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ABSTRACT 

Current high-sensitivity cancer screening methods suffer from false positive rates that lead to numerous 

unnecessary procedures and questionable public health benefit overall. Detection of circulating tumor 

DNA (ctDNA) has the potential to transform cancer screening. Thus far, nearly all ctDNA studies have 

focused on detection of tumor-specific point mutations. However, ctDNA point mutation detection 

methods developed to date lack either the scope or sensitivity necessary to be useful for cancer 

screening, due to the extremely low (<1%) ctDNA fraction derived from early stage tumors. We suggest 

that tumor-derived copy number variant (CNV) detection is theoretically a superior means of ctDNA-

based cancer screening for many tumor types, given that, relative to point mutations, each individual 

tumor CNV contributes a much larger number of ctDNA fragments to the overall pool of circulating DNA. 

Here we perform an in silico assessment of the potential for ctDNA CNV-based cancer screening across 

many common cancers. 
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INTRODUCTION 

According to the National Cancer Institute, 5 year survival rates of cancer patients are the highest when 

cancer is detected and treated at an early, localized, stage. Currently, there are a number of different 

cancer-type specific biomarkers used to detect cancer at an early stage; however most of them are 

associated with alarmingly high false positive rates (FPRs). For example, ovarian cancer screening using 

the CA-125 biomarker (1) along with transvaginal ultrasonography has a sensitivity of ~90% but a FPR of 

57% (2). Mammography for breast cancer screening has a FPR of 40-60%  over 10 years of screening (3), 

Cologuard® for colorectal cancer screen has a FPR of 13.4% (4), and PSA for prostate cancer screening 

has a FPR of 20-30%  when the test aims to detect >80% of cancers (5). False positive results, and 

sometimes screening methods themselves, tend to lead to invasive and uncomfortable procedures that are 

associated with risk to otherwise healthy individuals; e.g. radiation exposure during mammography and 

surgery or biopsy in the case of other tumor types. These unnecessary procedures, unfortunately, lead to 

adverse events in approximately 15% of cases (6). High false positive rates along with high adverse event 

rates for follow-up procedures place a significant proportion of the healthy population at unnecessary risk. 

Thus, an alternative and highly accurate non-invasive method for early cancer detection, especially a 

global test for multiple types of cancer, would both reduce the rate and impact of false positive results on 

otherwise healthy individuals, and could lead to substantial improvements in survival and quality of life 

of cancer patients. 

Copy number variations (CNVs), like point mutations, are common and causal for a large proportion of 

cancer types (7, 8). CNV based classification of tumor subtypes has been demonstrated previously, 

though these methods have been focused on gene level events and the stratification of tumors from a 

single organ system into clinically relevant subtypes - rather than assignment of a CNV profile to a tissue 

of origin (9-11). The recent development of non-invasive prenatal tests (NIPT), which involve whole-

genome shotgun sequencing of circulating DNA (100-200bp fragments) (12) in pregnant women in order 

to detect fetal chromosomal abnormalities, has revealed the potential of circulating DNA tests for the 
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detection of cancer (13). However, the tumors incidentally detected by NIPT testing to date have been 

relatively bulky with large and numerous chromosome scale abnormalities, or were simply hematological 

malignancies, and thus not representative of the types of tumors that should ideally be detected by routine 

cancer screening. 

A major obstacle to the utilization of circulating DNA tests in cancer screening, both for small variant as 

well as CNV detection is the low fraction of circulating tumor-derived DNA (ctDNA). NIPT testing can 

detect major chromosomal abnormalities in the fetus, in a context where 10-50% (14, 15) of the 

circulating DNA in a pregnant woman’s bloodstream is derived from the fetus. On the other hand, the 

fraction of ctDNA in the bloodstream is <1%, except for in circumstances where a screening test is 

irrelevant i.e. large and widely disseminated tumors (16). Given that the weak ctDNA mutation signature 

is dispersed over a large genomic region in the case of tumor-derived CNVs, we reasoned that detection 

of large circulating tumor-derived CNVs via sequencing may be a more viable cancer screening 

application of ctDNA sequencing, relative to ctDNA point mutation detection methodologies which either 

have modest sensitivity or must be customized to a patient and thus are only applicable to cancer 

treatment monitoring (17-19). Moreover, ctDNA CNV signatures are more likely to be useful for 

determining the tissue of origin of a tumor, a characteristic that is important for clinical follow-up in a 

cancer screening setting.  

In this light, we explore the potential for ctDNA CNV detection for cancer screening by evaluating the 

ability to detect and differentiate tumor types via large tumor CNV events (5 megabases or greater) that 

are theoretically detectable via ctDNA sequencing (15). We demonstrate that, for many tumor types, 

including those not necessarily enriched with CNV events, it is theoretically possible to accurately detect 

and classify tumor types via large ctDNA detectable tumor-derived CNVs. 
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RESULTS 

Sample Clustering Using SAX Representation 

First, we divided the human genome into segments of sizes 5, 6, 7.5, 10, 30, 40, 60, 75, and 100 

megabases – segment sizes representing a range of tumor-derived CNV event sizes (7) that are 

hypothetically detectable via ctDNA sequencing at low sequence depth (15). We then overlaid the CNV 

profile of each tumor sample across these bins and determined the copy number variant status of each 

bin based on the raw segment duplication values. Symbolic Aggregate Approximation, a method 

developed to convert time series data to a representation amenable to clustering, classification, and 

matching algorithms (20), was selected for this purpose. SAX transformation reduces the dimensionality 

of tumor CNV profiles, from their continuous numerical representation with relatively precisely defined 

CNV boundaries, to a symbolic representation robust to variability in somatic CNV boundaries across 

samples, and amenable to both simple and complex classification algorithms. This simplifies the overall 

CNV profile of a tumor while allowing for the identification of “critical” regions for CNV based tumor 

classification. Specifically, we transformed each segment to a SAX representation with cardinality 5, 

representing normal or 2 copies, 1 copy amplification, more than 2 copy amplifications, 1 copy deletion 

and 2 copy deletion of the genomic segment. This process was meant to simulate the detection of CNVs 

from ctDNA by read counting applications applied across large genomic segments (21, 22). 11 major pan-

cancer (10) solid tumor types were considered: breast adenocarcinoma (BRCA), lung adenocarcinoma 

(LUAD), lung squamous cell carcinoma (LUSC), uterine corpus endometrial carcinoma (UCEC), 

glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), colon and rectal 

carcinoma (COAD, READ), bladder urothelial carcinoma (BLCA), kidney renal clear cell carcinoma 

(KIRC), ovarian serous carcinoma (OV). 
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We performed unsupervised clustering using the SAX transformed CNV values, at each segment size, to 

determine whether simple clustering would be sufficient to differentiate different tumor types from one 

another and from normal samples. Unsupervised clustering utilizing an unfiltered set of all genomic 

segments did not effectively separate tumor types from one another (not shown), therefore, we performed 

restricted clustering to genomic segments deemed relevant for distinguishing tumor types in later applied 

random forest classification model (see below). The resulting heat maps demonstrate some degree of 

separation of disparate tumor types from one another, but clearly demonstrates that, at CNV sizes 

detectable by low pass ctDNA sequencing methods; simple clustering does not sufficiently separate tumor 

types from one another for clinical classification applications (Figure 1 and Supplemental Figures). 

Certain tumor types like GBM and KIRC form cohesive, though not complete, blocks of clustered 

samples, while most others demonstrated a tendency to form close but intermixed clusters with other 

tumor types. These results suggest that classification of tumor type by CNV profile is possible, though 

requires more sophisticated methodology to account for heterogeneity within tumor types and similarity 

across tumor types (10). 

 

Nearest Neighbor Classification 

Given the promising but limited success of unsupervised clustering for cancer type classification, we 

sought to determine whether cancer type can be determined by a k nearest neighbor approach, which 

should account for enrichment of cancer types within intermixed clusters. This model was readily capable 

of distinguishing cancer samples from normal samples with a true positive rate (TPR) of 0.80 and a 

positive predictive value (PPV) of 0.9995 at the 100 Mb segment size threshold; suggesting, perhaps 

unsurprisingly that, in theory, a ctDNA CNV profile, even at coarse resolution, can differentiate between 

healthy individuals and those with cancer with a negligible false positive rate. The TPR and PPV were 

stable across all segment sizes implying that the major differentiating factor between cancer and normal 

samples are relatively large scale genomic copy number changes and high resolution of CNVs is not 
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required to differentiate samples from healthy and cancer patients (Supplemental Table 1). Thus, simple 

detection of cancer via ctDNA sequencing and CNV detection is straightforward. However, certain CNV 

poor cancer types, such as pancreatic adenocarcinomas, prostate adenocarcinomas and thyroid carcinomas 

are difficult to distinguish from normal samples given their flat CNV profiles overall. 

When the nearest neighbor approach was utilized in attempt to determine cancer type or origin, an overall 

accuracy of 0.691 was observed at the 100Mb segment size. At the 5 Mb segment size the overall 

accuracy of cancer type prediction was 0.694 - a non-significant improvement over the accuracy at 

100Mb segment size (Supplemental Table 2).  Again, most of the poor performers were cancer types with 

flat CNV profiles while kidney cancers and GBM performed the best (Table 1). This is consistent with the 

finding that KIRC and GBM also formed more or less consistent clusters during simple clustering. Thus, 

while the nearest neighbor approach readily distinguished cancer from normal profiles, at CNV resolution 

detectable by ctDNA sequencing, accuracy remains insufficient for differentiation of tumor types from 

one another. 

Random Forest Classification 

Finally, we utilized a random forest classification model to simulate the (near) optimal classification 

performance of the ctDNA biomarker (23).  The model had an overall accuracy of 0.78 and 0.74 when 

classifying all tumor types at segment sizes of 5Mb and 100Mb respectively. ROC curves at 5Mb and 

100Mb segment size are plotted in Figure 2 for the 11 major solid tumor types, and demonstrate 

significant differences in performance across tumor types. Additional ROC curves for all thresholds and 

cancer types can be found in the Supplemental Data. Figure 2 demonstrates an overall improvement in the 

predictive power across most cancer types at the greater segment size resolution, but once again the 

improvement when increasing resolution from 100Mb to 5Mb segments is not dramatic. Certain cancer 

types, such as OV, BRCA, GBM and KIRC are consistently and accurately (~95%) assigned to the 

correct tumor type across all segment sizes. While others, apparently those of squamous histology, such 
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as HNSC, LUSC, and BLCA show a considerable improvement (~5% increase in accuracy) in predictive 

value as segment size detection resolution is improved. Thus, while cancer profiles can be readily 

distinguished from normal profiles, determination of the tissue of origin shows variability in performance 

across tumor types and segment size resolution. 

The optimal performance for the different cancer types, based on the point on the ROC curve nearest to 

100% specificity and sensitivity is presented in Table 1 and Supplemental Table 3. Most cancer types 

demonstrate a PPV of >80% at the lowest segment size resolution (100Mb) outpacing the PPV of 

diagnostic tests currently used in clinical practice. OV and GBM demonstrate the best performance 

(>90% TPR and PPV) suggesting they are excellent candidates for ctDNA CNV based screening 

applications. Many other tumor types, especially BRCA, UCEC, READ, KIRC, and LUSC also 

demonstrate excellent TPR and PPV rates (Table 1). 

 

Tumor Misclassification 

Given that our prediction model does not correctly classify all the tumor samples, we investigated 

whether misclassifications were driven by biological relationships or were true classification errors. The 

misclassification heat map at the 5 Mb segment size threshold is displayed in Figure 3, additional heat 

maps for other size thresholds are available as Supplementary Data. Many misclassifications were true 

errors - cancer samples being classified as normal samples (23.4% of errors) or as Breast invasive 

carcinomas (12.8% of errors). These errors are largely derived from cancer types such as Thyroid 

Carcinomas that have very poor performance overall and have flat CNV profiles that are difficult to 

distinguish from normal samples (Supplemental Table 4). Breast cancers tend to be diverse with respect 

to their cell type of origin and contain molecularly distinct subtypes (10), and thus may mimic CNV 

profiles of other tumor types. While breast cancer samples themselves were classified accurately, many 

errors were derived from other tumor types being classified as breast cancer. Given that breast cancer was 
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the largest sample set overall, the imbalance of tumor samples per type is potentially driving this 

misclassification bias. 

For cancer types without flat CNV profiles, misclassification tended to cluster based on tissue of origin or 

molecular subtype. For example, squamous cell cancers like LUSC, HNSC, ESCA and CESC show 

similar misclassification patterns and are often misclassified for one another (Figure 3). Tumors of the 

gastrointestinal tract, STAD, COAD, and READ are also often misclassified for one another. Similarly, 

brain cancers GBM and LGG show a high degree of cross misclassification. Cancers originating from the 

kidneys (KIRC, KIRP, and KICH) form a misclassification cluster with ACC and PCPG. These tissues 

originate from the intermediate mesoderm, which likely explains their cross misclassifications. Finally, 

tumors driven by similar genetic mechanisms, e.g. OV and BRCA, were often misclassified for one 

another. These results suggest that misclassification is often biologically driven and follow clinically 

addressable patterns.  

 

Theoretical Power of Detecting Segment CNV 

Finally, we performed an in silico assessment of the potential for ctDNA CNV detection at low ctDNA 

fractions. The utility of the prediction accuracy described herein would only be borne out if ctDNA CNVs 

are detectable at the given segment size thresholds. Obviously, massively high read depth could 

potentially be used to detect small ctDNA derived CNVs at low ctDNA fractions (~0.1%). However, we 

aimed to determine whether predictive accuracy could be balanced with cost and implementation 

feasibility. To assess the feasibility of ctDNA CNV detection for cancer screening, we estimated the 

theoretical sequencing depth required to detect a single copy change (p-value < 0.01) at various segment 

size thresholds and ctDNA fractions. Figure 4 displays the results of this calculation with variance 

calculated using a Negative Binomial distribution and an artificially high assumed variance of 2 times the 

mean. At 0.1% ctDNA fraction of total circulating DNA, a 100Mb copy number variant aberration is 
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easily detectable with less than 100 million reads - suggesting that the predictive performance presented 

herein is technically and clinically achievable in practice. 

 

DISCUSSION 

Early detection is the key to improving cancer outcomes; however, modern screening methods have false 

positive rates that expose the healthy population to unacceptable risk. Interest in ctDNA screening 

methods has grown tremendously given recent reports of cancer detected incidentally during NIPT 

screening. However, point mutations have been the focus of ctDNA methods developed to date – methods 

that are extremely useful for monitoring of cancer treatment response (17-19). Yet, for early stage tumors, 

the fraction of ctDNA amongst the total circulating DNA pool severely limits the practical application of 

these technologies for cancer screening. At 0.1% ctDNA fraction of total circulating DNA, one can expect 

only 1 – 5 mutant DNA copies per mL of blood(16) – a mutation fraction that is below the error rate of 

modern sequencing platforms and detectable only by highly specialized and targeted assays (17). The 

narrow focus of these assays limits their utility for broad cancer screening, even for a single tumor type, 

with some exceptions for tumor types like melanoma where a single point mutation (BRAF V600E) is 

highly recurrent. On the other hand, large tumor-derived copy number aberrations will contribute millions 

of DNA fragments to the overall circulating DNA pool. The analyses presented herein suggest that it is 

feasible to detect these large tumor-derived CNVs in circulating DNA with reasonable sequencing depth, 

and that the detectable CNV profiles can accurately determine the organ of origin of the tumor – a feature 

that is incredibly important for early stage screening purposes. 

While the predictive segments were selected via an unbiased methodology, they demonstrate significant 

overlap with recurrent CNVs identified in a pan cancer study across 12 common cancer types (24). About 

50% of the important segments at the 5 Mb segment size threshold contained a recurrent pan-cancer 

amplification or deletion and another 30% of the segments overlap with disease specific amplifications or 
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deletions. Moreover, 8 of 10 of the most important segments for cancer type determination were among 

this list of recurrently amplified and/or deleted pan-cancer CNVs. These most important amplified or 

deleted segments contain known cancer genes including MYC, EGFR, ERBB2 CDKN2A, RB1 and 

STK11. For example, 8q24 (25-27) aberrations are suggestive of cancer across a large variety of tumor 

types.  

Interestingly, the tumor types that could be most effectively identified via CNV profile did not necessarily 

align with the M-class (mutation class) vs. C-class (copy number variant class) tumor types as determined 

by another pan-cancer study (28). For example, although KIRC is an M-class tumor, it was among the 

most effectively classified tumor types based on its CNV profile. While KIRC is not broadly copy 

number aberrant, loss of the short arm of chromosome 3 (3p) (29) containing genes like VHL, PBRM1, 

BAP1 and SETD2, is highly predictive of KIRC – given it is observed in almost 90% of KIRC cases. 

Thus, the promise of this approach is not necessarily limited to C-class tumor types. 

Some potential challenges for the implementation of ctDNA CNV detection for early cancer screening are 

not fully addressed by this in silico analysis. For example, it will be necessary to understand and override 

the issue of sample variability in order to achieve the accurate identification of CNVs via ctDNA. While 

we have made a conservative estimate of this variability, robust sequencing-depth normalization schemes 

will likely be necessary to achieve this level of variance. Moreover, it is presumed, but not known, 

whether CNVs predictive of cancer are present in early stage tumors. The battery of tumor profiles used 

in this analysis, derived from The Cancer Genome Atlas (http://cancergenome.nih.gov/), contain many 

late stage tumors. These analyses suggest that cancer screening via ctDNA based CNV detection should 

be attempted in diverse and larger patient cohorts. 
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METHODS 

Copy Number Variation Data 

We downloaded whole genome copy number variation data, generated by the Tumor Cancer Genome 

Atlas Research Network (http://cancergenome.nih.gov/), for 25 different cancer types: Adrenocortical 

carcinoma (ACC), Bladder Urothelial Carcinoma (BLCA), Brain Lower Grade Glioma (LGG), Breast 

invasive carcinoma (BRCA), Cervical squamous cell carcinoma and endocervical adenocarcinoma 

(CESC), Colon adenocarcinoma (COAD), Esophageal carcinoma (ESCA), Glioblastoma multiforme 

(GBM), Head and Neck squamous cell carcinoma (HNSC), Kidney Chromophobe (KICH), Kidney renal 

clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP), Liver hepatocellular 

carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC), Ovarian 

serous cystadenocarcinoma (OV), Pancreatic adenocarcinoma (PAAD), Pheochromocytoma and 

Paraganglioma (PCPG), Prostate adenocarcinoma (PRDA), Rectum adenocarcinoma (READ), Skin 

Cutaneous Melanoma (SKCM), Stomach adenocarcinoma (STAD), Thyroid carcinoma (THCA), Uterine 

Carcinosarcoma (UCS) and Uterine Corpus Endometrial Carcinoma (UCEC). The data was accessed in 

December 2014 from http://gdac.broadinstitute.org/ (30) (doi:10.7908/C19P30S6). 

 

Specifically, we downloaded the segmentation files which contain information about the copy number of 

segmented genomic data produced by various algorithms like GLAD and CBS(31, 32). Variants in each 

sample were first run through the SG-ADVISER CNV annotation pipeline  (33) and then variants with an 

allele frequency of >1% in the 1000 Genomes (34) or the Wellderly (35, 36) cohorts were filtered out. 

 

Data Representation 

We adapted the SAX transformation (20) to represent the CNV data in a concise format while not losing 

any critical information. We first divided chromosomes 1-22 into segments of sizes 5, 6, 7.5, 10, 30, 40, 

60, 75, 100 Mega bases. For each of the segments we calculated the average segment duplication value. 
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This average segment duplication value was then mapped to an appropriate letter representation. 

Specifically, any value above 0.4 was mapped to ‘e’, values between 0.2 and 0.4 were mapped to ‘d’, 

values between -0.2 and 0.2 were mapped to ‘c’, values between -0.2 and -0.4 were mapped to ‘b’ and 

any value below -0.4 were mapped to ‘a’. We chose a cardinality of 5 to be able to represent normal or 2 

copies, 1 copy amplification, more than 2 copy amplification, 1 copy deletion and 2 copy deletion of the 

genomic segment.  

 

Prediction Methods 

The SAX transformed data was used to train machine learning models which could distinguish a normal 

sample from a cancer sample and also predict the type of the cancer as described by TCGA. We used 

random forests which is an ensemble learning method and the KNN (k-nearest neighbors) method which 

is a simpler pattern recognition algorithm.  

The standard k-Nearest Neighbor algorithm was implemented using custom code in R. Briefly, we 

calculated distances between each of the SAX transformed samples using a modified hamming distance 

metric where the distance between adjacent letters was fixed as 0.5 and any other changes were fixed as 1. 

The data was then randomly split into a training set (75%) and a test set (25%). For classification the 

custom distance metric was used to find k training samples closest to the test sample and the majority 

class in the k samples was assigned to the test sample. k was set as the square root of the total number of 

samples.  

A separate random forest model was trained to optimize overall accuracy for each segment size threshold 

using a 10 fold cross validation training scheme, each model contained 100 trees and the optimal number 

of variables randomly sampled as candidates at each split in the trees was determined heuristically. 

For tumor clustering we used the segments marked as important by the random forest model. Then we 

used the modified hamming distance described earlier to calculate the distances for the clustering. Each 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 29, 2016. ; https://doi.org/10.1101/041848doi: bioRxiv preprint 

https://doi.org/10.1101/041848


14 

 

column in the heat map corresponds to a sample, and the rows represent the important segments identified 

by the random forest. Each cell has been colored red for a gain and blue for a loss.  

For the tumor misclassification heat maps the color scale was used to represent the percentage of 

misclassification as another tumor type or normal with white being 0% and dark blue being 100% of the 

misclassifications. The samples were clustered according to a custom similarity metric S. Let A and B be 

two tumor samples with An and Bn being the number of samples in A and B respectively, then if α and β 

are the fraction of samples of A classified as B and the fraction of samples of B classified as A, and N is 

the total number of samples, the similarity S(A,B) between A and B can be defined as - 

( )
( )

N

BA
BAS

nn +
+= βα

),(  

Theoretical Power of CNV Detection Calculations 

To calculate the theoretical limit of detecting CNVs we used a negative binomial distribution to model the 

sequencing of circulating DNA and subsequent read mapping. Generally, sequencing data is affected by 

biases in genome composition, sequencing and mapping and thus a negative binomial distribution does a 

better job at modelling the sample variance as compared to a Poisson distribution (37).  We used two 

separate negative binomial models, for the first we used the following definition of the probability mass 

function (pmf) 

rkrk
k ppCkXP )1()( 1 −== −+

 

Where X is the random variable denoting the number of successes before ‘r failures’ or in this case 

number of reads mapped to the genomic segment of interest; p is the probability of one success i.e. the 

probability of mapping a read to that genomic segment calculated as 1/(Number of Segments); r, the 

number of failures, is calculated as (1-p)(Total number of reads) denoting the number of reads mapped to 
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any other genomic region. For the second model we used an alternative formulation of the negative 

binomial distribution represented as the following pmf 
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In this case r is referred to as the “dispersion parameter” or the “shape parameter” and m is the mean of 

the distribution calculated as (Total number of reads)/(Number of segments). The variance for this model 

is given by . We fixed the variance as twice the mean value, thus getting an estimate for ‘r’ and 

using that for the model. This was done in order to simulate an arbitrarily large variance. For both these 

models we then calculated the right tail of the pmf for X being equal to the expected number of counts at 

a segment in case of a 1 copy duplication event given the mean being equal to the expected counts at the 

segment in case of a normal sample, thus getting a p-value. We performed these calculations at various 

read depths and circulating tumor DNA representing 0.1%, 1% and 10% fraction of the total circulating 

DNA in the sample.  

Software 

Data filtration and SAX transformations were performed using custom scripts in python. All models were 

built using R v3.1.1. The ‘caret’ library in R was used to train the random forest models. ROC curves 

denoting the performance of the models were plotted using the library ‘pROC’. Heat maps were plotted 

using the ‘gplots’ library. All calculations for the theoretical limit of CNV detection were performed 

using R version 3.1.1 as well. 
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FIGURE AND TABLE CAPTIONS 

Figure 1: Sample Clustering with Symbolic Aggregate Approximation (SAX) Representation 

Heat maps showing the results of unsupervised clustering using SAX transformed data at the 100 Mb 

segment size (top panel) and 5 Mb segment size (bottom panel). Deletions are colored blue and 

amplifications are colored red. We achieve some extent of separation of disparate tumor types from one 

another, with some cancers like KIRC and GBM forming compact but incomplete groups while most 

others remain in intermixed clusters.  

 

Figure 2: Tumor Classification Performance 

ROC curves at 5Mb (top panels) and 100Mb segment size (bottom panels) showing performance of 

classification of cancer types (left panels)) and cancer vs normal (right panels) for 11 major types of solid 

tumors - breast adenocarcinoma (BRCA), lung adenocarcinoma (LUAD), lung squamous cell carcinoma 

(LUSC), uterine corpus endometrial carcinoma (UCEC), glioblastoma multiforme (GBM), head and neck 

squamous cell carcinoma (HNSC), colon and rectal carcinoma (COAD, READ), bladder urothelial 

carcinoma (BLCA), kidney renal clear cell carcinoma (KIRC), ovarian serous carcinoma (OV). It can be 

seen that there is an overall increase in the AUC values when going from a 100 Mb segment size to 5 Mb 

segment size in both Cancer vs Normal and Cancer Type prediction. The increase in AUC, however, is 

not dramatic and reflects the robustness of this method at various size resolutions.   

 

Figure 3: Heat map cluster of tumor types by misclassification frequency 

Every column has one cancer type and each row displays the misclassification frequency of that cancer 

type to the one represented by the row. Correct classifications are set to 0 to highlight the 

misclassifications. Color indicates the frequency of misclassification with darker color being a higher 

frequency. Cancers seem to cluster according to their cells of origin and most misclassifications are to 
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cancers with similar cell type. Cancers like THCA, PAAD and PRAD that have low CNV burden are the 

hardest to detect from Normal samples.  

 

Figure 4: Theoretical power of CNV Detection 

CNV size (Kb) detectable with a p-value < 0.01 is plotted against the number of reads required to do so. 

Each curve represents the amount of ctDNA as a percentage of total circulating DNA. Darker colored 

curves represent calculations using a Negative Binomial (NB) model and lighter colors represent 

calculations using a NB model with variance fixed as twice the mean. 

 

Table 1:  Performance of the KNN and random forest models in determining cancer type 

The predictive performance of the KNN model and the optimal performance of the random forest model - 

based on the point on the ROC curve nearest to 100% specificity and sensitivity - per cancer type are 

listed at the 100 Mb and 5 Mb segment size thresholds. PPV: Positive predictive value; TPR: True 

positive rate. 
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TABLE 1 

KNN Random Forest (Optimal) 

100 Mb 5 Mb 100 Mb 5 Mb 

Sample Type TPR PPV TPR PPV TPR PPV TPR PPV 

Thyroid carcinoma 0.088 0.182 0.105 0.245 0.200 0.521 0.291 0.558 

Pancreatic adenocarcinoma 0.000 0.000 0.020 0.500 0.486 0.610 0.627 0.696 

Uterine Corpus Endometrial Carcinoma 0.252 0.284 0.325 0.221 0.669 0.709 0.684 0.730 

Stomach adenocarcinoma 0.357 0.303 0.232 0.277 0.758 0.777 0.817 0.824 

Prostate adenocarcinoma 0.130 0.213 0.206 0.415 0.550 0.669 0.824 0.834 

Colon adenocarcinoma 0.673 0.536 0.645 0.477 0.830 0.837 0.834 0.843 

Bladder Urothelial Carcinoma 0.115 0.429 0.077 0.500 0.810 0.808 0.839 0.845 

Kidney renal papillary cell carcinoma 0.574 0.684 0.618 0.627 0.875 0.881 0.841 0.848 

Lung adenocarcinoma 0.113 0.536 0.135 0.400 0.822 0.830 0.853 0.857 

Esophageal carcinoma 0.022 1.000 0.000 NA 0.795 0.805 0.854 0.853 

Adrenocortical carcinoma 0.409 0.750 0.409 0.692 0.911 0.909 0.856 0.864 

Head and Neck squamous cell carcinoma 0.280 0.298 0.333 0.352 0.834 0.840 0.872 0.876 

Cervical squamous cell carcinoma and endocervical adenocarcinoma 0.042 0.250 0.097 0.318 0.855 0.858 0.875 0.876 

Kidney Chromophobe 0.882 0.789 0.882 0.682 0.879 0.888 0.879 0.889 

Breast invasive carcinoma 0.665 0.365 0.482 0.519 0.862 0.865 0.881 0.883 

Liver hepatocellular carcinoma 0.150 0.750 0.390 0.513 0.844 0.851 0.884 0.884 

Rectum adenocarcinoma 0.027 0.250 0.000 0.000 0.916 0.916 0.886 0.889 

Uterine Carcinosarcoma 0.000 NA 0.000 NA 0.893 0.886 0.893 0.885 

Skin Cutaneous Melanoma 0.212 0.833 0.297 0.833 0.847 0.853 0.900 0.902 

Kidney renal clear cell carcinoma 0.746 0.585 0.754 0.537 0.881 0.888 0.902 0.907 

Lung squamous cell carcinoma 0.488 0.438 0.545 0.493 0.860 0.868 0.910 0.910 

Brain Lower Grade Glioma 0.478 0.637 0.463 0.441 0.865 0.864 0.911 0.913 

Pheochromocytoma and Paraganglioma 0.435 0.833 0.391 0.857 0.922 0.923 0.911 0.914 

Glioblastoma multiforme 0.783 0.675 0.811 0.577 0.929 0.930 0.944 0.944 

Ovarian serous cystadenocarcinoma 0.321 0.863 0.372 0.879 0.937 0.937 0.957 0.956 

Normal 1.000 0.836 0.999 0.832 0.994 0.993 0.983 0.982 
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