
  

 
Figure 1. Compartmental model schematic showing how non-autophagy, 
quiescent and physiological autophagy interact in response to therapies. 

 

Figure 2. A. Calibrating the model with in vitro data. B. Validating 
model predictions with in vitro combination therapy.  

  

Abstract— We present a compartment model that explains 
melanoma cell response and resistance to mono and 
combination therapies. Model parameters were estimated by 
utilizing an optimization algorithm to identify parameters that 
minimized the difference between predicted cell populations 
and experimentally measured cell numbers. The model was 
then validated with in vitro experimental data. Our simulations 
show that although a specific timing of the combination therapy 
is effective in controlling tumor cell populations over an 
extended period of time, the treatment eventually fails. We 
subsequently predict a more optimal combination therapy that 
incorporates an additional drug at the right moment. 

I. MELANOMA RESPONSE AND RESISTANCE TO THERAPY 

Metastatic melanoma is known to be resistant to 
chemotherapy (chemo). During the last few years, targeted 
therapeutic approaches have emerged as the dominant 
treatment choice, mainly because they target tumor cells that 
harbor specific genetic mutations. However, even these 
targeted drugs have limited long term success in treating 
melanoma metastatic patients, since resistance eventually 
emerges. Unexpectedly, when chemotherapy and a targeted 
treatment (AKT inhibitor, AKTi) are given in combination 
to metastatic melanoma patients, long-term responses were 
recently observed [1]. Although little is known regarding 
why such combinations are more successful, we suggested 
one possible mechanism, specifically differential induction 
of autophagy by mono or combination therapy [1]. To better 
understand how autophagy might facilitate treatment 
response, we developed a mathematical model comprising of 
a system of ordinary differential equations that explains the 
dynamics of melanoma cells under mono (either chemo or 
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AKTi alone) and combination therapy of the two [2]. The 
model is composed of three compartments, non-autophagy 
and two autophagy compartments (physiological and 
quiescent autophagy) based on experimental observations 
showing that some autophagy cells continue to maintain 
normal cell homeostasis [3-6].	  Fig.1 shows how these three 
compartments interact with one another, switching rates are 
altered depending on the treatment being administered. 

II. MODEL CALIBRATION AND VALIDATION 

Model parameters were estimated by using the implicit 
filtering method to generate fitted curves describing the 
growth of a melanoma cell line under no treatment, mono 
and combination therapy (Fig. 2A). We then used the fitted 
model to predict the effects of 12 different schedules 
including no treatment, single agent therapy, concurrent 
combination therapy, and single agent sequential therapy of 
two drugs. We accurately predicted total population at day 
16 in equivalent in vitro experiments (Fig. 2B). Interestingly, 
our longer-term simulation over 40 days showed that the 
combination therapy was effective in controlling tumor 
population over an extended period of time. The resistance, 
however, emerges (Fig. 3A) driven by the autophagy 
population, even for the proposed best strategy (#7 in Fig. 
2B, concurrent treatment of chemo and AKTi followed by 
AKTi maintenance). To overcome this resistance, we 
applied a drug that targets the autophagy population 
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Figure 3. A, 40-day simulation of best combination schedule (#7 in 
Fig. 2B). B. Addition of CQ on day 30 significantly improves 
response. 	  

(chloroquine (CQ)) and were able to show that additional 
administrations of this drug inhibited resistance (Fig. 3B).   

III. QUICK GUIDE TO THE METHODS (1 PAGE) 

A. Model development 
Compartment models are often used to describe transport 

of material in biological systems. Our compartment model 
contains three compartments, each containing a well mixed 
cell population with different autophagy phenotypes. In Fig. 
1, boxes represent compartments and arrows represent the 
connections between the compartments. Every compartment 
has a number of connections leading to the box and a 
number of arrows leading from the box. Cells can either 
flow from one compartment to another, be added to 
themselves (growth) or they can be removed by death. 

 In our model (Fig. 1), non-autophagy melanoma cells 
proliferate (rate:  𝑔!), and following treatment can acquire 
either a physiological autophagy phenotype (rate:  𝑎!) or a 
quiescent autophagy phenotype (rate:   𝑏! ). Physiological 
autophagy cells grow (rate: 𝑔! ) and can revert to 
non-autophagy cells (rate:  𝑟!), or enter a quiescent/senescent 
state (rate:  𝑞!). Tumor cells having the quiescent autophagy 
phenotype do not divide, yet these cells can reacquire a 
physiological autophagy phenotype (rate: 𝑟! ) or a 
non-autophagy phenotype (rate: 𝑟! ) state. Cells in each 
compartment die at a fixed rate (𝑑!,!,! ). To model the 
increased cell death observed in our experimental data, on 
days 6-9, we included a delay in the model – specifically for 
the cell death of quiescent autophagy cells (rate:  𝜏). 

The effects of chemo, AKTi and their combination were 
also incorporated into the model. As our cell culture 
experiments showed that chemo triggered cell death with 
negligible effects on autophagy [1], it was assumed that 
chemo only augmented cell death. Further, as chemo is 
effective only in proliferating melanoma populations, we 
assumed that the therapy increases the death rate of the two 
proliferating phenotypes, non-autophagy (𝑑!)  and 
physiological autophagy cells (𝑑!). We also assumed that 
the frequency with which cells became quiescent (𝑞! ) 
increased with chemo. In vitro studies showed that while 
AKTi did not augment cell deaths or effectively inhibit 
melanoma cell growth, it induced autophagy [1]. Therefore, 
we assumed that AKTi increases the rate of transitioning to 
the autophagy phenotypes, 𝑎!  and 𝑏! . As combination 
therapy does not augment cell death compared with chemo, 
nor significantly increase autophagy relative to AKTi, the 
combination of the two treatments was modeled by adding 

the effects of chemo and AKTi.  Finally, it was assumed that 
cell which switch compartment under treatment can only 
revert back to their original states after treatment is removed. 
The schematic representation of this compartment converts 
readily into a system of ordinary differential equations:  
 

where 𝑑! = 𝑑! + 𝑐! ,   𝑑! = 𝑑! + 𝑐!𝐶, 𝑞! = 𝑞! + 𝑐!𝐶, 𝑎! =
𝑎! + 𝑎!𝐴, and 𝑏! = 𝑏! + 𝑏!𝐴. In equation (1), 𝐴 and 𝐶  are 
defined by 

𝐴,𝐶 =
0                              drug  is  off,
1                              drug  is    on.  

B. Parameter estimation 
Both initial cell populations and the growth rate of 
non-autophagy cells (𝑔! ) are estimated by assuming an 
exponential growth of untreated cells and finding both the 
initial value and exponent of the best-fit curve. We used an 
optimization algorithm called implicit filtering [7] to 
determine the best remaining parameter set 𝐻 (except 𝑔!) 
that minimized the difference between the predicted number 
of cells (𝑁!) and experimental results (𝑁!) in 4 conditions: 
no treatment (n); chemo (c); AKTi (a); and combination (m). 
The mathematical definition of our problem is:  

min
!∈!

𝑓 𝐻 = min
!∈!

𝑁!!(𝐻) − 𝑁!!
!

!!{!,!,!,!}

, 

where the goal is to minimize the objective function f subject 
to the condition that 𝐻 ∈ ℝ! is in the feasible region: 

Ω = 𝐻 ∈ ℝ!|𝐿! ≤   𝐻! ≤   𝑈! , 
where and 𝐿! and 𝑈! are the upper and lower bound on the 
jth component 𝐻! of the vector H.  
 
C. Other applications 
The Compartment modeling approach assumes that material 
in the compartment is well mixed and homogeneous. The 
approach can’t capture spatial dynamics, individual diversity 
(heterogeneity), or stochastic effects. However, the approach 
is computational efficient, can describe complex systems 
(interactions) in a simple way, and is easy to formulate. It is 
is especially useful to model interactions between different 
states of homogeneous compartments. In cancer modeling 
field, many compartment models have been developed to 
model tumor progression [8-17], tumor-stromal interactions 
[18], tumor-immune interactions[16, 17, 19-32], drug 
resistance [2, 33], and drug distribution in the body [34]. 
This approach can also model other biological systems (e.g. 
ecological) where the material is energy (food) and the 
compartments represent different species of animals and 
plants [35]. It has also been widely used to model spread of 
infectious disease, where compartments represent health 
status with respect to the pathogen in the system (e.g., 
susceptible, infectious or recovered) [36, 37].  

!N = gN − dN( )N − (aP + bQ )N + (1− A)rPP + (1− A)(1−C)rNQ,
!P = gP − dP( )P + aPN − (1− A)rPP − qPP + (1− A)(1−C)rQQ,             (1)

!Q = − dQ +
dτ

1+ e−(t−τ )

"

#
$

%

&
'Q− (1− A)(1−C)(rN + rP )Q+ bQN + qPP,
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