have selected six well-known natural products that perturb cell division in two 17 

different ways: paclitaxel acts as a microtubule-stabilizing agent while the remaining compounds have 18 

an inhibitory effect on tubulin polymerization. Virtual screening using these reference compounds and 19 

a library of circa 365,000 compounds was performed to predict 20 biologically similar compounds 20 

that would reproduce the phenotype of cell cycle arrest.    21 

In a first validation step, using a cell cycle arrest screen in A549 cells, we could observe that 5 out 20 22 

compounds were able to produce visible effects (rounding of cells) at a concentration of 5 µM which 23 
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was indicative of a cytostatic behavior. The cytotoxic activity of the positive compounds (hereby 1 

named CT1 to CT5) was verified in the same cell line, with most IC50 values in the nanomolar range 2 

(Table 1). Additionally, it was confirmed that all 5 compounds completely depolymerized the 3 

interphasic cellular microtubule network (Fig. 2a). To establish tubulin as the target that modulated 4 

microtubule dynamics, the time-course of the assembly of tubulin was recorded in excess 5 

concentration of the hit compounds (Fig. 2b). All compounds were found to inhibit tubulin 6 

polymerization in vitro and in cells. Binding of active compounds in known tubulin depolymerizing 7 

binding sites (i.e. colchicine, vinca, maytansine, and eribulin) was investigated using various 8 

competition assays (Fig. 2c, Supplementary Fig. 1 and Supplementary Fig. 2). CT5 was found to bind 9 

to the eribulin biding site. The low solubility and weak activity of CT2 prevented any competition 10 

assay. CT1, CT3 and CT4, were confirmed to bind to the colchicine site and a pharmacophore model 11 

was proposed on the basis of colchicine-tubulin crystallographic information
24

 to rationalize the 12 

binding mode of these structurally diverse chemotypes (Fig. 2d, Supplementary Information). 13 

Although the compounds do not share the same scaffold, the model showed a clear superimposition of 14 

the di- and tri-methoxyphenyl moieties and good shape and chemical complementarity with the 15 

reference compound, which indicates a similar binding pattern. 16 

To deconvolute the information encoded in the HTSFP that leads to successful target-specific 17 

compound predictions, we evaluated the individual contribution of every HTSFP assay to the global 18 

biological similarity to the reference compounds. Thus, for each of the 5 hits, the top 10 HTSFP 19 

components contributing most to the similarity were identified by a leave-one-out procedure 20 

(Supplementary Fig. 3, Methods) and classified into biochemical or cell-based assays (Supporting 21 

Table 1). Even though mutual information is a metric that is calculated based on the full range of the 22 

HTSFP fingerprint, this approach provided the following observations on these highly informative 23 

assays (HIA): a) there is no unique pattern for HIA that is common for all active compounds; 24 

instead, each compound attributes its biological similarity to a different part of the fingerprint. For 25 
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example, two compounds that were found to bind in the colchicine pocket, CT1 and CT4, do not have 1 

any HIA in common (Supplementary Fig. 3), and their biologically closest reference compounds are 2 

also different (vincristine and vinblastine, respectively); b) no HIA exists for the phenotype of 3 

interest (i.e. cell cycle arrest); only 2 assays measure unspecific cytotoxicity endpoints for Giardia 4 

lamblia and Escherichia coli (Supplementary Table 1). The remaining HIA cover a diverse range of 5 

biochemical and cell-based assays for targets such as the sentrin-specific protease 7, the sialic acid 6 

acetylesterase or the vainilloid receptor 1, which are not associated to microtubule formation. It is 7 

important to note that there is no tubulin-related assay in HTSFP; c) cell-based and biochemical 8 

assays seem to contribute alike although most compounds resulted inactive in these HIA. While 9 

compound activity in cell-based assays (Z-Score>2) may provide information on general cellular 10 

perturbations (e.g. cytotoxicity, signaling pathways, etc.), inactivity throughout biochemical or 11 

cellular assays (|Z-Score|<2) may bring information relevant for ruling out competing mechanisms 12 

leading to a given phenotype. As an example, among its HIA the molecule CT2 has resulted inactive 13 

for procaspases 3 and 7 -two biochemical assays- and inactive in a bacterial cell death screen in E-14 

coli.  15 

Hit expansion on NKCC1 16 

The primary goal of hit expansion efforts following an HTS campaign is to leverage informative lead 17 

molecules to rescue other active compounds that were neglected in the hit triage or missing in the 18 

primary screening library. In a phenotypic screen, this approach is specially challenging due to the 19 

diversity in chemical leads which may modulate several unknown targets – a context in which the 20 

chemical similarity principle for hit expansion may not apply. 21 

The Roche NKCC1 inhibitor program aimed at correcting imbalances in the GABA developmental 22 

switch
25

, which controls the intracellular chloride concentration and shifts the functional role of 23 

GABA between neonatal and adult stages from excitatory to inhibitory. Mediated by the change in 24 
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expression of two major ion co-transporters NKCC1 and KCC2, alterations in this mechanism 1 

possibly result in CNS disorders including epilepsy, autism spectrum disorder, schizophrenia and 2 

effects of traumatic brain injury
26

. The goal of the project was to identify NKCC1 inhibitors with high 3 

selectivity over peripherally expressed NKCCs and largely improved brain exposure compared to 4 

available compounds from the loop diuretic class such as bumetanide. 5 

To this end, a primary screen of more than 1.2 million compounds within the Roche library was 6 

conducted. The screen had a low hit rate of 0.06% confirmed active compounds covering several 7 

compound classes. A standard approach that relies on the generation of 3D shapes and surface charge 8 

models (ROCS
27

)  was applied and 430 compounds pharmacophorically similar to selected active 9 

compounds were submitted for profiling. This procedure resulted in a single novel hit with an affinity 10 

of 9 µM. For biological hit expansion using BIOSEA, 12 confirmed hits with IC50 in the low 11 

micromolar to submicromolar range for NKCC1 were used as the reference set for the virtual 12 

screening of the Roche 1.2-million-compound library. Compounds were sorted by biological 13 

similarity (i.e. e-value) to the reference set and the top 44 compounds were tested for their NKCC1 14 

activity in the profiling cellular assay. This resulted in the identification of three molecules with an 15 

IC50 below 30 µM (Fig. 3). Not only was there a significant improvement in the hit rate by using 16 

BIOSEA compared to traditional approaches based on 2D or 3D chemical information
28

, but, in 17 

addition, two of these molecules provided novel chemotypes (Fig. 3) useful for further optimization 18 

efforts. The remaining hit had a very similar chemotype to the reference compounds, which served as 19 

a control result given that BIOSEA operates independently from chemical structure.  20 

BIOSEA can identify new targets for old compounds 21 

Using BIOSEA, we investigated the polypharmacology of known drugs and evaluated the method’s 22 

potential to identify novel targets following the procedure described in Fig. 1b. 23 
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Our efforts were focused on 711 FDA-approved, withdrawn or experimental drugs. BIOSEA was 1 

used to assess their possible associations with public domain targets from the ChEMBL database
29

. 2 

Each molecule was assigned a maximum of 10 predicted targets above a minimum threshold of e-3 

value, building a pool of 1,124 predictions, out of which 407 could be either experimentally validated 4 

or found in the literature. None of the reported target-compound associations were part of the training 5 

set and none of the attributed targets were part of the HTS fingerprint. Noteworthy, we predicted and 6 

experimentally confirmed 5 novel and unreported compound-target associations for drugs: pimozide, 7 

fluspirilene, reserpine, and nimodipine (Table 2). These examples show how this technology can 8 

provide: (i) deeper insights into the compound’s pharmacological profile responsible for its MoA, (ii) 9 

a rationale for previously identified side effects and (iii) opportunities for drug repurposing. (i) 10 

Polypharmacology of pimozide and fluspirilene: Pimozide and fluspirilene (Table 2) are 11 

antipsychotic drugs belonging to the diphenylbutylpiperidines (DPBPs) class, used conventionally for 12 

the treatment of schizophrenia and anxiety disorders. The established MoA of DPBPs is attributed to 13 

their potent blockade of the dopamine D2 receptors. Using BIOSEA, we correctly predicted activities 14 

against 7 other targets reported in the literature of which the serotonin transporter (SERT) and 15 

dopamine D3 receptor are common to both compounds (Supplementary Data Set 1). Previously 16 

unreported norepinephrine transporter (NET) activity for both pimozide and fluspirilene (IC50 = 110 17 

nM, 480 nM respectively) was predicted and in vitro confirmed. NET is a well-known target for 18 

multiple mood and behavioral disorders such as depression, anxiety or attention deficit hyperactivity. 19 

Given a pimozide plasma concentration of 500 nM (recorded in vivo studies
30

), our reported 20 

submicromolar DPBPs activity in the NET is clinically relevant and contributes to the unique 21 

pharmacological profile of DPBPs in their treatment of intricate imbalances of the central nervous 22 

system. In particular, NET modulation may confer DPBPs with stimulant properties that are 23 

advantageous in the treatment of the negative symptoms of schizophrenia (e.g. emotional withdrawal). 24 

Additionally, BIOSEA was able to broadly capture the pharmacological profile of other 25 
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antipsychotics (i.e. prochlorperazine and perphenazine), for which it could detect four or more 1 

annotations (Supplementary Data Set 1). The efficacy of those drugs in the treatment of schizophrenia 2 

and other mental illnesses has been previously linked to their ability to modulate multiple targets
31

 3 

predominantly receptors subtypes and transporters of neurotransmitters (adrenaline, dopamine and 4 

serotonin).  (ii) Target identification provides a rationale for side effects: In addition to NET, 5 

fluspirilene activity on the adrenergic α2B receptor (ADRA2B, IC50 = 95 nM), a target related to 6 

vasoconstriction and blood pressure regulation
32

 was predicted and experimentally confirmed. 7 

Reducing blood pressure in patients with hypertension is documented
33

 as a side effect of fluspirilene, 8 

to which this ADRA2B activity could contribute. (iii) Compound repurposing opportunity: we 9 

predicted and experimentally confirmed the glucocorticoid receptor (GR) activity (IC50 = 640 nM) for 10 

the neuroprotective agent nimodipine. Established as a selective L-type voltage-dependent calcium 11 

channel antagonist, nimodipine is often used in the treatment of subarachnoid hemorrhage
34

. Animal 12 

studies have shown that nimodipine is able to improve cognitive performance
35

, block memory 13 

destabilization and prevent memory reconsolidation
36

. On the other hand, it is well established that 14 

glucocorticoids influence cognitive performance and have impairing effects on memory function and 15 

consolidation
37

. Post-traumatic stress disorder (PTSD) is reported to be associated with 16 

increased glucocorticoid receptor sensitivity
38

. Our finding, therefore, suggests opportunities in using 17 

nimodipine in connection with psychological disorders associated with GR such as PTSD, although 18 

this possibility should be studied in more detail. 19 

Taken together, 31% of validated target-compound relationships could be either positively confirmed, 20 

or putatively confirmed when a positive result was found in the literature for an orthologue target or 21 

convincing evidence of the relationship has been reported but is not quantified (Fig. 4a). Among 22 

compounds with validated predictions, 70 out of 193 were successfully assigned to at least one 23 

confirmed or putative target using BIOSEA. The same target identification benchmarking protocol 24 

was repeated using an in-house version of SEA
12

, which is based on chemical fingerprints 25 
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(Supplementary Information). Only 4% of BIOSEA’s total predictions were shared with SEA, which 1 

hints at a high degree of complementarity between both methodologies. However, while 2 

approximately 80% of the positive results from SEA can be explained by the high structural similarity 3 

between the query compounds and the training set, only 32% of BIOSEA’s confirmed predictions 4 

could have been inferred in this way (Fig. 4c). The remaining predictions are not structurally obvious 5 

and suggest that HTSFP encode information that goes beyond a pure pharmacophore description and 6 

captures more general biological phenomena (see examples Fig. 4d).  7 

Positive predictions from BIOSEA span both functional assays (63%) and binding assays (37%) (Fig. 8 

4b). These percentages are in agreement with the biases in our database regarding the ratio of binding 9 

vs. functional annotations, indicating that the method performs equally well independently to the type 10 

of readout by which these predictions are confirmed. This result is consistent with previous 11 

observations making use of HTSFP which contain both cell-based and biochemical HTS assays
16,22

. 12 

An interesting example among the literature-confirmed predictions is the inhibitory activity of 13 

amoxicillin (IC50 = 3.47 µM) on carbonic anhydrase XII
39

. This prediction illustrates the ability of 14 

BIOSEA to capture bioisosterism, since it was mostly based in the biologically similarity to 15 

compounds in the training set such as 4-sulfamoylbenzoic acid, sulpiride or indapamide, all of them 16 

sulfonamides. Though structurally unrelated to amoxicillin, all these compounds have in common a 17 

chemical group that is able to interact with the zinc atom in the enzyme’s active site (carboxylate or 18 

sulfonamide moieties respectively).  19 

DISCUSSION 20 

Our results demonstrate that BIOSEA is able to classify compounds according to their biological 21 

signature from HTS data. Applied to phenotypic screening, this approach can identify compounds that 22 

are likely to produce a desired phenotype as captured in the biological signature of several reference 23 

compounds. We show that this procedure is possible even in the absence of information on the 24 
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particular target(s) responsible for the compounds’ mode of action. The results for tubulin and 1 

NKCC1 show that the applicability domain of the method goes beyond the target, target families and 2 

phenotypes that have been historically screened and represented in the HTSFP. HTSFP are unique in 3 

the fact that they capture information on compound inactivity as well as compound activity, both 4 

equally relevant to the mutual information between fingerprints. While the desired phenotype, cell 5 

cycle arrest in this case, can be triggered by multiple mechanisms of action, interestingly, our hits 6 

bind to the same target and follow the mechanism of action of their reference compounds. This 7 

suggests that HTSFP are able to encode target-specific information (i.e. tubulin binding). The 8 

opportunity of using this approach for finding compounds that can reverse a particular disease 9 

phenotype remains an exciting avenue for further exploration. 10 

In addition, the NKCC1 results suggest that the success of the screening effort can be evaluated not 11 

only in terms of hit enrichment but also in the novelty and variety of active chemical structures. For 12 

this reason, BIOSEA becomes an effective tool for building screening libraries for drug discovery 13 

programs, even if the target is novel and challenging, as is the case for NKCC1.  14 

In target identification, our method can be used to discriminate among different drug targets by the 15 

similarity in the biological signatures of their corresponding ligands. Using our protocol we have 16 

explored the pharmacological profile of known drugs. Despite the fact that most of them have been 17 

optimized for selectivity, BIOSEA was able to accurately predict drug polypharmacology in many G-18 

protein coupled receptors and a wide variety of enzyme classes, consistent with the annotation biases 19 

in public
40

 and industrial databases
41

 towards specific target families. In particular, we demonstrate 20 

the applicability of our method for drug repurposing and rationalization of drug side effects. 21 

Moreover, the majority of the confirmed predictions cannot be rooted in obvious chemical similarity 22 

to reference compounds. This shows that BIOSEA provides complementary information to traditional 23 

computational methodologies.  24 
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Despite its advantages, the approach has some inherent limitations, such as the availability of the HTS 1 

signature for a particular compound and the existence of suitable reference compounds for a given 2 

target or phenotype of interest. Additionally, for target identification, BIOSEA restricts its findings to 3 

the target domain that is known and has several annotated ligands. Nonetheless, with its performance 4 

validated in these in-house drug discovery and target identification scenarios, BIOSEA, offers a 5 

complementary and alternative source for hypothesis generation by capitalizing on already existing 6 

information resources. 7 

Trained solely on public data, our innovative approach is within the reach of both academic and 8 

industrial research groups. We invite the scientific community at large to contribute and explore this 9 

technology by providing the computer code and the HTSFP public data set for download 10 

(https://github.com/accsc/BIOSEA), in the hope that it will foster present and future drug discovery 11 

efforts.  12 

Author contributions: A.C.C. and P.P. designed the BIOSEA method and planned the target 13 

identification experiments. D.L, M. R., I.B. and F.D. designed and performed the cell cycle arrest 14 

phenotypic screening, the tubulin polymerization assay and the tubulin binding competition 15 

experiments. B.F. was the NKCC1 project leader. A.C., P.P, B.F. designed the NKCC1 hit expansion 16 

campaign. 17 

 18 

METHODS 19 

Biological fingerprints from HTS: HTS fingerprints (HTSFP) were built using screening data from 20 

PubChem, consisting of 95 primary screening assays over a library of 365,231 molecules in a similar 21 

way to what was described in earlier works
21

 (Supplementary Information). HTS results were 22 

normalized using the average response and the standard deviation to transform all the readouts to Z-23 

Score values. HTSFP-Roche were built in a similar fashion using Roche proprietary assay data. 24 
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Biosimilarity metric. A derived version of the mutual information (I) was introduced to estimate the 1 

similarity between two biological fingerprints ZNMI: 2 

 
 

   YHXH

nYXI
YX

)(;
=;ZNMI


 3 

where X and Y are the HTSFP reduced to the assays in common for compounds x and y; I(X;Y) is the 4 

estimated mutual information using the Kraskov entropy estimator from k-nearest neighbor 5 

distances
42

; H(X) and H(Y) are the Shannon entropies
43

; and σ(n) was introduced to correct for the 6 

dependency in fingerprint-size n, parametrized based on a background distribution of random 7 

fingerprint comparisons (a more detailed procedure can be found in Supplementary Information).  An 8 

optimal value of k = 10 was selected for the calculation of I(X;Y) based on previous parameter 9 

analysis (data not shown) and as trade-off between minimal fingerprint length required and a reliable 10 

ZNMI calculation. 11 

BIOSEA. A statistical method to classify compounds into target classes using biological signatures 12 

from HTS was developed, inspired by the BLAST
23

 and SEA
11

 algorithms. BIOSEA provides an e-13 

value that represents the likelihood of a compound to be related by chance to a given compounds set, 14 

by aggregating the biological similarities (ZNMI) between the compound and the members of the set, 15 

and comparing the aggregated value to a random distribution of sums. To build the background 16 

distribution, random lists of HTSFP were generated with sizes in the range s = 1 to s = 100. The 17 

aggregated biological similarity between every two pairs of lists of compounds with sizes 1 and m 18 

respectively was calculated. The average and standard deviation of the random sums of ZNMI per 19 

number of comparisons (l x m) were calculated and fitted to two power-law equations (Supplementary 20 

Table 2). Aggregated biological similarities were transformed to Z-Scores (ZAG) and plotted in a 21 

histogram that conformed to an Extreme Value Distribution (EVD), whose location, scale and shape 22 

parameters were estimated (Supplementary Table 3). This distribution was used as a background for 23 
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probability calculation and its conversion to an expectation value (e-value) that evaluates the 1 

significance of the relationships between given sets of fingerprints. The choice of ZNMI threshold 2 

between fingerprints selects which compounds are relevant for the aggregated biological similarity 3 

and has an effect on the ZAG distribution. ZNMI values of 0.5 and 4.5 in increments of 0.1 were tested 4 

and minimal (ZNMI = 2.6) and optimal values (ZNMI = 4.0) were obtained. More detailed information 5 

can be found on Supplementary Information.   6 

Individual assay contributions to the aggregated similarity. For each compound with tubulin 7 

depolymerizing activity, we carried out a leave-one-out procedure in which the aggregated biological 8 

similarity of an individual compound to the reference compounds (ZAG) was calculated after removing 9 

one assay at a time. The difference in ZAG between using the complete fingerprint and the version with 10 

a removed component was computed and used to rank the assays. The first 10 assays with the highest 11 

similarity difference were selected for analysis. 12 

Target identification database. For the training of BIOSEA, a database of 265 targets and their 13 

known ligands was built using dose-response annotations (IC50, EC50, AC50, Ki, Kd, Potency)  from 14 

ChEMBLdb release 20
29

. Molecules with at least one measurement below 5 µM and none higher than 15 

15 µM were considered active. Only targets with at least 10 annotated ligands were included. 16 

Frequent binders (actives in more than 5 assays) were removed from the datasets. A total of 21,157 17 

annotations for 19,808 molecules were collected as the training set for target identification 18 

(Supplementary Data Set 2). 19 

Predictions for target identification. 711 known drugs were extracted from DrugBank
44

 and 20 

ChEMBLdb release 20. Predictions were carried out by BIOSEA trained on the target identification 21 

database. The compound biosimilarity threshold was defined as ZNMI>2.6. The threshold for 22 

compound-target predictions was e-value > 2.72x10
-5

 (equivalent to ZAG > 8.0) resulting in a total 23 

pool of 1,124 predictions. The 164 predictions for which the target is represented in the HTSFP were 24 
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eliminated from the statistics. A total of 407 remaining predictions were literature or experimentally 1 

verified. ChEMBLdb release 20, DrugBank and Thomsons Reuters Integrity databases were scanned 2 

for activity confirmation. PubMed and EMBASE databases were inspected with the text mining 3 

Linguamatics I2E tool for additional evidence. Predictions were confirmed as active by a retrieved 4 

dose-response value below a threshold of 20 µM, or they were supported by literature annotations 5 

without a numeric readout. A subset of 169 unreported testable hypotheses (accessible compounds 6 

and available assays, see Supplementary Data Set 1) was extracted for experimental evaluation. 7 

Analysis of the 2D compound similarity was performed using ECFP4 fingerprints generated by 8 

Pipeline Pilot 9.2 with a Tanimoto coefficient threshold of 0.8. 3D compound similarity was 9 

calculated using a ROCS-clone
27,45

 based on Gaussian shape similarity and a Tanimoto combo 10 

threshold of 1.5. 11 

NKCC1 assay. HEK293 cells conditionally expressing NKCC1 were grown under doxycycline 12 

selection. Cell cultures were maintained at 37 °C in the presence of 5% CO2 and 85% of humidity. A 13 

volume of 50 μl containing 25,000 cells was plated on poly-D-lysine dishes and induced for 24h. 14 

Cells were washed and incubated at 37°C in the presence of 5% CO2 for 50 min with a hypotonic 15 

buffer. The supernatant from the cells was removed to a final 21 μl volume and 25 μl of compound 16 

solution diluted in rubidium containing buffer was added. After 10 min incubation, cells were washed 17 

with a hypotonic buffer and 21 μl of 2% tergitol NP-40 was added per well. Plates were sealed and 18 

stored overnight at room temperature. Finally, 30 μl of supernatant for each well were diluted in 170 19 

μl of water and the rubidium content was measured using an atomic absorption spectrophotometer at 20 

780 nm (Aurora Biomed, ICR 12000). Bumetanide was used as the reference compound for 21 

calculation of percentage of inhibition for each compound. 22 

Morphology and cytotoxicity cellular assay. Cytotoxicity evaluation was performed on A549 23 

human lung carcinoma cells (ATCC), employing a modified MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-24 

diphenyltetrazolium bromide)  assay
46

. Indirect immunofluorescence was performed in A549 cells, as 25 
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previously described
47

. An absorbance spectrum in methanol was made for each compound in a 1 

spectrophotometer Evolution 201 (Thermo Scientific) in order to identify the absorbance maxima.  2 

Tubulin polymerization assay. The polymerization of 25 M tubulin in glycerol-assembling buffer, 3 

GAB (3.4 M glycerol, 10 mM sodium phosphate, 1 mM EGTA, 1 mM GTP, pH 6.5), in the presence 4 

of 27.5 M of the ligand studied (colchicine and compounds CT1, CT2, CT3, CT4 and CT5) or 2.75 l 5 

of DMSO (vehicle) was monitored along time by turbidity using a Varioskan Flash multimode 6 

microplate reader (Thermo Scientific) at a wavelength of 350 nm and 37 ºC.  7 

Tubulin binding assays. The effect of compounds CT1 and CT4 in the binding of 2-methoxy-5-8 

(2,3,4-trimethoxyphenyl)- 2,4,6-cycloheptatrien-1-one MTC
48

 was studied as previously 9 

described
49,50

. The effect of compound CT3 in the binding of (R)-(+)-ethyl 5-amino 2-methyl-1,2-10 

dihydro-3-phenylpyrido[3,4-b]pyrazin-7-yl carbamate (R-PT), a well characterized reversible 11 

colchicine-binding were performed as described
51

. The binding of CT5 at the eribulin site was studied 12 

by monitoring the influence of eribulin in the kinetics of binding of the compound to tubulin. The 13 

compound undergoes a large increase in fluorescence at 465 nm (excitation 357 nm) upon incubation 14 

with tubulin. Their kinetics of binding of the compound to 10 M tubulin in NaPi buffer (10 mM 15 

Phosphate Buffer pH 7.0, 0.1 mM GTP) was measured in a Fluoromax-2 fluorimeter (Horiba) in the 16 

presence or absence of 50 M of vincristine, podophyllotoxin, maytansine or eribulin. 17 

Molecular candidates for phenotypic screening. 6 different tubulin binders (i.e. colchicine, 18 

paclitaxel, vinblastine, vincristine, vinpocetine and dolastatin 12) were used as reference compounds 19 

to search in the HTSFP PubChem collection with a ZNMI threshold of 4.0. The resulting 1,559 20 

molecules were structurally clustered using the ECFP4 fingerprints generated by Pipeline Pilot 9.2 21 

and sorted according to ZAG. Known tubulin inhibitors and their chemically similar cluster members 22 

were removed and first 20 compounds were selected for confirmation. 23 
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Target identification assays. A detailed list of the assay conditions, detection methods and reference 1 

compounds for the different biochemical and cell-based assay employed in this work can be found in 2 

the Supplementary Table 4.  3 

Code availability. Computer code for the BIOSEA implementation and HTSFP public data set are 4 

available for download from the authors’ repository at https://github.com/accsc/BIOSEA.  5 
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FIGURES: 1 

Figure 1. (a) For virtual screening, BIOSEA calculates the aggregated biological similarity (ZAG) of 2 

each compound in a library against a set of biological signatures from HTS (HTSFP) corresponding to 3 

compounds that are active in a cellular assay. The query library is sorted by ZAG and the top ranking 4 

compounds are selected for a confirmatory screen. (b) For target identification, BIOSEA calculates 5 

the ZAG of a query compound against a list of HTSFP sets T1…TN. Each fingerprint set represents the 6 

compounds that are active in a given target. Target sets are ranked according to ZAG and the top 10 7 

targets are defined as target predictions for the query compound. 8 
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Figure 2. (a) Upon treatment with the compounds, the A549 cells showed type IV aberrant mitotic 1 

spindles
52

 consisting of a ball of condensed chromosomes and no microtubules. Upper-left: Control; 2 

upper-right: colchicine effects at 5 µM; lower-left: CT3 effects at 5 µM; and lower-right: CT5 effects 3 

at 25 µM (b)Time-course tubulin polymerization. (c) Displacement curves for the MTC probe in the 4 

colchicine binding pocket for compounds CT1, CT4 and podophyllotoxin. (d) Structural model of 5 

colchicine-site binders and summary of tubulin binding pockets for the active compounds (Colchicine 6 

in green, CT3 in yellow and CT4 in blue). 7 
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Figure 3. (Top) Phenotypic screening workflow for NKCC1. The primary screen of a 1.2 million 1 

compounds provided starting points for hit expansion within a 2-million-compound virtual library. Hit 2 

expansion was carried out by three complementary approaches: chemical, pharmacophore and 3 

biological similarity which produced in total ~500 compounds to be tested in a confirmatory dose-4 

response assay, resulting in 4 leads with IC50<30 µM. (Bottom) Chemical similarity (Tanimoto 5 

distance of ECFP4 fingerprints) vs. biological similarity (represented by ). The regions relevant for 6 

chemical and biological expansion are highlighted in red and green respectively. Green and orange 7 

dots represent NKCC1 tested biological and pharmacophore similarity predictions. Right: Confirmed 8 

hits from biological hit expansion, their dose-response activities and their biologically closest 9 

reference compound. 10 
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Figure 4. (a) Performance of BIOSEA in terms of verified predictions. (b) Categorization of positive 1 

results by types of assay. Assays were labeled as either functional (e.g. assay description provides a 2 

functional end-point for the compound’s effect), or binding (e.g. evidence for ligand binding); and 3 

biochemical or cell-based if the assay included only the target in an in vitro setup, or the whole cell in 4 

a more physiologic environment, respectively. (c) Biological similarity goes beyond 2D and 3D 5 

similarity. (d) Examples of similarity between predicted and reference molecules. From left to right: 6 

2D similarity, 3D similarity and chemically unrelated (e) Previously unreported results of the target 7 

identification protocol for pimozide, fluspirilene, reserpine, and nimodipine. 8 
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Graphical abstract. 1 
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TABLES 1 

Table 1: Phenotypic screening reference compounds (colchicine, vinblastine and paclitaxel) and cell 2 

arrest hits (CT1-CT5). 3 

Compound (PubChem CID) IC50  nM Binding site Biological 

similarity 

reference/s 

Colchicine 55.9 Colchicine - 

Vinblastine 4.2 Vinca alkaloid - 

Paclitaxel 4.3 Taxanes - 

CT1 (988603) 

 

577.2 Colchicine Vincristine 

CT2 (6515017) 

 

2,487.7 Unknown 
Vinblastine 

Vincristine 

CT3 (5342152) 

 

203.3 Colchicine 
Colchicine 

Vinblastine 

CT4 (3244178) 

 

621.1 Colchicine Vinblastine 

CT5 (1211576) 

 

273.0 Eribulin 
Colchicine 

Vinblastine 

 4 

 5 

 6 
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Table 2: Novel targets for old drugs. Experimental conformation of the target identification 1 

predictions for pimozide, fluspirilene, reserpine, and nimodipine. Chemical structures, novel targets 2 

and experimental activities are included. 3 

Molecule Target 
IC50 (nM) e-value 

Fluspirilene

 

α2B adrenergic receptor 
95  2.36x10-6 

Norepinephrine 

transporter 480  2.85x10-12 

Nimodipine  

Glucocorticoid receptor 
110  1.80x10-5 

Reserpine

 

α1D adrenergic receptor 
20,000  8.40x10-7 

Pimozide  

Norepinephrine 

transporter 640  3.88x10-6 

 4 

 5 

 6 

 7 
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