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ABSTRACT 
Background: The integration of genome annotations and reference databases is critical to 
the identification of genetic variants that may be of interest in studies of disease or other 
traits. However, comprehensive variant annotation with diverse file formats is difficult with 
existing methods.  
Results: We have developed vcfanno as a flexible toolset that simplifies the annotation of 
genetic variants in VCF format. Vcfanno can extract and summarize multiple attributes from 
one or more annotation files and append the resulting annotations to the INFO field of the 
original VCF file. Vcfanno also integrates the lua scripting language so that users can easily 
develop custom annotations and metrics. By leveraging a new parallel “chromosome 
sweeping” algorithm, it enables rapid annotation of both whole-exome and whole-genome 
datasets. We demonstrate this performance by annotating over 85.3 million variants in less 
than 17 minutes (>85,000 variants per second) with 50 attributes from 17 commonly used 
genome annotation resources.  
Conclusions: Vcfanno is a flexible software package that provides researchers with the 
ability to annotate genetic variation with a wide range of datasets and reference databases in 
diverse genomic formats.  
Availability: The vcfanno source code is available at https://github.com/brentp/vcfanno 
under the MIT license, and platform-specific binaries are available at 
https://github.com/brentp/vcfanno/releases. Detailed documentation is available at 
http://brentp.github.io/vcfanno/, and the code underlying the analyses presented can be 
found at https://github.com/brentp/vcfanno/tree/master/scripts/paper. 
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BACKGROUND  
The VCF files[1] produced by software such as GATK[2] and FreeBayes[3] report the 
polymorphic loci observed among a cohort of individuals. Aside from the chromosomal 
location and observed alleles, these loci are essentially anonymous. Until they are 
embellished with genome annotations, it is nearly impossible to quickly answer basic 
questions such as “was this variant seen in ClinVar,” or “what is the alternate allele 
frequency observed in the 1000 Genomes Project?” There is an extensive and growing 
number of publicly available annotation resources (Ensembl, UCSC) and reference 
databases of genetic variation (e.g., ClinVar, Exome Aggregation Consortium (ExAC), 1000 
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Genomes) that provide context that is crucial to variant interpretation. It is also common for 
individual labs and research consortia to curate custom databases that are used, for 
example, to exclude variants arising in genes or exons which are systematic sources of false 
positives in exome or genome resequencing studies. Other annotations, such as low-
complexity regions[4], transcription factor binding sites, regulatory regions, or replication 
timing[5] can further inform the prioritization of genetic variants related to a phenotype. The 
integration of such annotations is complementary to the gene-based approaches provided by 
snpEff[6], Annovar[7], and VEP[8]. Each of these tools can provide additional, region-based 
annotation, yet they are limited to the genome annotation sets provided by the software. 
While extensive variant annotation is fundamental to nearly every modern study of genetic 
variation, no existing software can flexibly and simply annotate VCF files with so many 
diverse data sets.  
 
We have therefore developed vcfanno as a fast and general solution for variant annotation 
that allows variants to be “decorated” with any annotation dataset in common genomics 
formats. In addition to providing the first method that is capable of annotating with multiple 
annotation sets at a time, vcfanno also avoids common issues such as inconsistent 
chromosome labeling (“chr1” vs. “1”) and ordering (1,2,...10..., or 1,10,11..) among the VCF 
and annotation files. To maximize performance with dozens of annotation files comprised of 
millions of genome intervals, we introduce a parallel sweeping algorithm with high scalability. 
In an effort to make vcfanno’s annotation functionality as flexible as possible, we have also 
embedded a lua (www.lua.org) scripting engine that allows users to write custom operations. 

METHODS 

Overview of the vcfanno functionality 
Vcfanno annotates variants in a VCF file (the “query” intervals) with information aggregated 
from the set of intersecting intervals among many different annotation files (the “database” 
intervals) stored in common genomic formats such as BED, GFF, GTF, VCF, and BAM. It 
utilizes a “streaming” intersection algorithm that leverages sorted input files to greatly reduce 
memory consumption and improve speed. As the streaming intersection is performed 
(details below), database intervals are associated with a query interval if there is an interval 
intersection. Once all intersections for a particular query interval are known, the annotation 
proceeds according to user-defined operations that are applied to the attributes (e.g., the 
“score” column in a BED annotation file or an attribute in the INFO field of a VCF annotation 
file) data within the database intervals. As a simple example, consider a query VCF of single 
nucleotide variants (SNVs) that was annotated by SNVs from an annotation database such 
as a VCF file of the dbSNP resource. In this case, the query and database variants are 
matched on position, REF, and ALT fields when available, and a value from the overlapping 
database interval (e.g., minor allele frequency) is carried forward to become the annotation 
stored in the INFO field of the query VCF. In a more complex scenario where a query 
structural variant intersects multiple annotation intervals from each database, the information 
from those intervals must be aggregated. One may wish to report each of the attributes as a 
comma-separated list via the ‘concat’ operation. Alternatively, one could select the maximum 
allele frequency via the ‘max’ operation. For cases where only a single database interval is 
associated with the query, the choice of operation will not affect the summarized value. 
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An example VCF INFO field from a single variant before and after annotation with vcfanno is 
shown in Figure 1. A simple configuration file is used to specify both the source files and the 
set of attributes (in the case of VCF) or columns (in the case of BED or other tab-delimited) 
that should be added to the query file. In addition, the configuration file allows annotations to 
be renamed in the resulting VCF INFO field. For example, we can extract the allele 
frequency (AF) attribute from the ExAC VCF file[9] and rename it as “exac_aaf” in the INFO 
field of the VCF query records. The configuration file allows one to extract as many attributes 
as needed from any number of annotation datasets. 

 

 
Figure 1. Overview of the vcfanno workflow. An unannotated VCF (A) is sent to vcfanno (B) along with a 
configuration file that indicates the paths to the annotation files, the attributes to extract from each file, and the 
methods that should be used to describe or summarize the values pulled from those files. The new annotations in 
the resulting VCF (C) are shown in blue text with additional fields added to the INFO column. 

 

Overview of the chrom-sweep algorithm 
The chromosome sweeping algorithm (“chrom-sweep”) is an adaptation of the streaming, 
sort-merge join algorithm, and is capable of efficiently detecting interval intersections among 
multiple interval files, as long as they are sorted by both chromosome and interval start 
position. Utilized by both BEDTOOLS[10, 11] and BEDOPS[12], chrom-sweep finds 
intersections in a single pass by advancing pointers in each file that are synchronized by 
genomic position. At each step in the sweep, these pointers maintain the set of intervals that 
intersect a particular position and, in turn, intersect each other. This strategy is 
advantageous for large datasets because it avoids the use of data structures such as 
interval trees or hierarchical bins (e.g., the UCSC binning algorithm[13]). While these tree 
and binning techniques do not require sorted input, the memory footprint of these methods 
scales poorly, especially when compared to streaming algorithms, which typically exhibit low, 
average-case memory needs. 
 

Unannotated VCF

Annotated VCF

#CHROM		POS		REF		ALT		INFO
chr1				100		G				A				AC=10;AF=0.05
chr1				200		C				T				AC=40;AF=0.20
chr1				300		G				T				AC=20;AF=0.10
...

##INFO=<ID=exac_aaf,Number=1,Type=Float>
##INFO=<ID=exac_num_het,Number=1,Type=Integer>
##INFO=<ID=gerp_mean,Number=1,Type=Float>
#CHROM		POS		REF		ALT		INFO
chr1				100		G				A				AC=10;AF=0.05;exac_aaf=0.0012;exac_num_het=34;gerp_mean=7.25e-07
chr1				200		C				T				AC=40;AF=0.20;exac_aaf=0.005;exac_num_het=128;gerp_mean=1.77e-05
chr1				300		G				T				AC=20;AF=0.10;exac_aaf=0.0022;exac_num_het=77;gerp_mean=3.56e-03
...

vcfanno

ExAC
(VCF)

CpG
(BED)

Anno. N

[[annotation]]
file=“ExAC.v3.vcf.gz”
fields=[“AF”,	“AC_Het”]
names=[“exac_aaf”,	“exac_num_het”]
ops=[“self”,	“self”]
[[annotation]]
file="gerp.elements.bed.gz"
columns=[4]
names=[“gerp_mean”]
ops=[“mean”]

vcfanno configuration file

…
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C
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The chrom-sweep algorithm implemented in vcfanno proceeds as follows. First, we create 
an iterator of interval records for the query VCF and for each database annotation file. We 
then merge intervals from the query VCF and each annotation into a single priority queue, 
which orders the intervals from all files by chromosome and start coordinate, while also 
tracking the file from which each interval came. Vcfanno progresses by requesting an 
interval from the priority queue and inserts it into a cache. If the most recently observed 
interval is from the query VCF, we check for intersections with all database intervals that are 
currently in the cache. Since vcfanno requires that all files be sorted, we know that intervals 
are entering the cache ordered by start coordinate. Therefore, in order to check for overlap, 
we only need to check that the start of the new interval is less than the end of any of the 
intervals in the cache (assuming half-open intervals). An example of the sweeping algorithm 
is shown in Figure 2 for a case involving 2 annotation files and 3 records from a single query 
VCF. The contents of the cache are shown as the sweep reaches the start of each new 
interval. When a new query interval enters the cache, any interval that does not intersect it is 
ejected from the cache. If the removed interval originated from the query VCF, it is sent, 
together with each of the intersecting annotation intervals to be processed according to the 
operations specified in the configuration file. The resulting annotations are stored in the 
INFO field of the VCF file and the updated VCF record is reported as output. 
 
 
 

 
Figure 2. Overview of the chrom-sweep interval intersection algorithm. The chrom-sweep algorithm sweeps 
from left to right as it progresses along each chromosome. Green intervals from the query VCF in the 1st row are 
annotated by annotation files A (blue) and B (orange) in the 2nd and 3rd rows, respectively. The cache row 
indicates which intervals are currently in the cache at each point in the progression of the sweeping algorithm. 
Intervals enter the cache in order of their chromosomal start position. First A1 enters the cache followed by Q1. 
Since Q1 intersects A1, they are associated; as are Q1 and B1 when B1 enters the cache. Each time a new 
query interval enters the cache, any interval it does not intersect is ejected. Therefore, when Q2 enters the 
cache, Q1 and A1 are ejected. Since Q1 is a query interval, it is sent to be reported as output. Proceeding to the 
right, A2 and then Q3 enter the cache; the latter is a query interval and so the intervals that do not overlap it – B1, 
Q2, and A2 – are ejected from the cache with the query interval, Q2, which is sent to the caller. Finally, as we 
reach the end of the incoming intervals, we clear out the final Q3 interval and finalize the output for this 
chromosome. 

 

Limitations of the chrom-sweep algorithm 
Owing to the fact that annotation sets are not loaded into memory intensive data structures, 
the chrom-sweep algorithm easily scales to large datasets. However, it does have some 
important limitations. First, it requires that all intervals from all annotation files adhere to the 
same chromosome order. While conceptually simple, this is especially onerous since VCFs 
produced by variant callers such as GATK impose a different chromosome order (1, 2, ...21, 
X, Y, MT) than most other numerically sorted annotation files, which would put MT before X 
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and Y. Of course, sorting the numeric chromosomes as characters or integers also results in 
different sort orders. Discrepancies in chromosome ordering among files are often not 
detected until substantial computation has already been performed. A related problem is 
when one file contains intervals from a given chromosome that the other does not, it’s not 
possible to distinguish whether the chromosome order is different or if that chromosome is 
simply not present in one of the files until all intervals are parsed. 
 
Second, the standard chrom-sweep implementation is sub-optimal because it is often forced 
to consider (and parse) many annotation intervals that will never intersect the query 
intervals, resulting in unnecessary work[14]. For example, given a VCF file of variants that 
are sparsely distributed throughout the genome (e.g., a VCF from a single exome study) and 
dense data sets of whole-genome annotations, chrom-sweep must parse and test each 
interval of the whole-genome annotations for intersection with a query interval, even though 
the areas of interest comprise less than 1% of the regions in the file. In other words, sparse 
queries with dense annotation files represent a worst-case scenario for the performance of 
chrom-sweep because a high proportion of the intervals in the data sets will never intersect. 
 
A third limitation of the chrom-sweep algorithm is that, due to the inherently serial nature of 
the algorithm, it is difficult to parallelize the detection of interval intersections and the single 
CPU performance is limited by the speed at which intervals can be parsed. Since the 
intervals arrive in sorted order, skipping ahead to process a new region from each file in a 
different processing thread is difficult without a pre-computed spatial index of the intervals, 
and reporting the intervals in sorted order after intersection requires additional bookkeeping. 
 

A parallel chrom-sweep algorithm 
To address these shortcomings, we developed a parallel algorithm that concurrently chrom-
sweeps “chunks” of query and database intervals. Unlike previous in-memory parallel 
sweeping methods that uniformly partition the input[15], we define (without the need for 
preprocessing[16]) chunks by consecutive query intervals that meet one of two criteria: 
either the set reaches the “chunk size” threshold, or the genomic distance to the next interval 
exceeds the “gap size” threshold. Restricting the chunk size creates reasonably even work 
among the threads to support efficient load balancing (i.e., to avoid task divergence). The 
gap size cutoff is designed to avoid processing an excessive number of unrelated database 
intervals that reside between distant query intervals. 
 
As soon as a chunk is defined, it is scheduled to be swept in parallel along with the other 
previously defined chunks. The bounds of the query intervals in the chunk determine the 
bounds of the intervals requested from each annotation file (Figure 3). Currently these 
requests are to either a Tabix indexed file or a BAM file via the bíogo package[17], but any 
spatial query can be easily supported. An important side effect of gathering database 
intervals using these requests is that, while the annotations files must be sorted, there is no 
need for the chromosome orders of the annotations to match. This, along with internally 
removing any “chr” prefix, alleviates the associated chromosome order and representation 
complexities detailed above. Conceptually, the set of intervals from these requests are 
combined with the query intervals to complete the chunk, which is then processed by the 
standard chrom-sweep algorithm. However, in practice this is accomplished by streams so 
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that only the query intervals are held in memory while the annotation intervals are retrieved 
from their iterators during the chrom-sweep. One performance bottleneck in this strategy is 
that the output should be sorted, and since chunks may finish in any order, we must buffer 
completed chunks to restore sorted order. This, along with disk speed limitations, is the 
primary source of overhead preventing optimal parallelization efficiency. 
 
 

 
Figure 3. Parallel sweeping algorithm. As in Figure 2, we sweep across the chromosome from lower to higher 
positions (and left to right in the figure). The green query intervals are to be annotated with the 2 annotation files 
depicted with blue and orange intervals. The parallelization occurs in chunks of query intervals delineated by the 
black vertical lines. One process reads query intervals into memory until a maximum gap size to the next interval 
is reached (e.g. chunk 2, 4), the number of intervals exceeds the chunk size threshold (e.g. chunks 1, 3). While a 
new set of query intervals accumulates, the first chunk, bounded to the right by the first vertical black line above, 
is sent for sweeping and a placeholder is put into a FIFO (first-in, first-out) queue, so that the output remains 
sorted even though other chunks may finish first. The annotation files are queried with regions based on the 
bounds of intervals in the query chunk. The queries then return streams of intervals, and finally those streams are 
sent to the chrom-sweep algorithm in a new process. When it finishes, its placeholder can be pulled from the 
FIFO queue and the results are yielded for output. 

 

Vcfanno implementation 
Vcfanno is written in Go (https://golang.org), which provides a number of advantages. First, 
Go supports cross-compilation for 32 and 64-bit systems for Mac, Linux and Windows. Go’s 
performance means that vcfanno can run large data sets relatively quickly. Go also offers a 
simple concurrency model, allowing vcfanno to perform intersections in parallel while 
minimizing the possibility of race conditions and load balancing problems that often plague 
parallel implementations. Moreover, as we demonstrate below, vcfanno’s parallel 
implementation of the chrom-sweep algorithm affords speed and scalability. Lastly, it is a 
very flexible tool because of its support for annotations provided in many common formats 
such as BED, VCF, GFF, BAM, and GTF. 

RESULTS 

Scalability of VCF annotation 
We annotated the publicly available VCF files from both ExAC (v3; 10,195,872 VCF records) 
and the 1000 Genomes Project (Phase 3; 85,273,413 VCF records) to demonstrate 
vcfanno’s performance and scalability on both a whole-exome and a whole-genome dataset 
respectively. We used an extensive set of annotations and extracted a total of 50 different 
attributes from 17 distinct data sets representative of common annotations (see 
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Supplementary File 1). We observed a near linear increase in annotation speed relative to a 
single core (3,302 and 7,457 seconds for ExAC and 1000 Genomes, respectively) when 
using 2-4 cores, but while performance continued to improve for additional cores, the 
improvement is sublinear (Figure 4). This is expected because we inevitably reach the limits 
of disk speed by concurrently accessing 17 files. Moreover, the degree of parallelism is 
limited by how fast the main process is able to read chunks of query VCF records that are 
kept in memory. Nonetheless, using 16 cores, vcfanno was able to annotate the variants 
from ExAC in less than 8 minutes and the 1000 Genomes variants in less than 17 minutes, 
performing at a rate of 21,902 and 85,452 variants per second, respectively. 
 
 

 
Figure 4. Parallelization efficiency. We show the efficiency of the parallelization strategy relative to 1 process 
on a whole-genome (1000 Genomes (1000G) in blue) and exome (ExAC in green) dataset. In both cases, we are 
short of the ideal speedup (gray line) but we observe a ~7-fold speedup using 16 processors. Absolute times are 
provided in Supplemental Table 1. 

 

The impact of interval distribution on performance 
As described above, chunks of intervals constitute the individual units of work in the parallel 
“chrom-sweep” algorithm. A chunk is “full” when either the number of intervals in the array 
reaches the chunk size, or the genomic distance between two adjacent intervals is larger 
than the gap size. To understand the effect these parameters had on runtime, we varied 
both chunk size and gap size for the annotation of a whole-genome data set (variants from 
chromosome 20 of 1000 Genomes) and a whole-exome data set (variants from chromosome 
20 of ExAC) given the same set of 17 annotation tracks from both whole-genome and whole-
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exome data sets that was used to create Figure 4. The choice of whole-genome and whole-
exome query sets not only represents two common annotation use cases, but it also serves 
to illuminate the effect these parameters have on different data distributions. Not 
surprisingly, the run times for 1000 Genomes were completely dependent on chunk size and 
effectively independent of gap size, while ExAC runtimes exhibited the opposite behavior 
(Figure 5A). When intervals were more uniformly distributed throughout the genome, as with 
the 1000 Genomes data (Figure 5B), the distance between intervals tended to be small and 
therefore the maximum chunk size (not gap size) determined the number of intervals 
contained in the typical processing chunk. In contrast, since the intervals from ExAC tend to 
reside in smaller and more discrete clusters, maximum chunk size had almost no effect on 
the size of the typical processing chunk. As a result of this exploration, we have set the 
default chunk and gap sizes to work well on both whole-genome and exome datasets but we 
also allow them to be set by the user to maximize performance based on their knowledge of 
the data sets in question. 
 
 

 
Figure 5. Effect of gap and chunk size on runtime for different data distributions. (A) Run-times for 
annotating small variants on chromosome 20 for 1000 Genomes (1KG) (1,822,268 variants) and ExAC (256,057 
variants) against 17 annotation files using 4 cores and different combinations of gap size and chunk size. (B) 
Data density for chromosome 20 of 1000 Genomes, ExAC, and the summation of the 17 annotation files. 
 

Comparison to other methods 
While no existing tools have the same functionality as vcfanno, BCFTools[18] includes an 
annotate command that allows one to extract fields from a single annotation file. Similarly, 
our own BEDTools[10, 11] uses the chrom-sweep algorithm to facilitate single-threaded 
intersection across multiple annotation files, yet it does not allow one to store annotations in 
the INFO field of the query VCF. Nonetheless, these tools provide an informative means to 
assess the performance of vcfanno. Using 9 different annotation sources ranging from 
whole-genome VCF to sparse BED files (see the vcfanno repository for replication code) we 
compared the runtime of vcfanno with 1, 4, 8, and 12 processes to that of BCFTools and 
BEDTools, both of which are single-threaded. We annotated the ExAC VCF with each tool. 
BEDTools can only intersect, not annotate, so we report the time to complete the 
intersections. BCFTools can only annotate 1 file at a time, so each of the nine annotations 
were conducted serially, and we report the total time required. BEDTools is an extremely 
efficient method for detecting interval intersections among multiple annotation files, but it is 
limited to a single core. BCFTools, on the other hand, can update the INFO field of the query 

20p 20q

1000 genomes (uniform coverage)

ExAC (biased coverage)

17 tracks (mix of biased and uniform coverage)
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with corresponding records from a single annotation file; but, it takes longer than vcfanno, 
even with a single process. Using 4 processors, vcfanno is 3.0 times as fast as BEDTools 
and 6.8 times as fast as BCFTools. The performance increase resulting from using eight 
processors is substantial, reducing the run-time from 703 seconds down to 591, but 
increasing to twelve processors yields little additional benefit. 
 
	
Table 1. Speed comparison to other methods. We compare vcfanno’s performance to BEDTools and 
BCFTools using 1, 4, 8, and 12 processors when annotating the ExAC dataset using 9 annotation files. For all 
tools, we stream the output to bgzip in an effort to make the comparison as fair as possible. BCFTools can 
annotate only a single file at a time so the time reported is the sum of annotating each file and sending the result 
to the next annotation. This cannot be piped because the input to the BCFTools “annotate” tool must first be 
compressed by bgzip and subsequently indexed by Tabix.	
Method Time (seconds) No. Processors 
BEDTools 2135.67 1 
BCFTools 4776.55 1 
vcfanno 2621.80 1 
vcfanno 702.72 4 
vcfanno 590.71 8 
vcfanno 571.65 12 
 

Additional features 
Vcfanno includes additional features that provide unique functionality with respect to existing 
tools. Annotating structural variants (SV) is complicated by the fact that, owing to the 
alignment signals used for SV discovery, there is often uncertainty regarding the precise 
location of SV breakpoints[19]. Vcfanno accounts for this uncertainty by taking into account 
the confidence intervals (defined by the CIPOS and CIEND attributes in the VCF 
specification) associated with SV breakpoints when considering annotation intersections. 
The confidence intervals define a genomic range in which the breakpoints are most likely to 
exist, therefore it is crucial for vcfanno to take these intervals into consideration when it 
considers annotations associated with SV breakpoints. Moreover, since SVs frequently 
affect hundreds to thousands of nucleotides, they will often intersect multiple intervals per 
annotation file. In such cases, the summary operations described above can be used to 
distill the multiple annotation intersections into a single descriptive measure. 
 
Users will frequently need to further customize the annotations in the resulting VCF file. In 
order to facilitate this, vcfanno supports a concept of “post annotation”: that is, summary 
operations that are subsequently applied to the attributes that are extracted from annotation 
files for a given query VCF record. As an example, consider a situation where one would like 
to annotate each variant in one’s VCF file with the alternate allele frequency observed in the 
Exome Aggregation Consortium VCF. However, the ExAC VCF file solely provides the total 
count of chromosomes observed and the count of chromosomes exhibiting the alternate 
allele. Therefore, one cannot simply extract an alternate allele frequency directly from the 
ExAC VCF file. However, as illustrated in Figure 6, if the total and alternate allele counts are 
extracted with vcfanno (as “exac_total” and “exac_alts” below), one can define an additional 
“post-annotation” section that uses lua to compute the alternate allele frequency (“exac_aaf”) 
from the total and alternate allele counts extracted from the ExAC VCF file. Users can write 
extensive lua functions in an external script and subsequently call these in the annotation 
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and post-annotation sections of the configuration file. For example, in Figure 6C, we use an 
external lua script (provided to vcfanno on the command line) to implement a function (see 
Supplementary File 2) that calculates the lower bound of the allele frequency confidence 
interval. This is useful for determining whether an allele frequency is different from 0 based 
on the 95% confidence bounds. This type of specialized logic is simple to implement given 
lua’s scripting capabilities and allows vcfanno to be customized to a researcher’s specific 
needs. In fact, this “post-annotation” concept can be applied “in place” to a VCF without any 
annotation files, thereby allowing the user to perform modifications to a VCF file’s INFO field.  
 

		  
Figure 6. Using a “post-annotation” block to compute new annotations derived from existing 
annotations. (A) As described in the text, computing this post-annotation assumes that the “exac_total” and 
“exac_alts” fields have been extracted (via the AN and AC fields in the ExAC VCF) from the annotation file using 
standard annotation blocks. The AC field returns an array of alternate alleles for the variants in the annotation file 
that match a given variant in the query VCF. (B) In this post-annotation block, we calculate the alternate allele 
frequency in ExAC (“exac_aaf”) using “exac_alts[1]” as the numerator because in this example we calculate the 
alternate allele frequency based on the first alternate allele. (C) An example of a post-annotation block that calls 
a function (af_conf_int) in an external lua script (see Supplemental File 2) to compute the lower bound of the 
allele frequency confidence interval based upon counts of the alternate allele and total observed alleles. (D) An 
example invocation of vcfanno that annotates a BGZIP-compressed VCF file (example.vcf.gz) using the 
configuration file described in panels A-C (red), together with the lua script file (blue) containing the code 
underlying the af_conf_int function. 

DISCUSSION  
We have introduced vcfanno as a fast and flexible new software resource that facilitates the 
annotation of genetic variation in any species. We anticipate that vcfanno will be broadly 
useful to researchers both as a standalone annotation tool, and also in conjunction with 
downstream VCF filtering and manipulation software such as snpEff[6], BCFTools[18], 
BGT[20], and GQT[21]. There are, however, caveats to the proper use of vcfanno, and it 
exhibits poorer performance in certain scenarios. First, when annotating with other VCF files, 
it is recommended that both the variants in the query VCF and each database VCF are 
normalized and decomposed in order to ensure that both variant sites and alleles are 
properly matched when extracting attributes from the database VCF files[22]. Secondly, 

[[annotation]]
file=“ExAC.v3.vcf.gz”
fields=[“AN”,	“AC”]
names=[“exac_total”,	“exac_alts”]
ops=[“self”,	“self”]

[[postannotation]]
fields=["exac_total",	"exac_alts"]							
name="exac_aaf"																											
op="lua:exac_alts[1]/exac_total"						
type="Float"	

[[postannotation]]
fields=["exac_total",	"exac_alts"]							
name="exac_aaf_conf_int"																											
op="lua:af_conf_int(exac_alts[1],exac_total)"						
type="Float"

vcfanno	-lua	custom.lua	config.toml	example.vcf.gz																													

A

B

C

D
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vcfanno’s relative performance is, not surprisingly, less impressive on very sparse datasets 
(e.g., 1 or 2 variants every 20KB) such as a VCF resulting from the exome sequencing of 
one individual. While annotating these files is still quite fast, typically between three and five 
minutes, the sparsity of data exposes an exposes the overhead associated with using Tabix 
to create streams of database intervals that are germane to the current chunk. Tabix must 
decompress an entire BGZF block from each annotation file even if the query chunk merely 
includes a single variant because Tabix’s smallest BGZF block represents a genomic range 
of 16 kilobases. Therefore, when the query VCF is very sparse, an entire BGZF block from 
each annotation is frequently (and wastefully) decompressed for each query variant. In 
future versions of vcfanno, we will explore alternative approaches in order to avoid this 
limitation, thereby maximizing performance in all usage scenarios.  

CONCLUSION  
Vcfanno is an extremely efficient and flexible software package for annotating genetic 
variants in VCF format in any species. It represents a substantial improvement over existing 
methods, enabling rapid annotation of whole-genome and whole-exome datasets and 
provides substantial analytical power to studies of disease, population genetics, and 
evolution. 
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