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Approximate Bayesian bisulphite sequencing
analysis
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Jacques Behmoaras®, Petros Dellaportas®$, Leonardo
Bottolo788§ & Enrico Petrettol$

We present a Bayesian smoothing approach to detect
differentially methylated regions from whole-genome
bisulfite sequencing (WGBS) data. The method exploits
the Integrated Nested Laplace Approximation for fast
and accurate model fitting, an alternative to
computationally expensive sampling-based methods.
We demonstrate the approach by extensive simulation
studies and WGBS of macrophages in experimental
glomerulonephritis, revealing differential Ifitm3
promoter methylation in  glomerulonephritis,
supported by differential transcription factor binding
and Ifitm3 gene expression.

One of the most important epigenetic modifications
directly affecting DNA is methylation, where a methyl group
is added to a cytosine base in the DNA sequence creating 5-
methylcytosine. Whilst it is still not fully understood how
DNA methylation affects gene expression, it has been shown
that depending on the location of the modification it can
either have a positive or negative effect on the level of
expression of genesl. The majority of functional methylation
changes are found in methylation sites where cytosines are
immediately followed by guanines, known as CpG
dinucleotides. These are not positioned randomly across the
genome but tend to appear in clusters called CpG islands
(CpGD)2. It has been also shown that there are concordant
methylation changes within CpGI and in the genomic regions
immediately surrounding CpGI (also known as CpGI shores
or CpGS). These “spatially correlated” DNA methylation
patterns tend to be more strongly associated with gene
expression changes than the methylation changes occurring
in other parts of the genomes3.

High-throughput sequencing techniques, such as WGBS,
now allow for genome-wide methylome data to be collected
at single base-resolution*. However, the challenge remains
on how to efficiently identify DNA methylation changes at
the genome-wide level, and also account for the complex
correlation structures present in the data. Beyond the
univariate analysis of methylation changes at each CpG,
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recently the focus has shifted to identifying differentially
methylated regions (DMRs), since CpG methylation status is
highly dependent on the status of the surrounding CpG sites.
To this aim, a number of tools have been proposed to detect
DMRs from WGBS data. Typically, in the first level the
number of methylated/unmethlyated reads is modeled (e.g.,
using binomial or negative-binomial distribution) and then,
in a second level, a smoothing operator is applied, for
instance a local-likelihood smoother (e.g., BSmoothS) or a
lognormal-beta hierarchical model (e.g, DSS¢). Other
strategies have been developed (for example MethylKit?,
MethySig8) and reviewed in Robinson et al’.

Here we propose a new approach, approximate
Bayesian Dbisulphite sequencing analysis (or ABBA),
designed to smooth automatically the underlying - not
directly observable - methylation profiles and reliably
identify DMRs. This approach takes advantage of the
recently  introduced Integrated Nested Laplace
Approximation (INLA)19, a technique that allows for a fast
and accurate fitting of the parameters in terms of both
convergence and computational time when compared to
sampling-based methods such as Markov chain Monte
Carlo!! (MCMC) or Sequential Monte Carlo? (SMC). ABBA
is a Bayesian structured generalized mixed additive model
with a latent Gaussian field (i.e, the wunobserved
methylation profile), controlled by a few hyperparameters,
and with a non-Gaussian response variable (i.e., the
number of methylated/unmethlyated reads). ABBA
provides the estimate of the posterior distribution of the
smoothed unobserved methylation profile as well as the
posterior methylation probability (PMP) at each CpG site.
By contrasting the whole-genome PMPs between two
groups, e.g. cases and controls, ABBA identifies DMRs at a
specified False Discovery Rate (FDR) (Fig. 1a). Several
intrinsic features of the data are incorporated into the
model. For instance, the variability of the experimental
replicates within each group is modeled through a random
effect with a specific within-group variance. The spatial
correlation of DNA methylation patterns is encoded in the
latent Gaussian field equation, which reflects the
neighborhood structure of the model. In particular, the a
priori correlation between CpGs’ methylation profile values
depends on the distance between the CpGs and decreases
as this distance increases. The degree of smoothing of the
unobserved methylation profile is controlled by the
variance of the marginal density of the latent Gaussian
field. Rather than relying on a user-defined value for this
parameter or fixing it by an automatic procedure (for
instance through an empirical Bayes approach), ABBA
assigns a non-informative prior to the variance of the
marginal Gaussian density. This specification is key in our
model since the data-adaptivity of the degree of smoothing
permits the analysis of different scenarios rather than
assuming fixed (genome-wide) values. All these features
allow our model to adjust better to real-world scenarios,
providing a purely data-driven way to describe the WGBS
data without requiring any user-defined parameters. The
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PMP allows the straightforward derivation of the posterior
differential methylation probability (PDMP) at each CpG
site between the two groups. This quantity is used in a
Bayesian non-parametric FDR procedure to distinguish
PDMPs that belong to the null distribution (no differential
methylation) and the alternatives. As in Broét et al.13, the
classification of PDMPs into two groups permits the
genome-wide calculation of the cut-off level to declare
differentially methylated CpG sites at a fixed FDR level. Full
details of ABBA model, INLA approximate inference and
FDR procedure can be found in the Online Methods.

We benchmarked ABBA and compared it against
recently proposed methods (DSS¢, MethylKit?, MethySigs,
BSmooth5 and the univariate Fisher’s exact test (FET)). To
ensure an objective comparison, we used WGBSSuite!* to
generate test datasets that are independent of the
underlying statistical models of ABBA and of the other
methods. Briefly, we generated test datasets to assess the
performance of each method under several scenarios,
which have been modeled using a combination of
parameters related to data integrity and quality of the
signal. The parameters considered are the following; the
number of replicates within each group (r), the average
read depth per CpG, background level of noise variance
(So), the methylation probability difference between the
two groups (4dmeth) and the random perturbation
parameter (&) used here to simulate the errors due to
incomplete bisulfite conversion (see Online Methods for
details). For each simulated case we compared the DMRs
called by each technique with the true simulated DMRs. To
quantitatively assess the performance of ABBA with
respect to competing methods, we evaluated false-positive
and false-negative rates and generated receiver operator
characteristic (ROC) curves, focusing on the partial area
under the ROC curve (or pAUC) at a specificity of 0.75. The
pAUC is considered to be more practically relevant than the
area under the entire ROC curve?s since in typical genomics
studies only the features identified at very low false
positive rates are selected for further biological validation.
All  results of the benchmark are detailed in
Supplementary Fig. 1-3 and summarized graphically in
Fig. 1b, which shows, for a given combination of
parameters, the best performing method based on its
pAUC. Specifically, the colors in the “benchmark grid”
indicate the best performing method in each of the 162
different simulated scenarios. Considering all simulated
datasets, ABBA (black) showed to be the best method in
138 (85%) cases or to have a similar performance to
another method (most often DSS) in 13 (8%) cases. Only in
11 (7%) simulated scenarios was ABBA not the best
performing method, and in these cases DSS frequently
showed the best performance (e.g, with random
perturbation § = 10% and Ameth = 50% or 70%; right
hand-side of Fig. 1b). Looking at the detailed ROC curves
reported in Supplementary Fig. 1-3, the difference in
performance between ABBA (and DSS) and all other
methods is most apparent for simulated datasets with low

coverage and relatively small methylation probability
difference between the two groups. Overall the ABBA curve
dominates the entire range of pAUC’s sensitivity/specificity
in 82% of the benchmarks. In particular, for all simulated
scenarios with 10x coverage and Ameth = 30% and
irrespective of the values set for all other parameters,
ABBA was the best performing method (with exception of
one case where its performance was similar to that of
BSmooth (cyan)), Fig. 1b. This suggests that in the
simulated cases where it is most challenging to detect
DMRs (i.e., low WGBS coverage, small differences in
methylation, small number of replicates and in presence of
incomplete bisulfite conversion errors) ABBA consistently
outperformed all other methods. These data show the
robustness of our procedure to recover the unobserved
methylation profile and accurately identify DMRs when the
number of observations is small and the reliability and/or
sensitivity of the sequencing assay is low, or when the
signal is contaminated by a high level of background noise.
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Figure 1. ABBA model and benchmarking results

(a) ABBA estimates the unobserved methylation profiles from WGBS
data. A random effect accounts for experimental replicates while
the degree of smoothing is modeled by the latent Gaussian field that
probabilistically connects consecutive methylation probabilities.
Genome-wide methylation probability differences between groups
identify DMRs at a fixed FDR level. (b) Global snapshot of the
method’s performance across all simulated datasets. A given
combination of parameters is indicated by a square in the
benchmark grid, and for each square we calculated the pAUC for
each method and determined which method had the overall best
PAUC (ie., pAUCmethod1 > pAUCmethod.2). Colours in the benchmark
grid indicate which method had the best performance. When pAUC
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of two methods are similar (+1%) we report the colours of both
methods (e.g., black and red colours in the same square indicate
similar performance of ABBA and DSS).

Some differences in method performance start to emerge in
the presence of frequent errors occurring in the bisulfite
conversion of DNA. Being the first step in a WGBS
experiment, bisulfite conversion results in the selective
deamination of cytosine to uracil of the DNA (leaving
methylated cytosines unchanged), which can then be
sequenced and ultimately provide a measure of DNA
methylation at the single-base resolution. To mimic the
error that can be introduced by failed bisulfite conversion,
i.e, when an unmethylated cytosine fails to be deaminated
therefore appearing as if it had been methylated, we
introduced a random perturbation parameter (§) to
control when the methylation status of a small fraction of
CpG sites (picked at random in one of the two populations)
is inverted. With no random perturbation or 5%
probability of switching methylation status (i.e., low or
minimal errors in bisulfite conversion), ABBA was overall
the best method or showed similar performance to DSS in
two cases (Fig. 1b). However, when § was as high as 10%
(i.e., 1 in 10 CpGs is misclassified as unmethylated or vice
versa), we observed that DSS performs as the best method
in 10 out of 54 simulated scenarios, and in other 10 cases
ABBA and DSS have comparable performance. This was
more apparent when large probability differences between
the two groups were simulated (Ameth = 50% or 70%). In
these cases, the drop in performance of ABBA in
comparison with DSS might be due to the definition of a
“significant DMR” between the two methods. In our
simulations we used the default settings of DSS, which
require only 80% of all CpGs within (at least) 100bp-long
region to be significant in order to call a “significant DMR”,
whereas ABBA more conservatively requires all CpGs in a
DMR to be significant at a specified FDR level. It is likely
that in some instances this make DSS more robust to
frequent errors introduced at random. However, we
highlight that bisulfite conversion rates lower than 95%
are considered suboptimallé; therefore the 10% random
perturbation is not typically accepted in WGBS
experiments. Under the more likely experimental scenario
where § is kept at 5% ABBA was the best performing
method and on the whole ABBA’s performance was the
most robust across a variety of parameters tested.

To illustrate the practical utility of ABBA, we generated
WGBS data in an established experimental model of
crescentic glomerulonephritis (CRGN)?, and assayed CpG
methylation at single-nucleotide resolution in primary
macrophages from four Wistar Kyoto (WKY) and four
Lewis (LEW) isogenic rats (see Online Methods). Using an
FDR cutoff of 5%, ABBA identified 1,004 DMRs genome-
wide, with 1.07% falling within an annotated CpGI and
6.78% within an annotated CpGS (Fig. 2a). Of the 1,004
DMRs, 427 overlapped with annotated genes
(Supplementary Table 1), and there was a significant
enrichment for DMRs occurring within 1kb of the gene

boundaries (P<0.001), within exons (P<0.05) and introns
(P<0.05), Fig. 2b. The genes that are within 1kb of a DMR
were enriched for pathways relevant to CRGN, including
MAPK signalling!8, Phosphatidylinositol signalling!? and Fc
gamma R-mediated phagocytosis2? (Fig. 2c). As DNA
methylation can affect gene expression by interfering with
transcription factor binding, we performed a transcription
factor binding site (TFBS) analysis of the DMRs (Fig. 2d).
This revealed enrichment for the ETS transcription factors
family and a number of proteins that make the AP-1 TF
complex (JUNB, FOS, JUN and JUND), which have been
previously linked with CRGN2%22, To further investigate the
potential effect of DMRs identified by ABBA, we carried out
differential expression (DE) analysis in macrophages from
WKY and LEW rats by RNA-seq. The list of DE genes
(n=910, Benjamini-Hochberg (BH)-corrected P<0.05) was
crosschecked with the genes impacted by DMRs,
identifying 48 genes with both differential methylation and
differential expression (Supplementary Table 2). Among
these genes, Ifitm3, Ydjc and Cd300lg showed differential
methylation at their promoter region. Since the promoter is
a key regulatory region where the effect of methylation is
more clearly understood, we investigated these genes in
detail and found the biggest change in mRNA expression
was in interferon induced transmembrane protein 3
(Ifitm3), with gene mRNA being almost undetected in
unstimulated WKY macrophages (Fig. 2e). This
observation is consistent with the differential methylation
status of the promoter of Ifitm3, which was more
methylated in WKY than in LEW rats (Fig. 2f). We have
previously shown that JunD (AP-1) transcription factor is a
major determinant of CRGN in WKY rats?!. Therefore we
scanned the DMR for canonical JunD binding site motifs,
and identified three putative regions in the promoter
region of Ifitm3. To further investigate whether the DNA
methylation differences between WKY and LEW
macrophages might underlie the differential gene
regulation we re-analyzed ChIP-Seq data for JunD in WKY
and in a congenic strain from LEW (see Online Methods
for details). This analysis identified significant differences
in JunD binding between WKY and LEW-congenic strain
that overlapped with two of the four TFBS identified at the
Ifitm3 promoter (Fig. 2g). This is consistent with the
hypothesis that the difference in DNA methylation is having
a knock-on effect on the regulation of Ifitm3. Analysis of the
same genomic region by other methods either failed to
identify significant DMR (MethySig) or identified a large
and unspecific genomic area as differentially methylated
(DSS and BSmooth), Supplementary Fig. 4. Therefore,
none of the competing methods pointed to methylation
differences specific to the Ifitm3 promoter where the TFBS
and differential ChIP-seq signals were also identified. The
combined evidence provided by ABBA and RNA-seq/ChlIP-
seq data therefore suggests that the effect of DNA
methylation of the Ifitm3 promoter in WKY rats may be
restricting the binding of regulatory elements and, as a
consequence, the gene is almost not expressed (<1TPM) in



unstimulated macrophages of WKY rats. DNA methylation MethySig8 and BSmoothS5, retaining a high degree of

alterations in IFN-related genes, including Ifitm3, have robustness of the results with respect to several factors
been previously observed and proposed to contribute to affecting WGBS data integrity and quality, including
the pathogenesis of autoimmune diseases such as primary sequencing coverage, number of replicates or different
Sjogren's syndrome?3. Our findings therefore are noise structures. This is particularly appealing in cases
suggestive of a potential similar role for Ifitm3 in rat when considerable efforts have been expended toward
glomerulonephritis. generation of large-scale WGBS data from heterogeneous

Our extensive simulation studies and WGBS-analysis systems, e.g., the ENCODE project, and data quality can vary
results demonstrate that ABBA is a powerful approach for across experimental conditions and laboratories. As WGBS
the identification of DMRs from single-base resolution data generation is expected gains in scale, reliable and
methylation data, without requiring user-defined flexible methods will become increasingly important to
parameters external to the data. ABBA outperforms other ensure results reproducibility across studies.

commonly used methods such as DSS¢ MethylKit?,
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Figure 2. ABBA analysis of WGBS in rat macrophages

(a) CpG-based annotation 1,004 DMR between WKY and LEW macrophages showing significantly higher proportions of CpGI and CpGS than
those that would be expected by chance (P<0.009 for CpGI and P<0.001 for CpGS, respectively, obtained by 1,000 randomly sampled datasets of
1,004 CpG-matched regions). (b) Proportions of DMRs in different genomic features of overlapping genes. Feature annotation was retried from
UCSC genome browser (RN4). (c) KEGG pathway enrichment for the genes overlapping with DMRs. Only significant pathways are reported
(FDR<1%). (d) Enrichment for the TFBS within the DMRs was when compared to CG matched regions of the genome (FDR<0.05). (e) RNA-seq
analysis in WKY and LEW macrophages shows Ifitm3 lack of expression in WKY rats. (f) Percentage methylation at each CpG in WKY (crosses)
and LEW (plus) and smoothed methylation profiles by ABBA. The pink box highlights the significant DMR identified by ABBA (FDR<5%). (g)
ChIP-seq analysis for JunD in LEW.LCrgn2 (LEW*) and WKY macrophages identified a region with differential binding of JunD (Sign Diff row,
black box). This region overlapped with two (out of four) JunD binding sites motifs identified within the gene promoter (+500bp around the
TSS). ABBA DMR, differentially methylated region identified by ABBA. TSS, transcription start site. * P<0.05, *** P<0.001.
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ONLINE METHODS

Latent Gaussian model. A latent Gaussian model (LGM)
can be described by a three-stage hierarchical model

yilxi, 0 ~ w(y;|x;, 0), (1)
x|60 ~ N(u(6),Q7(0)), (2)
0 ~n(0), (3)

where y;, i =1,---,n, are the observed values, x is n-
dimensional vector of latent variables and 0 is p-
dimensional vector of model parameters. (1) is the
observations equation and it describes the probabilistic
model for each observation conditionally on the latent
variable x; and the model parameters 6, (2) is the latent
Gaussian field equation with the latent variables
distributed as a p-dimensional normal distribution, with
mean vector u(@) and a sparse precision matrix Q(8).
Both quantities can depend on the model parameters
vector 8 whose distribution is described in the parameter
equation (3). The Gaussian vector x exhibits a particular
conditional dependence (or Markov) structure which is
reflected in its precision matrix Q(8).

Given (1), (2) and (3), the joint posterior can be
written as

n(x,01y) % w(@rxl0) | | i, 0)

1 T
« 1(©)|Q(B)]2exp |~ (x — u(®) QO (x — u(8))
+ ZillOg(”(}’i |, 9))}-

As shown in%* for Gaussian Markov random fields
(GRMF), with LGM as a special case of GRMF, core linear
algebra operations using a dense matrix Q(@) become
computational expensive resulting in infeasible run times.
Computational efficient inferential methods rely instead
on the sparseness of the precision matrix Q (@) since the
most common linear algebra operations can be performed
much faster for sparse matrices than for dense ones.
Further computational efficiency can be reached when the
dimensional vector of model parameters is also small.

Integrated Nested Laplace Approximation. Integrated
Nested Laplace Approximation (INLA) is a new approach
to Bayesian statistical inference introduced by25 and
subsequently extended??. It provides a fast and accurate
alternative to MCMC and other sampling-based methods
such as Sequential Monte Carlo!2. The main advantage of
INLA over MCMC/SMC is that it is much faster to
compute; it gives answers in minutes or seconds where
MCMC requires hours or days.

INLA10 builds upon the Laplace approximation which
was proposed originally by 26 to posterior moments in a
Bayesian set-up but can also be used to approximate
marginal posterior densities. Below we describe the main
approximation steps implemented in INLA. For LGM (1-3)
the marginal posteriors of interest are

n(xly) = f n(xily, 0)m(8]y)de,

w(6y) = [ n@i)as,

where 6, ; indicates the whole model parameters vector
but the jth element. INLA seeks to approximate both
quantities by

(x,y) = [#(x;|y, 0)7(6]y)do, (4)

#(05ly) = [7(81y)d6y;, (5)

where (4) and (5) are obtained by approximate 7 (x;|y, 0)
and (0|y). Finally numerical integrations (finite sum) of
the approximations to m(x;|y) and w(0|y) are carried out

on selected support points of @ provided that the
dimension of @ is not too large

mCaly) = ). wCaly, 6976, I)A°,

w(6)ly) = ), 7641y,

with A? suitable weights. Crucially in (4) and (5), the
approximation to the marginal posterior of @ (up to the
unknown constant of normalization (y))

n(y|x, 0)m(x|0)m ()
n(x|y,0)

is obtained by computing the Laplace approximation

n(0ly) «

~ (y.x.6)
Oly) < = 6
O 6)
with 7;(x|y, @) the Gaussian approximation of the full
conditional distribution

1 T
n(x1y,6) o« exp{=3 (x - u(®) Q) (x — u(8))

+ Zillog(ﬂ(}’ilxi' 9))}

evaluated in the posterior mode x = x*(0@) that is
obtained by a Newton-Raphson algorithm, for a given 8,
ie m(x|y,0) is well approximated by a Gaussian
distribution by matching the mode and the curvature at
the mode. Although 7(8|y) might be non-Gaussian, the
crude approximation 77(0|y) is nonetheless very accurate



with no differences with the output produced by a long
MCMC run?s.

To calculate (4), INLA introduces a further
approximation to m(x;|y, 8) (up to the unknown constant
of normalization 7 (y, 6))

n(y|x, 0)m(x|0)(6)
ﬂ(x\i|y’ Xi 9)

with the Laplace approximation

m(x;|y,8) o

(y,x,0)
g (x\ily.x,0)

Ta(x;]y, 0) o« (7

x\i=x<i(xi,0)

where ﬁGG(x\i|y, X;, 0) is the Gaussian approximation to

the full conditional distribution rr(x\i|y, X;, 0) and

x\;(x;,0) is its modal configuration. The computational

expensive evaluation of the conditional posterior mode

x\;(x;,0) is also replaced by an approximated value to

make the algorithm faster?.

In summary INLA consists of three steps:

1. Compute the approximation to the marginal posterior
of 8 (6) and, by-product, compute by finite sum the
approximation to n(Hj |y) (5);

2. Compute the approximation to w(x;|y, 8) (7);

3. Combine (6) and (7) and, by finite sum, compute the
approximation to 7 (x;|y) (4).

ABBA model. Based on LGM, ABBA can be described by a
three-stage hierarchical model:

Yigr|Tigr ~ Binomial(n;g,, gy, (8
logit(mig,) 107 ~N(kig, 57 €)
Higlpig~N(Hi-14,Piy) (10)
02~Gam(0.1,0.1), p2~Gam(0.1,0.1). (11)

Eq. (8) is the first part of the observations equation where
i =1,--,mdenotes the CpG, g = 1,2 the group (e.g. case
and control group), and r =1,--,R the experimental
replicate. y;4,, n;4r and 74, are the observed number of
methylated/unmethylated reads, the read depth and
proportion of methylation for the ith CpG site, gth group
and rth experimental replicate, respectively. Eq. (9) is the
second part of the observations equation and it describes a
random effect across the experimental replicates with a
specific variance g for each group. In (9), logit(z)
indicates the logit transformation, logit(z) = log (1/(1 —
z)). Together the observation equations (8) and (9)
assume that the proportion of methylation are
exchangeable within each group but are different between
groups.

Eq. (10) is the latent Gaussian field equation. The spatial
correlation between CpGs is modelled as a non-stationary
random walk of order 1, RW(1): y;, follows a normal
distribution with mean y;_; , (defined in the (i — 1)th
CpG) and variance afq. For parsimony reasons and for
INLA implementation, we define pf; = pZlp; — pi_sl ,
where p; and p,_, are the chromosomal locations of two
consecutive CpG sites. This automatically implies that the
correlation between y;, and 4, i # [, depends on the
distance between the two CpG at sitesi and ! and, in
particular, it decreases as this distance increases. This
formulation implies also a sparse precision matrix for the
LGF?7. The model is completed by the prior specification
of 0/ and pj (11). Both quantities are distributed as a
gamma density with mean 1 and variance 10 which are
the default INLA values. Sensitivity analysis on the gamma
density parameterization shows no departure from the
results obtained using the default values (data not
shown).

When a single replicate is available, since ag2 =0, Eq.
(8) and (9) simplify to

ViglTig ~ Binomial(nig, nig),

logit(1y5) = -
In summary, INLA inference of the ABBA model
consists of three steps:

1. Compute the approximation to the marginal posteriors
of a;, the variance of the random effect, and pf}, g=1.2
the smoothing parameters;

2. Compute the approximation to n(,uig|y) , where

y= (yigr)i=1,-~,n;g=1,2;r=1,---,R;

3. Reconstruct the marginal posterior of the unobserved
methylation profile n(nig|y) using the inverse logit
transformation of Uig )
z = expflogit(z)}/[1 + exp{logit(z)}].

Differential methylation and FDR calculation. Let's
define n(nig|y) ,i=1--,m, g=12, the posterior
methylation probability (PMP) and 7w(m;,|y) — n(mi,|y)
the posterior differential methylation probability (PDMP).
The posterior mean methylation probability E(nig|y) is
used to define the posterior mean differential methylation
between the two groups, d; = E(m;;|y) — E(mz|y). To
distinguish between the null distribution (no differential
methylation) and the alternatives, and invoking the
central limit theorem for asymptotic considerations, we
fit a normal mixture model with three components

d; — c~m_N(6_,§2) + moN(0,5) + m N(6,,$3), (13)



where c is a constant (see below), m_, my, 7, € (0,1) with
n_ + my + m, = 1 are the mixing weights of the “negative”
differentially methylated, no differentially methylated and
“positive” differentially methylated with respect the
control group, respectively, 6_,6, are the unknown
centers of the differentially methylated groups and
£2,£5,&2 are the unknown variances. In (13) we also
impose thatmy, > m_ + m, to reflect the hypothesis that
the large majority of CpG sites are not differentially
methylated.

Maximum likelihood estimates of (13) are obtained by
the EM algorithm?28 taking particular care to avoid local
maxima in the likelihood surface by running the EM
algorithm many times initialized from different starting
points. Using the EM algorithm the posterior probability
the a CpG site belongs to each of the three component is

Tl'_N(di —C, 9_, EE)

P(zj="-") =

C )
m,N(d;: —c; 0, &2
P(Zi — ,,0,.) — 0 ( i 60)’
C
m,N(d; —c;0,, &2
Pz, ="+ ") = +N(d; +§9)
Cc
with C=n_N(d; —c¢;6_,&2) + myN(d; — ¢; 0,&3) +

m,N(d; — ¢; 04, 3).

The constant c used in (13) is the mode of central
component and it allows us to center the null component
in 0. It is obtained by fitting a kernel density to all d;’s that
lie in the interquartile range and calculate the mode of the
density numerically.

Similarly to Muller et al?® and Broét et al'3, for a
constant t, we define the estimated FDR(t) as

R P(z;="-")
FDR() = Xiey ———+ Ziey, — o

n_

where ¢ ={i:(d;—c)<-t}, & ={i:(d;—¢c)=t},

n_ = #(f_) andn, = #(jJr). Eg. (14) defined global FDR

as the average local FDR which for posterior probabilities

is defined as 1 — P(z; ="0"). Finally the constant t is
chosen such that FDR(t) < FDR with the two cut-off
values in the logit scale defined as t_ = —t + ¢ and
t,=t+c.

In summary, FDR procedure consists of three steps:

1. Calculate the constant c using a non-parametric kernel
density procedure;

2. Fit a normal mixture model with three components on
the d; — c values; obtain the posterior probability that
each d; — c belongs to each of the three components;

3. Calculate the constantt such that FDR(t) < FDR for a
desired level of FDR;

P(z;="+")

(14)

4. Obtained the cut-off levels t_ and ¢, to define “negative”
and “positive” differentially methylated CpG sites (with
respect the control group) controlling the FDR level.

WGBS data simulation. WGBS data have a number of
intrinsic characteristics that can vary depending on the
cell-types/tissue complexity being studied or on technical
issues related to the sequencing. In order assess which
method is the most robust for analyzing WGBS data it is
important that changes in each of these characteristics are
taken into account. Here we take advantage of our
previously published WGBS-data simulator!#* that allows
us to generate unbiased benchmarking datasets with
several varying parameters. Wherever possible we will
refer to the notation used in Rackham et al.1* and detailed
in the Supplementary Material. The parameters are the
following:

1. The number of replicates - the parameter r was set to
vary between r = 1,2,3 within each group;

2. Average read depth - at each CpG site for all replicates
and groups, the number of reads Nigr, L = 1,---,mand
g = 1,2, is simulated using a Poisson distribution with
average read depth A. The parameter A was set to be
either 10 or 30 reads on average per CpG site;

3. Background level of noise - the parameter s, controls
the level of noise added the probability of methylation at
each CpG site for all replicates and groups

pirg = logit_l(logit(prg) + Si)'

where p,, is the constant probability of methylation for
allr, g and €;~N(0,sy),i = 1,:--,m. This parameter was
set to vary between 0.1 (small), 0.2 (medium) and 0.3
(large) to model different level of noise;

4. Methylation probability difference - the parameter
Ameth reported in 14 as “phase difference” was set to
vary between 30%, 50% or 70% difference between the
probabilities of methylation in each group;

5.We also considered an additional parameter § (not
available for modeling in WGBSSuite), which introduces
arandom perturbation to the probability of methylation.
After selecting at random with a given probability § a
CpG site in the gth group for all replicates, we switch it’s
methylation status between the two groups, mimicking
the error that is introduced when the bisulphite
conversion is not 100% efficient such as failed
conversion, i.e, an unmethylated cytosine fails to be
deaminated, and thus appears as if it had been
methylated. In our simulation study, the parameter
6 has been varied from 0, 0.05 and 0.1

To perform the benchmarking we generate 5,000 CpGs
for each combination of the above parameters. The
resulted in a total of 162 benchmarking datasets (3 cases



for the number of replicates, 2 cases for the average read
depth, 3 cases for the background level of noise, 3 cases
for the methylation probability difference, 3 cases for the
random perturbation) which are replicated 5 times to
assess the Monte Carlo average performance for each
combination of parameters.

WGBS data pre-processing for ABBA. To run ABBA
efficiently at the genome-wide level we took advantage of
cluster-computing environment that enables parallel
computation, and to this aim we preprocessed the WGBS
data as follows. After the raw WGBS data are aligned, we
removed CpG sites where less than 50% of the samples
contain reads. Next, we split the WGBS data into chunks
such that the distance between the last CpG site in one
chunk and the first CpG in the next chunk is greater than
3,000bp. It has been previously shown that the spatial
correlation between CpG sites decreases dramatically
after 400bp39, so splitting the data in this way implies a
particular conditional dependence structure in our data
defined by a sparse block-diagonal precision matrix Q(9)
where each block corresponds to a WGBS chunk. Chunks
are then analyzed in parallel in a cluster-computing
environment. We calculate the time required by ABBA to
analyse chunks of different length (that span from 100
CpGs to 15,000 CpGs) on a single machine with 20 2.3GHz
hyper-threaded cores and 32GB of RAM and found that
the computational time (seconds) scales with the chunk
length (Ncpe, number of CpG sites) following the power
function: time (seconds) = 0.0045 Ncpc 13985 (R? = 0.997).
Scripts for the pre-processing step are embedded within
ABBA at abba.systems-genetics.net.

WGBS of rat macrophages. Bone-marrow derived
macrophages (BMDM) were isolated from WKY and LEW
rat strains. WGBS libraries were produced as follows: 6pg
of genomic DNA was spiked with 10ng of unmethylated
cl857 Sam?7 lambda DNA (Promega) and sheared using a
Covaris System S-series model S2. Sheared DNA was
purified and then end-repaired in a 100ul reaction using
NEBNext End Repair kit (New England Biolabs) incubated
at 20C for 30 minutes. End-repaired DNA was next A-
tailed using NEBNext dA-tailing reaction buffer and
Klenow Fragment (also New England Biolabs) incubated
at 37C for 30 minutes and then purified with the MinElute
PCR purification kit (Qiagen) in a total final elution
volume of 28pl. [llumina Early Access Methylation adapter
oligos (Illumina) were then ligated to a total of 25pl of the
A-tailed DNA sample using NEBNext Quick Ligation
Reaction Buffer and Quick T4 DNA ligase (both New
England Biolabs) in a reaction volume of 50pl. This
mixture was incubated for 30 minutes at 20C prior to gel
purification. Bisulphite conversion of 450ng of the

purified DNA library was achieved using the Epitect
Bisulfite kit (Qiagen) in a total volume of 140ul. Samples
were incubated with the following program: 95C for 5
minutes, 60C for 25 minutes, 95C for 5 minutes, 60C for
85 minutes, 95C for 5 minutes, 60C for 175 minutes and
then 3x repeat of 95C for 5 minutes and 60C for 180
minutes and held at 20C. Treated samples were then
purified as per manufacturers instructions. Adapter
bound DNA fragments were amplified by a 10-cycle PCR
reaction and then purified using Agencourt AMPure XP
beads (Beckman Coulter) before gel extraction and
quantification using the Agilent Bioanalyzer 2100 Expert
High Sensitivity DNA Assay. Then, libraries were
quantified using quantitative PCR and then denatured into
single stranded fragments. These fragments were then
amplified by the [llumina cluster robot and transferred to
the HiSeq 2000 for sequencing.

Despite ABBA being able to detect methylation
changes at all genomic locations we focused only on those
methylation changes that occur at CpG sites, and
considered CpG sites where at least 4 out of the 8 samples
contain reads (resulting in a total of 14,976,632 CpG sites
genome-wide in BMDM from WKY and LEW rats). DMRs
were called with ABBA (see above) using a 5 CpG
minimum, a 33% or greater difference in methylation and
a 5% FDR threshold. Genomic region annotations and
Ensembl gene IDs for the rat reference genome 4 (rn4)
were downloaded from the UCSC genome browser.
Significant over-representations of genomic features
(intron, exons, etc.) were determined empirically from
1,000 randomly sampled GC-matched regions per DMR.
The genes overlapping with DMRs were further annotated
and tested for enrichment in Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways using WebGestalt31.

Identification of enriched TFBS motifs within the
DMRs identified by ABBA was performed using HOMER 32,
HOMER was used to scan for motifs obtained from the
JASPAR 2014 database33. Thresholds for motif
identification using a p-value of 104 Enrichments were
calculated by comparing the motifs present in the DMRs
against a large set of background sequences (N = 10°)
corrected for CpG content.

RNA-seq and ChIP-seq analysis of rat macrophages.
RNA-seq data from BMDM in WKY and LEW strains were
retrieved from3+4 and reanalyzed in the context of WGBS
analysis reported here. Briefly, total RNA was extracted
from BMDM at day 5 of differentiation in three WKY rats
and three LEW rats using Trizol (Invitrogen). 1 ug of total
RNA was used to generate RNA-seq libraries using TruSeq
RNA sample preparation kit ([llumina, UK). Libraries were
run on a single lane per sample of the HiSeq 2000
platform (Illumina) to generate 100 bp paired-end reads.



An average of 72 M reads coverage per sample was
achieved (minimum 38 M). RNA-seq reads were aligned
to the rn4 reference genome using tophat2. The average
number of mapped was 67M (minimum 36M)
corresponding to an average mapping percentage of 93%.
Sequencing and mapping were quality controlled using
the fastQC software. Gene-level read counts were
computed using HT-Seq-count with ‘union’ mode and
genes with less than 10 aligned reads across all samples
were discarded prior to analysis leading to 15,155 genes.
Differential gene expression analysis between WKY and
LEW BMDMs was performed using DESeq23> and
significantly differentially expressed genes were reported
at the 5% FDR level. The visualizations of the expression
levels with gene structure were created with DEXSeq3e.

ChIP-seq data from BMDM isolated from the WKY and
WKY.LCrgn2 congenic strains (in which the LEW Crgn2
QTL was introgressed onto the WKY background) were
retrieved from3738 and re-analyzed with respect to the
Ifitm3 locus. This congenic model (WKY.LCrgn2) has been
extensively studied in previous studies where it has been
shown that JunD expression levels are significantly higher
in WKY when compared with the congenic37 and that the
canonical binding of AP-1 is significantly greater in WKY
compared to WKY.LCrgn221. Briefly, ChIP was performed
with a JunD antibody (Santa Cruz sc74-X) and a negative
IgG control (sc-2026). Single read library preparation and
high throughput single read sequencing for 36 cycles was
carried out on an Illumina Genome Analyser IIx and
sequencing of the ChIP-Seq libraries was carried out on
the high throughput [llumina Genome Analyzer II. Initial
data processing was performed using Illumina Real Time
Analysis (RTA) v1.6.32 software (equivalent to Illumina
Consensus Assessment of Sequence and Variation,
CASAVA 1.6) using default settings. Quality filtered reads
were then realigned to the rn4 using the Burrows
Wheeler Alignment tool v0.5.9 (BWA). Read ends were
trimmed if Phred-scaled base quality scores dropped
below 20. Significant ChIP-seq differences in the DMR of
the Ifitm3 gene promoter were called using a Fisher’s
exact test with a sliding window of 50bp.

Software availability and implementation. ABBA is
implemented as a Perl/R program, which is available with
instructions for download at abba.systems-genetics.net.
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Supplementary Figure 2c
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Supplementary Figure 3a
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Supplementary Figure 3b
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Supplementary Figure 3c
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Supplementary Figure 4. Schematic representation of the DMR identified by each method at the /fitm3 locus. WGBS of bone marrow derived
macrophages from WKY and LEW rats were independently analyzed using ABBA, DSS, BSmooth, MethylKit and MthyISig. For each method we report
the location of the DMR identified at 5% FDR level. Only ABBA, DSS and BSmooth identified differential methylation at the Ifitm3 locus. MthylKit
identified a signal for differential methylation which was not genome-wide significant. Amongst the methods that detected significant differential
methylation at this locus, only ABBA identified differential methylation specifically overlapping with /fitm3 promoter where the TFBS and differential

ChlIP-seq signals were also identified (see Figure 2g). In contrast, DSS and BSmooth reported a large and rather unspecific region with differential
methylation between WKY and LEW macrophages.
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