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Summary 
 
Natural genetic circuits enable cells to make sophisticated digital decisions. 
Building equally complex synthetic circuits in eukaryotes remains difficult, 
however, because commonly used genetic components leak transcriptionally, do 
not allow arbitrary interconnections, or do not have digital responses. Here, we 
designed a new dCas9-Mxi1 based NOR gate architecture in S. cerevisiae that 
allows arbitrary connectivity and large genetic circuits. Because we used the 
strong chromatin remodeler Mxi1, our system showed very little leak and exhibits 
a highly digital response. In particular, we built a combinatorial library of NOR 
gates that each directly convert guide RNA (gRNA) input signals into gRNA 
output signals, enabling NOR gates to be “wired” together. We constructed and 
characterized logic circuits with up to seven independent gRNAs, including 
repression cascades with up to seven layers. Modeling predicted that the NOR 
gates have Hill Coefficients of approximately 1.71±0.09, explaining the minimal 
signal degradation we observed in these deeply layered circuits. Our approach 
enables the construction of the largest, eukaryotic gene circuits to date and will 
form the basis for large, synthetic, decision making systems in living cells. 
 
Introduction 
 
Living cells make decisions based on information processing genetic programs. 
Many of these programs execute digital functions1–3. The capability to build 
synthetic digital systems in living cells could allow engineers to build novel 
decision making regulatory networks for use in a variety of applications4, ranging 
from gene therapies that modify cell state based on sensed information, to 
entirely new developmental programs for crop species. In electronics a 
compositional approach has allowed the construction of digital circuits of great 
complexity to be quickly designed and implemented. Here, we have developed a 
framework that allows robust, digital circuits to be routinely constructed in 
eukaryotic cells.  
 
Genetic components that implement simple logical operations, which in principle 
could be interconnected to form complex logic functions, have been 
demonstrated 5–12. DNA binding domains (DBDs) such as zinc fingers and TALEs 
have been used to construct libraries of transcription factors (TFs) in eukaryotes 
10,13,14. However, scaling with DBDs has been difficult15,16. Recently, 
programmable and orthogonal CRISPR/dCas9 TFs11,12,17–19 have been employed 
to build up to five component circuits using CRISPR interference (CRISPRi) in 
prokaryotes9. Although CRISPRi allows programmable interconnections, 
CRISPRi is non-cooperative, leading to leak and signal degradation when 
layered9. Here, we address these issues, advancing the art of engineering living 
digital circuits by focusing on three main engineering goals. 
 
First, we built a universal, single gene logic gate, in our case a NOR gate. It is 
well known that NOR gates can be composed to implement any logic function. 
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Crucially, the input and output signals of our gates have the same molecular 
types while still being programmable so that, as in electronics, gates can be 
wired together. To achieve this, we made use of the CRISPR/dCas9 system: The 
signals in our framework are guide RNAs (gRNAs) whose sequences specifically 
match up to programmable target sequences on our NOR gate promoters. The 
NOR gate outputs are then gRNAs that match the target sequences on other 
NOR gate promoters. We avoided using RNA Pol III promoters to express 
gRNAs11,17,18 because they have low expression levels relative to Pol II 
promoters and are more difficult to engineer20,21. By programming the NOR gate 
input target sequences and output gRNA sequences in a set of gates, we were 
able to construct a variety of circuit topologies.  
 
Second, we required that the digital “OFF” state for our gates corresponded 
essentially no expression of the output gRNA. To achieve this, we used the 
chromatin remodeling repression domain Mxi1 to take advantage of the 
eukaryotic cell’s ability to repress gene expression, by fusing this domain to 
dCas922. The Mxi1 domain is thought to recruit histone deacetylase, and with it 
we observed strong transcriptional repression in our circuits23. Our results 
suggest that such repression provides a significantly improved “OFF” signal 
compared to CRISPR interference (CRISPRi), in which dCas9 is likely interfering 
with transcriptional initiation, but is not remodeling chromatin. The strong “OFF” 
behavior we observe with our NOR gates is a key factor that allows them to be 
composed into larger circuits by minimizing accumulation of transcriptional leak 
with every added layer. 
 
Third, we required as digital a response as possible, which in this case means 
that as the concentration of the input gRNAs to a NOR gate go from low to high, 
the expression of the output gRNAs switches from high to low sharply, as 
opposed to gradually. Such a digital response is required so that NOR gates can 
be composed without the digital behavior of the resulting circuit degrading as the 
number of layers increases. Here, we employ the Hill coefficient, n, as a 
characterization of how digital our circuits are. From a mathematical model of our 
gates fit to both steady state and time response data, we show that that n≤1 
results in degradation of the digital response with added layers of NOR gates. 
This behavior is what one would expect if we had used CRISPRi. On the other 
hand, when n>1 and even more so when n approaches 2, there exist parameters 
that allow our NOR gates to be composed without significant degradation. In 
particular, we estimate that n=1.71±0.09 (s.d.) with our NOR gates, and more 
importantly, show experimentally that we can build a variety of input logic circuits 
composed of up to five NOR gates and seven internal gRNA wires, as well as 
cascades of gates with up to seven layers that still have digital responses. The 
high Hill coefficient or cooperativity of our NOR gates is likely due to the complex 
recruitment of histone deacetylase by Mxi1 and interactions with other proteins 
such as SIN324 during repression. Thus, we did not specifically engineer the Hill 
coefficient in our system. Rather, we inherited it from our informed yet 
nevertheless fortuitous choice of the Mxi1 repression domain.  
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In summary, we developed a framework in which single-gene NOR gates can be 
interconnected into arbitrary topologies that implement robust digital circuits in 
eukaryotic cells. Our approach allowed for the construction of the largest, 
eukaryotic gene circuits ever demonstrated. Because the technology is 
essentially generic and easy to rewire, it can in principle be used to implement 
arbitrary internal logic for a variety of synthetic cellular decision making systems, 
such as those being explored for diagnostics, therapeutics25, and development. 
  
NOR Gate Architecture 
 
The gate NORi,j,k, with input signals ri and rj and output rk, consists of a gRNA-
responsive Pol II promoter (pGRRi,j) input stage, driving an output stage, 
ribozyme flanked gRNA (RGRk) (Fig. 1a). According to NOR logic, rk is high only 
when both ri and rj are low. A signal, ri, is defined as a gRNA complexed with a 
dCas9-Mix1 fusion protein, that confers strong transcriptional repression when 
bound to DNA17. The gRNA signals are distinguished by their unique 5’ guide 
sequence. A 20-component library of signals defining r1- r20 was used in this work 
(Extended Data   4). The pGRRi,j promoter contains two, 20 base-pair target sites 
that match ri and rj respectively. Since we designed twenty signals, there are 203 

= 8,000 total NOR gates in the set. A NORi,j,k functions as a NOTj,k if the pGRRi,j  
contains two identical target sites, if the pGRRi,j contains only one target site from 
the 20 component library (pGRRi,null), or if rj is simply not used in the circuit. A 
target sequence of “null” refers to a pGRR that contains a target sequence that 
does not match any gRNA used in the containing circuit.	
 
Input Stage Promoter Design 
 
The pGRRi,j promoter is tightly repressed when gRNA:dCas9-Mxi1 is bound to 
one or both of its two twenty base pair target sites. The core region of the 
pGRRi,j, the minimal pCYC1 promoter was chosen based on its successful use 
with dCas9 in the past18. Because the promoter has relatively low expression 
levels, and we wanted its output to be ON when not repressed, an upstream 
activating sequence (UAS), from the strong pGPD promoter26 was added, 
forming the base pGRR promoter. The UAS increased the unrepressed 
expression level of the pGRR output approximately three fold while maintaining 
the same OFF state expression level in the presence of ri and rj, further 
separating the digital ON and digital OFF levels (Extended Data Fig. 5b). A 
library of 11 pGRRi,j promoters, with i and j ranging from one to twenty, showed 
limited expression variability when driving GFP, with an ~18% standard deviation 
from the mean (Extended Data Fig. 5a). Sixteen of the twenty pGRRi,null:GFP 
constructs (i ranging from 1-20) were repressed to or near the level of S. 
cerevisiae autofluorescence in the presence of the corresponding signal ri (Fig. 
2b, Extended Data Fig. 3).	
 
Output Stage RNA Design 
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Two different RNA pol II expression methods were used in this work (Extended 
Data Fig. 1). The first was an RGR design utilizing a 5’ minimal hammerhead 
ribozyme (mHH) and a 3’ Hepatitis delta virus ribozyme (HDV), flanking the 
gRNA27. The second was an “insulated” RGR (iRGR) with the mHH replaced by 
an avocado sunblotch viroid (ASBV) ribozyme. Both designs are intended to 
post-transcriptionally remove nuclear export signals, the 5’ cap and 3’ poly-A 
tail28,29. It has been shown that RNA device folding can be insulated from 
surrounding sequence context through computational sequence selection30,31. 
Both RGR architectures were computationally predicted to confer proper 5’ 
ribozyme folding for all 20 guide sequences. We observed similar levels of 
dCas9-Mxi1 mediated repression with gRNAs expressed from both iRGR and 
RGR constructs (Extended Data Fig. 2). Interestingly, RGR transcripts lacking a 
5’ ribozyme also showed dCas9-Mxi1 mediated repression. These results are 
consistent with previous studies that indicate a majority of 5’ extended gRNA 
target sequences are processed to 20 nucleotides32. No significant crosstalk was 
observed when all r1-10 (RGR design) and r11-20 (iRGR design) were paired with 
all pGRR1-20,null:GFP among non cognate pairs (Fig. 2b, Extended Data Fig. 4). 
Sixteen out of twenty total RGRs (RGR1-10 and iRGR11-20) when targeted to their 
cognate pGRR1-20,null:GFP constructs, repressed fluorescence to or near the level 
of autofluorescence for S. cerevisiae (Extended Data Fig. 3).  
 
Logic Circuits 
 
Six two-input, one-output digital logic circuits were built by integrating up to five 
NOR gate cassettes into various selectable loci in the yeast genome (Fig. 3a-f). 
The output of each circuit was made observable by having the last NOR gate 
drive the expression of GFP. The circuits were constructed from the 16 guide 
sequences of the 20-component library that exhibited the strongest repression 
(Extended Data Fig. 3). The truth table for each gate was experimentally 
obtained by constructing four separate strains, one for each pair of possible input 
values, in which the corresponding gRNA input signals were expressed from 
constitutive promoters (Extended Data Table 2). To demonstrate the modularity 
and scalability of the NORi,j,k gates, the complex logic functions were built by 
extending simpler functions. For example, the AND circuit was built by wiring an 
inverter to the NOR gate driving GFP of the OR circuit. Although we observed 
fluorescence intensity differences in the digital ON and OFF states in various 
circuits, a single threshold value of 5,000 fluorescence units correctly 
distinguished the ON and OFF outputs for all circuits in a manner consistent with 
the corresponding truth tables. 
 
Cascades 
 
Inverter cascades of depth one through seven were created with NOT gates (Fig. 
4a). The cascade of depth D was made by the addition of a NOT gate to repress 
the input stage of the depth D-1 cascade. Each successive addition of a NOT 
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gate inverter resulted in switching the behavior of the output GFP expression, g. 
As seen previously with the two-input logic circuits, there is considerable 
variability within the ON and OFF states. However, circuits that are supposed to 
exhibit ON or OFF behavior are clearly distinguishable from one another when 
the threshold of 5,000 fluorescence units is applied. As cascade depth increased 
the fluorescence levels of the OFF states for all of the odd depth cascades 
increased. Similarly, except, for the cascade of depth 6, as cascade depth 
increased the fluorescence levels of the ON states for the even depth cascades 
decreased, suggesting a gradual degradation of circuit function as the number of 
layers increased. 
	
To investigate the temporal characteristics of the inverter cascades, we analyzed 
the kinetics of cascades of depth one through four. The β-estradiol inducible 
promoter pGALZ4 was used to activate transcription of the input gRNA and GFP 
expression was periodically measured over the course of about 30 hours, while 
keeping the cells in log growth phase (Fig. 4b). With increasing cascade depth, a 
clear delay in output response was evident, with the cascades reaching half-
maximal expression at 4.08±0.45, 10.78±1.04, 12.01±1.18 and 17.83±1.00 hours 
(ressd) for cascades of depth one through four respectively. The dose response 
curves of the four cascades were also measured after passaging cells over 5 
days (Fig. 4c). Consistent with the steady state cascades, the induction of a 
gRNA targeting the input of the cascade switched the output of the cascade from 
OFF to ON (even depth cascades) or from ON to OFF (odd depth cascades). 
Some signal degradation with successive layers was observed (Fig. 4c), 
suggesting a limit to the possible depth of the cascades.  
  
Mathematical Modeling 
 
A kinetic model was constructed to capture the behavior of our synthetic 
cascades. The model combines successive Hill functions to represent simple 
transcription and repression associated with each gRNA:dCas9-Mxi1 signal. The 
parameters αd and Kd roughly capture expression and repression strengths of the 
promoters driving each gRNA signal, rd. Parameters n and b capture the 
cooperativity of repression and degradation/dilution of gRNA:dCas9-Mxi1 signals 
respectively (Fig. 4d). We assume that the parameter n is representative of the 
mechanism of dCas9-Mxi1 repression so it was held constant across all gates in 
the model. The steady state dose response and kinetic inducible cascade data 
were both fit to the model (Fig. 4b-c). Due to the different growth conditions of the 
steady state and kinetic cascade experiments, two separate model fits were 
generated for each experiment. The cooperativity parameter, n, was determined 
using the steady state dose response data and was fixed for the kinetic data fit. 
The cooperativity n for the gRNA:dCas9-Mxi1 was estimated from the dose 
response model fit to be n= 1.71±0.09 (s.d.). 
 
The fitting results were found to correlate well with the experimental data. As 
predicted, the degradation/dilution term b increased in the kinetic data fit 
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compared to the steady state dose response data (Extended Data Table 1). The 
rise in b represents a rise in dilution rate due to the log-phase growth rate during 
the kinetic cascade experiment compared to cell passaging in the steady state 
dose response experiment.  
 
The temporal responses of the cascades were predicted from simulations using 
randomly sampled parameters within the range of the model fit. Parameter 
values for kinetic simulations were re-sampled from the model fit using the kinetic 
cascade experimental data. Response times were found to rise linearly with 
increasing circuit depth. Linear regression analysis showed each successive 
layer to increase the response time by an average of 197.67±0.45 (s.e.m.) 
minutes (Fig. 5a), consistent with our experimental results. Response delay was 
found to depend primarily on the degradation/dilution rate b of gRNA:dCas9-Mxi1 
(Extended Data Fig. 6), which controls the overall timescale of the dynamics. 
 
To extrapolate the model to predict signal degradation for deeper cascades, 
cascades of 15 layers in depth with increasing values of n were analyzed via 
simulations using randomly sampled parameters within the range of the dose 
response fits. Parameter values for each layer were re-sampled from 144 
different model fits. Dynamic range ρd, was calculated at each layer, d. Here 
dynamic range is defined for a cascade as the log fold-change of the maximal 
response of a cascade in response different levels of input gRNA, 
𝜌! = 𝑙𝑜𝑔 !"#(!!)

!"#(!!)
. A log-linear relationship was found between ρd and d. This 

relationship was used to calculate the signal degradation, δ, representing the 
percent loss dynamic range per each additional layer.  
 
Signal degradation was found to be largely dependent on the cooperativity 
coefficient, n (Fig. 5b). As cooperativity increases, δ, on average, decreases. At 
values of n>~2.5, the median δ trends to zero. In the range of values of n=1.6 to 
n=2.8 the spread of performance of the cascades is significantly larger. In this 
range the performance of the cascade is more sensitive to other parameters in 
the model. Our estimate of cooperativity, n=1.71±0.09 (s.d.), falls within the 
sensitive range, indicating the importance of utilizing well performing NOR gates 
in large circuits built using our architecture. 
 
Discussion 
	
Our CRISPR/dCas9-based architecture represents a framework for constructing 
large, modular, transcriptional circuits. Other TF frameworks have suffered from 
lack of scalability and modularity, and signal degradation when layered. Our 
architecture addresses these issues by leveraging the orthogonality and 
modularity of the CRISPR/dCas9 system. To reduce signal leak and increase 
cooperativity, the strong transcriptional repression domain, Mxi1, was fused to 
dCas9. These basic advances resulted in some of the largest eukaryotic gene 
circuits, and the largest synthetic repression cascade, ever published. 
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While many circuit versions we constructed exhibited the correct truth table 
outcomes and appropriate switching behavior with addition of gRNA, some 
variants did not. We hypothesize that poor gate performance is due to two 
factors: the variance of expression between different pGRRi,j promoters and the 
inconsistency of the degree of repression of the pGRRi,j among different gRNA 
guide sequences (Extended Data Fig. 3, Extended Data Fig. 5). Indeed, the 
functional version of the XOR gate required double the expression of one of the 
inputs to exhibit correct XOR logic (Fig. 3e). Ultimately, the relationship between 
promoter sequence and expression level is an open question that requires further 
investigation33. Variation in repression level for different gRNA guide sequences 
could be due to either guide sequence effects on the flanking ribozyme cleavage 
rates, variations in DNA-RNA binding strength, or different association rates for 
the gRNA:dCas9-Mxi1 complex34,35. Understanding the cause of these 
inconsistencies will allow for design of uniform components requiring fewer circuit 
variants to be screened before a properly functioning version is found.	
 
Signal degradation effects were observed that would likely affect the desired 
function of larger synthetic circuits. Understanding and addressing the cause of 
the degradation is critical for more robust circuit design and construction in the 
future. One parameter of the system that is easily tunable is pGRRi,j promoter 
strength. Our model suggests that strong promoters will increase dynamic range 
of deeply layered circuits (Extended Data Fig. 6). This could be accomplished by 
adding additional UASs upstream of the pGRRi,j, or by reengineering pGRRi,j with 
nucleosome disfavoring sequences21,36.   
 
According to our simulations increasing cooperativity, n, of the gRNA:dCas9-
Mxi1 will decrease the amount of signal degradation, δ (Fig. 5b). A key enabler of 
our system is the chromatin-remodeler Mxi1 that confers strong repression of 
target promoters. Chromatin remodeling TFs can achieve cooperativity through 
competition with nucleosomes26. This likely explains the increased cooperativity, 
n=1.71±0.09 (s.e.), of gRNA:dCas9-Mxi1 as compared to similar systems using 
CRISPRi9. For values of cooperativity in the range n=1.6 to n=2.8 the variance of 
δ is significantly larger than other cooperativity values. The increased variance 
indicates that signal degradation in the predicted cooperativity region is strongly 
correlated with NORi,j,k performance. Low expression of gRNAk and incomplete 
repression of the pGRRi,j could confound circuit performance in the sensitive 
range. Our predicted n falls within the large variance region and could explain 
why some circuit variants using different NORi,j,k, we constructed did not exhibit 
the correct truth tables. Thus, increasing cooperativity could allow for more 
robust circuit construction. Cooperativity could be increased in our architecture 
by engineering multi-domain protein interactions with dCas9, or via competition 
with decoy gRNA binding sites37. 	
 
The propagation time from input to output for deep circuits is an important 
consideration for understanding their applications. In electronics, for example, the 
propagation time determines the rate at which circuits can be “clocked”. Our 
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model suggests that the propagation is strongly negatively correlated with the 
degradation/dilution rate b, of the gRNA:dCas9-Mxi1 (Extended Data Fig. 6). For 
a simulated cascade with a depth of ten layers, the time to reach steady state is 
predicted to be on the order of two days (Fig. 5a). To decrease the time delay, 
degradation rate of gRNA:dCas9-Mxi1 could be increased by adding ubiquitin 
tags to dCas938. However, our architecture may simply be more appropriate for 
complex slow-responding behaviors, like those found in cell-differentiation and 
development.  	
 
Biological systems utilize gene circuits to perform an abundant number of 
amazing functions, such as cell differentiation, metabolism and signal 
transduction. The ability to rationally engineer these functions, using synthetic 
digital circuits, will greatly impact many aspects of biotechnology. However, 
building such circuits with current technology is often exceedingly challenging. 
This work demonstrates that large eukaryotic circuits are indeed possible and is 
a step towards unlocking the vast potential of synthetic biology. 
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Figure | 1 Schematic of the NOR gate architecture, library generation, and circuit 
composition. a A NOR gate comprised of an input stage consisting of a Pol II gRNA Responsive 
Promoter (pGRR) with two distinct gRNA target sites. The pGRR promoter is fully repressed by 
the binding of either one or both of its cognate gRNA:dCas9-Mxi1 complexes. The output stage of 
the NOR gate is a gRNA transcript, flanked by self-cleaving ribozymes (RGR). Cleavage sites 
indicated by red arrows. The cleavage of the ribozymes prevents nuclear export of the gRNA, 
indicated by dotted grey arrow. b The process of NOR gate library construction. Our library 
consists of a set of 400 2-intput pGRR promoters and 20 RGR outputs, for a total of 8000 
possible NOR gates. c Genomically integrating NOR gates into S. cerevisiae. d Arbitrary circuits 
are constructed by integrating multiple NOR gates into a single strain. 
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Figure 2 | RGR architecture and orthogonality of gRNA guide sequences. a Schematic of 
NOT gate used to test orthogonality of 20 gRNA and their cognate promoters. A constituitive 
promoter was used to express gRNA for these experiments. b Combinatorial library of gRNA and 
cognate promoters. Orthogonality of the computationally designed gRNA guide sequences was 
tested by crossing the 20 pGRRi,null promoters, each expressing GFP, with the 20 gRNAi, creating 
400 different strains of yeast. Fluorescence values of each strain were measured using flow 
cytometry. Fluorescence values from one biological replicate are displayed in the matrix. The 
heat map matrix shows strong repression with cognate pairs of pGRRj and gRNAi and minimal 
off-target repression. 
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Figure 3 | NOR Gate-based logic circuits. a-f Six different two-input logic circuits constructed 
by interconnecting NOR gates. For each of the four input possibilities (- -, - +, + -, + +), a distinct 
strain was constructed with the corresponding inputs expressed off of constitutive promoters (for 
logical +), or not integrated at all (for logical -). Fluorescence values were collected using flow 
cytometry of cells growing in log phase. Error bars represent the standard deviation of three 
biological replicates measured during a single experiment. 
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Figure 4 | Repression cascades characterization. a Repression cascades of one to seven 
gRNA. Cascades were created with sequential genomic integrations of NOT gates. The final 
output of each cascade is a NOT gate that expresses GFP. Each NOT gate represses the output 
of a subsequent NOT gate. Cascades with an even number of layers express a high level of GFP, 
creating a digital ON output, and odd depth cascades express low levels of GFP, creating a 
digital OFF output. Fluorescence measurements were taken using flow cytometry. Error bars 
represent the standard deviation of three biological replicates. b Temporal dynamics for cascades 
of one to four gRNA. Expression of the input gRNA was induced with Beta Estradiol. A model of 
the cascade, in which each layer is treated as a Hill function, was used to fit the data. The plot 
shows the data from one biological replicate. As the number of layers in the cascade increases, 
signal degradation and increased time to steady state is observed. c The steady state response 
function for the four inducible cascades. Error bars represent the standard deviation of three 
biological replicates measured over three separate experiments. d A representation of the model. 
The model was used to generate the fits for the steady state and kinetic inducible cascade 
experiments. 
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Figure 5 | Model predictions and analysis of repression cascades. a  Simulations of time to 
half-maximal response using the model. Increasingly layered cascades show a positive linear 
relationship between circuit time to half-maximal response and circuit depth, with a slope of 
197.67±0.45 (s.e.m.) mins/layer. The first four data points highlighted in purple are experimental 
data from Fig. 4b. b Signal degradation, δ, in a cascade decreases as cooperativity of dcas9-
Mxi1 increases. Boxplots of δ values were plotted with binned values of the cooperativity 
parameter n. As cooperativity increases, δ, on average decreases. At values of n>~2.5, the 
median δ trends to zero. Between values of n=1.6 to n=2.8, the spread of δ is larger. The bin 
containing the predicted value of dcas9-Mxi1, n=1.71±0.09 (s.d.), is highlighted in purple. 
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Methods 
 
Construction of Yeast Strains. Yeast transformations were carried out using a 
standard lithium acetate protocol1  into MATa W303-1A and MATalpha W303-1B. 
Matings of the MATa and MATalpha, were performed by coculturing both mating 
types and plating the culture onto selective agar media. All strains used in this 
work are detailed in Supplemental Table 2. All Sequences used for plasmid 
construction are available upon request. 
 
RNA design. RGR and iRGR sequences were computationally designed to 
enable the 5’ hammerhead ribozymes to fold into their target, functionally active, 
structures. ViennaRNA (RNAfold 2.1.9) was used to simulate long timescale 
(thermodynamic equilibrium) at an input temperature of 37C. Kinefold 
(kinefold_long_static_bianary 20060404) was used to simulate short timescale 
folding (co-transcriptional folding) with inputs of low and high polymerization rates 
of 25nt/s and 50 nt/s respectively, helix minimum free energy = 6.346 kcal/mol 
and folded without pseudoknots nor entanglements. 12 Kinefold simulations were 
run for each candidate sequence and agglomerated using custom python 
software to generate average folding trace data. 	
 
Ribozyme target structures needed for both viennaRNA and Kinefolds simulation 
evaluation were determined by folding ribozyme sequences (Minimal HH : 5' – 
NNNNNNCTGATGAGTCCGTGAGGACGAAACGAGTAAGCTCGTCNNNNNN - 
3' ASBV1 : 5' –
GGGACGGGCCATCATCTATCCCTGAAGAGACGAAGGCTTCGGCCAAGTCG
AAACGGAAACGTCGGATAGTCGCCCGTCCC -3') using RNAfold and Kinefold 
(melt and anneal of 1 minute), respectively. RGR targeting sequences and iRGR 
insulating sequences were screened in specific 5' promoter contexts (pGAL1min: 
AGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGAAA
AAACTATACGGATTCTAGAACTAGTGGATCTACAAA, pAHD1 : 
CAAGCTATACCAAGCATACAATCAACTATCTCATATACAGGATTCTAGAACTA
GTGGATCTACAAA, pCYC1 : 
ACTATACTTCTATAGACACACAAACACAAATACACACACTAATCTAGATATTG
GATTCTAGAACTAGTGGATCTACAAA) and in the 3' context of the targeting 
sequence and the gRNA handle sequence (gRNA handle : 
GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTT
GAAAAAGTGGCACCGAGTCGGTGCTTTT). 	
 
Randomly generated 20 bp candidate targeting sequences for RGR, of which the 
most 5' 6 bp defined the closing stem of the minimal HH ribozyme, were folded in 
the context of each promoter to confirm that the target structure was present in 
the MFE structure (viennaRNA) and that the target structure was present at 
>90% in the RNA folding trace at both low and high polymerase rates (Kinefold). 
Targeting sequences which enable correct folding in the context of each 
promoter were considered successful. For iRGRs, randomly generated 5' and 3' 
insulating sequences were designed for each of the three promoter types and 
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were screened for function in the same manner. However, to select for the most 
robust insulating sequences each was screened against seventy-five randomly 
generated and ten randomly generated 20 bp guide sequences using viennaRNA 
and Kinefold, respectively. 
 
Cytometry. Fluorescence intensity was measured with a BD Accuri C6 flow 
cytometer equipped with a CSampler plate adapter using excitation wavelengths 
of 488 and 640 nm and an emission detection filter at 533 nm (FL1 channel). A 
total 10,000 events above a 400,000 FSC-H threshold (to exclude debris) were 
recorded for each sample with and core size of 22 mm using the Accuri C6 
CFlow Sampler software. Cytometry data were exported as FCS 3.0 files and 
processed using the flowCore R software package and custom R scripts to 
obtain the mean FL1-A value at each data point. Scripts are available upon 
request. 
 
Data collection for orthogonality matrix. Cytometry readings were taken with 
cultures inoculated into synthetic complete with cells from freshly struck out on 
agar. Colonies were picked from plates and grown for 3 hours at 30º C before 
reads were taken.  
 
Data collection for logic circuits and static cascades. Cytometry 
measurements were taken on cells grown in cultures diluted 1:1000 from 
saturated culture, for 16 hours at 30ºC. 
 
Data collection for inducible cascades. Cells from saturated culture were 
diluted 1:100 into fresh media with a Beta Estradiol (βe) concentration of 100nm. 
Cytometry measurements were taken over a ~30 hour period. During the time 
course, cells were periodically diluted to keep them in log growth phase. 
Experimental data was collected for steady state was measured for four strains, 
each containing four different βe inducible cascades. Each of the four strains was 
induced with eighteen different doses of βe ranging from 0 to 100 µM in a single 
batch of seventy-two cultures. Cells were diluted every eight to fifteen hours to 
prevent culture saturation. Steady-state fluorescence readings were taken after 
five days when the cultures were in log-phase. 
 
Model Description. A system of ODEs was used to model inducible repression 
cascades, with the dynamics of each gRNA modeled as Hill function dependent 
the concentration of another gRNA. The inducible gRNA (rD) was modeled using 
a beta-estradiol inducible promoter driving YFP, with YFP serving as a proxy for 
gRNA expression (data not shown). The equations below describe the model that 
was used in all downstream fitting procedures and analysis. 
 
(1) 𝑟! =

!!!!

!!!!!!!
 

 
(2) 𝑟! =

!!
!!!!!!!!

! − 𝑏𝑟! 
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(3) 𝑑 ∈ 1,… ,𝐷 − 1 
 
(4) 𝑔 = !!

!!!!!!!!
!  

 
Parameters Descriptions: 
𝑑: 𝑑!! layer  
𝐷: cascade length 
𝑔: arbitrary fluorescence (𝐴𝐹𝑈) 
𝑟!: gRNA expression level at 𝑑!! layer (𝐴𝑈) 
𝑎!: expression strength at 𝑑!! layer (𝐴𝑈 •𝑚𝑖𝑛!!) 
𝐾!: repressive strength at 𝑑!! layer (𝐴𝑈!!) 
𝑏: degradation/dilution of gRNA (𝑚𝑖𝑛!!) 
𝑛: co-operativity / Hill coefficient (unitless) 
𝑢: beta-estradiol input (𝜇𝑀) 
𝐾!: repressive strength at 𝑑!! layer (𝜇𝑀!!!) 
𝐴: expression strength of inducible gRNA (𝐴𝑈 • 𝜇𝑀!!!) 
 
Fitting Procedure. Parameters were optimized using differential evolution (DE) 
followed by minimization using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
algorithm3.  
 
For the steady-state experiments, optimal parameter fits for the parameters a0

ss-
a3

ss, k0
ss-k3

ss, bss, uss, and n were generated from three separate experiments. 
For each of the three experiments, 48 parameter fits were generated using 
DE/BFGS and means were calculated. The means from each experiment were 
used to determine the error (σ) for each parameter (Extended Data Table 1).  
 
For the kinetics experiments, 38 parameter fits for a0

kinetics-a3
kinetics, k0

kinetics-
k3

kinetics, bkinetics, ukinetics were generated from a single experiment. Means were 
calculated from this set of 38 (Extended Data Table 1). As there was only data 
for a single kinetics experiment, errors for the kinetic parameter values were 
unable to be calculated. The kinetics and steady-state parameter sets were 
resampled in downstream analyses to generate Monte-Carlo simulations of 
longer repression cascades. 
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Extended Data 
 

                       
 
Extended Data Figure 1 | Schematic of pol II gRNA expression systems. a 
The RGR architecture. All RGR constructs have targeting sequences that were 
computationally predicted to confer proper folding of the minimal hammerhead 
ribozyme in all three promoter sequence contexts used in the work. Cleavage 
sites are indicated by red arrows. b The insulated RGR (iRGR) architecture. The 
iRGR has unique 5' and 3' insulating sequences, designed for three promoter 
sequence contexts, flanking the ASBV ribozyme. In the presence of the 
insulating sequences, proper ASBV folding is predicted for the majority of 
targeting sequences. Cleavage sites are indicated by red arrows. 
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Extended Data Figure 2 | Comparison of pol II gRNA expression 
designs. Seven gRNAs were expressed via three different designs, the RGR, 
the iRGR and an altered RGR design lacking the 5’ ribozyme. Guide 
sequences r2, r3, and r8 were drawn from the gRNAs used in the main body of this 
paper, while guide sequences v1-v4 were randomly generated guide sequences 
not contained within the original 20 component library. Fluorescence levels of 
repressed cognate pGRR promoters were measured via flow cytometry and error 
bars indicate standard deviation from 6 biological replicates, except for r3 RGR, r2 
iRGR and r8 iRGR which represent 5 biological replicates. Data was collected 
across two different experimental runs. For all three transcript types, across all 
seven guide sequences except for v3, we observed comparable gRNA mediated 
repression of pGRR promoters. These data suggest that for many of guide 
sequences, the 5’ ribozyme is not a contributing factor in the behavior of the 
gRNAs in our system. 
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Extended Data Figure 3 | Diagonal of orthogonality matrix repression 
variation. Bar chart representation of the diagonal of the orthogonality matrix 
from figure 2. Sixteen of the twenty guide sequences, when matched with their 
cognate promoter, show GFP repression near or at the level of autofluorescence 
for diploid S. cerevisiae. Autofluorescence, 1718.63 AU, indicated by the black 
dashed line. Four of the guide sequences exhibit significantly worse repression. 
The sixteen sequences that exhibit strong repression also exhibit variation in 
level of repression, indicating different levels of efficacy for each guide sequence. 
Possible causes for variable repression levels are discussed in the discussion. 
Error bars are standard deviation of fluorescence measurements from three 
biological replicates collected during one experimental run.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 1, 2016. ; https://doi.org/10.1101/041871doi: bioRxiv preprint 

https://doi.org/10.1101/041871
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 
Extended Data Figure 4 | Barchart of fluorescence values from 
orthogonality matrix. Flourescence values for all 400 strains in the 
orthogonality matrix. The strains are segmented by the 20 gRNA target 
sequences. Promoter target sequence index are in the same order for each 
subplot. Red arrows indicate a cognate pair of gRNA and pGRR promoter. 
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Extended Data Figure 5 | pGRR promoter variability. a A subset of 11 pGRRi,j 
promoters driving GFP has a mean fluorescence of 29511.78 [AU], a standard 
deviation of 5357.249 [AU] and a range of 17751.67. Error bars represent the 
standard deviation of three biological replicates collected during one 
experimental run. b Addition of the pGPD UAS, to the pCYC1 minimal promoter, 
increases the expression of GFP 3.23 fold. Error bars represent the standard 
deviation of three biological replicates collected during one experimental run. 
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Extended Data Figure 6 | Model Parameter Sensitivity. a 10,000 parameter 
sets were resampled from a uniform distribution over the intervals shown and 
applied to our repression cascade model (see methods). b Partial rank 
correlation coefficient (PRCC) was used to determine the contribution of each 
parameter has on either dynamic range or the time-to-half max. PRCCs were 
calculated using R (R Foundation for Statistical Computing, Vienna, Austria) and 
95% confidence intervals were estimated from bootstrap replicates (10 replicates 
with samples size 10,000). Parameters associated with odd and even layers are 
colored grey and orange respectively. At all layers in the time-to-half maximal 
plot, b very correlated with the output. In the dynamic range plot, n, strongly 
positively correlated at all layers with the output. 
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Extended Data Table 1 | Parameter Fit Values 
 

parameter mean std units description 

ag
ss 1.408E+00 1.115E-02 AU•min-1 expression strength of output promoter (steady state experiment) 

a1
ss 3.929E-01 7.370E-02 AU•min-1 strength of promoter 1 (steady state experiment)  

a2
ss 5.278E-01 2.436E-02 AU•min-1 strength of promoter 2 (steady state experiment)  

a3
ss 6.227E-01 1.436E-01 AU•min-1 strength of promoter 3 (steady state experiment)  

kg
ss 1.041E+00 1.577E-01 AU-n repressibility of output promoter (steady state experiment) 

k1
ss 3.817E-01 1.669E-01 AU-n repressibility of promoter 1 (steady state experiment) 

k2
ss 4.006E-01 1.494E-01 AU-n repressibility of promoter 2 (steady state experiment) 

k3
ss 5.123E-01 1.328E-01 AU-n repressibility of promoter 3 (steady state experiment) 

Ass 2.824E+06 4.291E+05 AU• uM-nu induction strength of inducible promoter (steady state experiment) 

bss 1.192E-01 7.913E-03 min-1 gRNA degradation/dilution (steady state experiment) 

ag
kinetics 1.438E+00 - AU•min-1 expression strength of output promoter (kinetics experiment) 

a1
kinetics 4.265E-01 - AU•min-1 strength of promoter 1 (kinetics experiment) 

a2
kinetics 5.976E-01 - AU•min-1 strength of promoter 2 (kinetics experiment) 

a3
kinetics 5.504E-01 - AU•min-1 strength of promoter 3 (kinetics experiment) 

kg
kinetics 1.206E+00 - AU-n repressibility of output promoter (kinetics experiment) 

k1
kinetics 5.285E-01 - AU-n repressibility of promoter 1 (kinetics experiment) 

k2
kinetics 3.989E-01 - AU-n repressibility of promoter 2 (kinetics experiment) 

k3
kinetics 2.930E-01 - AU-n repressibility of promoter 3 (kinetics experiment) 

Akinetics 2.314E+06 - AU• uM-nu 

induction strength of inducible proomoter (kinetics experiment) 

bkinetics 1.306E-01 - min-1 gRNA degradation/dilution (kinetics experiment) 

nu 1.24E+00 - - co-operativity of inducible promoter activation 

K 
7.318E+06 

- uM-nu 
inverse of dissociation constant 

n 1.735E+00 9.361E-02 - co-operaitivity of dCas9-Mxi1 repression 
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Extended Data Table 2 | pCONST Promoter Table  

Strain pConst 

Orthogonality Matrix 
Strains pADH1:RGRi 

Figure 3 NOR pADH1:RGR-r7,pADH1:RGR-r5 

OR pADH1:RGR-r2,pADH1 

AND pADH1:RGR-r2,pGRR-r5:RGR-r1 

NAND pADH1:RGR-r2,pGRR-nullnull:RGR-r10 

XOR pADH1:RGR-r2,pADH1:RGR-r10,pGRR-nullnull:RGR-r10 

XNOR pAHD1:RGR-r2,pGRR-nullnull:RGR-r10 

StaticCascade 1 Layer pGRR-r10:RGR-r5 

StaticCascade 2 Layer pGRR-r7:RGR-r10 

StaticCascade 3 Layer pGRR-r2:RGR-r7 

StaticCascade 4 Layer pGRR-r1:RGR-r2 

StaticCascade 5 Layer  pGRR-r6:RGR-r1 

StaticCascade 6 Layer pGRR-r3:RGR-r6 

StaticCascade 7 Layer pGRR-r9:RGR-r3 
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Extended Data Table 3 | Guide Sequence Table 

gRNA 
index 

Sequence 

r1 GGAACGTGATTGAATAACTT 

r2 ACCAACGCAAAAAGATTTAG 

r3 CATTGCCATACACCTTGAGG 

r4 GAAAATCACAACTCTACTGA 

r5 GAAGTCAGTTGACAGAGTCG 

r6 GTGGTAACTTGCTCCATGTC 

r7 CTTTACGTATAGGTTTAGAG 

r8 CGCATTTCCTATTCAAACTT 

r9 GCAACCCACAAATATCCAGT 

r10 GTGACATAAACATTCGACTC 

r11 GGGCAAAGAGACGCTTGTCG 

r12 GAAGTCATCGCTTCTTGTCG 

r13 GAGTTGACAAAGTATAACTT 

r14 GAAGTTTCAGAATCTCGACG 

r15 GGCTAGGATCCATCTGACTT 

r16 GCAACCATAGACTCTCCAGG 

r17 ACCACAACTGAGTCGAACCT 

r18 GGGTAGCAACACTCGTACTT 

r19 GTAAAAGATAACTCTGTTGC 

r20 TCTACCCGAGACTCAAACGG 

v1 GTACATACAGTAGGATCCTA 

v2 TTTGGCACTACCGACACGAA 

v3 TGGTCAAAAGTGCGGCTTTC 

v4 CTTTCACAATCTTGACCTGC 

 

 

	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 1, 2016. ; https://doi.org/10.1101/041871doi: bioRxiv preprint 

https://doi.org/10.1101/041871
http://creativecommons.org/licenses/by-nc-nd/4.0/

