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Summary13

In this work we propose that a disinhibitory circuit motif, which recently gained experimental14

support, can instantiate flexible routing of information flow along selective pathways in a com-15

plex system of cortical areas according to behavioral demands (pathway-specific gating). We16

developed a network model of pyramidal neurons and three classes of interneurons, with con-17

nection probabilities constrained by data. If distinct input pathways cluster on separate den-18

dritic branches of pyramidal neurons, then a pathway can be gated-on by disinhibiting targeted19

dendrites. We show that this branch-specific disinhibition can be achieved despite dense in-20

terneuronal connectivity, even under the assumption of random connections. We found clus-21

tering of input pathways on dendrites can emerge through synaptic plasticity regulated by dis-22

inhibition. This gating mechanism in a neural circuit is further demonstrated by performing a23

context-dependent decision-making task. Our findings suggest a microcircuit architecture that24

harnesses dendritic computation and diverse inhibitory neuron types to subserve cognitive flex-25

ibility.26

Introduction27

Distinct classes of inhibitory interneurons form cell-type specific connections among them-28

selves and with pyramidal neurons in the cortex1,2. Interneurons expressing parvalbumin (PV)29

specifically target the perisomatic area of pyramidal neurons. Interneurons expressing somato-30

statin (SOM) specifically target thin basal and apical tuft dendrites of pyramidal neurons3. In-31

terneurons expressing vasoactive intestinal peptide (VIP) avoid pyramidal neurons and specif-32

ically target SOM neurons4. Long-range connections from cortical5,6 or subcortical7 areas can33

activate VIP neurons, which in turn suppress SOM neurons, and disinhibit pyramidal dendrites.34

This dendritic disinhibitory circuit formed by VIP and SOM neurons is proposed to gate the ex-35

citatory inputs targeting pyramidal dendrites8,9 (Fig. 1a).36

Insofar as any cortical area receives inputs from tens of other areas and project to many other37

areas, information flow across the complex cortical circuit needs to be flexibly gated (or routed)38

according to behavioral demands. Broadly speaking, there are three types of gating in terms of39

specificity. First, all inputs into a cortical area may be uniformly modulated up or down. Recent40
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research in mice demonstrated that such gating involves the disinhibitory motif mediated by VIP41

and SOM interneurons5,7,10–13. These studies generally found that VIP neurons are activated, and42

SOM neurons are inactivated, in response to changes in the animals’ behavioral states, such as43

when mice receive reinforcement12, or start active whisking5,13 or running7. The reported state44

change-related activity responses can be remarkably homogeneous across the local population45

of the same class of interneurons10,11.46

Second, gating may involve selective information about a particular stimulus attribute or47

spatial location (for instance, in visual search or selective attention6). Whether SOM or VIP neu-48

rons are endowed with the required selectivity remains insufficiently known. In sensory cortex,49

SOM neurons exhibit greater selectivity to stimulus features (such as orientation of a visual stim-50

ulus) than PV neurons14,15. Furthermore, in motor cortex, SOM neurons have been shown to be51

highly heterogeneous and remarkably selective for forward versus backward movements (Adler52

& Gan, Society for Neuroscience, 2015).53

Third, for a given task, neurons in a cortical area may need to “gate in" inputs from one of the54

afferent pathways, and “gate out" other afferent pathways16,17, which we call “pathway-specific55

gating”. For instance, imagine yourself sitting in a noisy cafe and trying to focus on your book.56

Your associational language areas receive converging inputs from both auditory and visual path-57

ways. Opening the gate for the visual pathway while closing the gate for the auditory pathway58

allows you to focus on reading (Fig. 1b). In the classic Stroop task, the subject is shown a colored59

word, and is asked to either name the color or read the word. One possible solution to this task60

is for a decision-making area to locally open its gate for the deliberate pathway (color-naming)61

while closing its gate for the more automatic pathway (word-reading).62

Using computational models, we propose that the dendritic disinhibitory circuit can instan-63

tiate pathway-specific gating. Each of the many branches of a pyramidal dendrite process its64

inputs quasi-independently18 and nonlinearly19. Feedforward and feedback pathways target65

different regions (e.g. basal or apical tuft) of dendritic trees of pyramidal neurons20. We hypoth-66

esize that excitatory inputs from different pathways can cluster onto parts of dendrites of pyra-67

midal neurons, which we term “branch-specific" even though inputs from a particular pathway68

may target multiple branches. This hypothesis is supported by mounting evidence for synap-69

tic clustering on dendritic branches21–23. A pathway can presumably be “gated-on” by specifi-70
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cally disinhibiting the branches targeted by this pathway (Fig. 1c), i.e. by a disinhibition pattern71

aligned with the excitation. This branch-specific disinhibition is motivated by findings showing72

that synaptic inhibition from SOM neurons can act very locally on dendrites, even controlling73

individual excitatory synapse by targeting the spine3 or the pre-synaptic terminal24.In this work,74

we developed a network model with thousands of pyramidal neurons and hundreds of interneu-75

rons for each (VIP, SOM, and PV) type, and show that pathway-specific gating can be accom-76

plished by the disinhibitory motif, even though the connectivity from SOM neurons to pyramidal77

neurons is dense: each SOM neuron on average targets more than 60% of neighboring pyramidal78

neurons (< 200 µm)25.79

We first characterized how branch-specific disinhibition can efficiently gate excitatory in-80

puts onto pyramidal dendrites. To then test whether the densely-connected interneuronal cir-81

cuit can indeed support branch-specific disinhibition, we built a dendritic disinhibitory circuit82

model constrained by experimentally measured single-neuron physiology and circuit connec-83

tivity. We found that although SOM-pyramidal connectivity is dense at the level of neurons, at84

the level of dendrites it is sufficiently sparse to support branch-specific disinhibition, and there-85

fore pathway-specific gating, given that SOM neurons can be selectively controlled. We then86

showed control inputs targeting both VIP and SOM neurons can selectively suppress SOM neu-87

rons as needed. Notably we drew these conclusions under some “worst-case” assumptions to88

our model such as random interneuronal connectivity. Using a calcium-based synaptic plas-89

ticity model, constrained by data, we found that disinhibitory regulation of plasticity can give90

rise to an appropriate alignment of excitation and disinhibition which is required for pathway-91

specific gating. Finally, we demonstrated the functionality of this mechanism in a circuit model92

performing an example context-dependent decision-making task26.93

Our results suggest that, as an alternative to the proposal that SOM neurons act as a “blanket94

of inhibition”27, they can indeed subserve pathway-specific gating. This work predicts that top-95

down behavioral control involves rule signals targeting specific interneuron types rather than (or96

in addition to) pyramidal neurons, and that the disinhibitory motif plays a major role in synaptic97

plasticity.98
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Results99

Pathway-specific gating with dendritic disinhibition100

To study dendritic disinhibition, we first built a simplified neuron model with a reduced mor-101

phology, constrained to fit physiological data (Fig. 2a, Supplementary Fig. 1). It comprises102

one spiking somatic compartment, and multiple dendritic compartments which are electrically103

coupled to the soma but otherwise independent of each other. The somatic and dendritic com-104

partments have no spatial extent themselves. This choice of morphology is inspired by previous105

studies showing that different dendritic branches can integrate their local input independently106

from one another18.107

A prominent feature of active processing in thin dendritic branches is their ability to produce108

NMDA plateau potentials28, also called NMDA spikes. The NMDA plateau potential is a regen-109

erative event in which the membrane potential increases nonlinearly and sometimes sharply110

with the NMDAR input, due to the release of voltage-dependent magnesium block of NMDARs.111

The reduced neuron model can exhibit NMDA plateau potential in dendrites (Fig. 2b), in line112

with simulations of morphologically reconstructed neuron models (Supplementary Fig. 1). The113

mean dendritic voltage in response to a Poisson spike train input is a sigmoidal function of the114

input rate, due to the NMDA plateau potential (light blue curve in Fig. 2c).115

The NMDA plateau potential can be prevented by applying a moderate synaptic inhibition,116

mediated by GABAA receptors, to the same dendrite (dark blue curve in Fig. 2c). Inhibition is117

particularly effective in controlling this dendritic nonlinearity when excitatory inputs are medi-118

ated by NMDA receptors with experimentally-observed saturation, in stark contrast to AMPA re-119

ceptors (Supplementary Fig. 1) or NMDA receptors without saturation (Supplementary Fig. 2).120

Inhibitory input also linearizes the relationship between mean dendritic voltage and excitatory121

input rate (Fig. 2c), due to stochastic transitions into or out of NMDA plateau potential induced122

by low-rate inhibition (Supplementary Fig. 2). Therefore excitatory inputs to a dendritic branch123

can be efficiently gated by inhibition29.124

We now consider multiple pathways of inputs targeting distinct sets of dendrites. In the de-125

fault condition, all dendritic branches receive a high baseline inhibition from dendrite-targeting126

SOM neurons5,13, closing gates for all pathways. Disinhibiting the branches targeted by one127
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pathway can selectively open the gate for this pathway while keeping the gates closed for other128

pathways (Fig. 2d). When a gate is open, the neuron’s output firing rate transmits the stimulus129

selectivity of the corresponding input pathway most effectively (Fig. 2e).130

When two excitatory pathways are activated simultaneously, we can plot the neuron’s re-131

sponse to stimulus variables of both pathways, i.e. the two-dimensional tuning curve (Fig. 2f,g).132

In the default condition when all gates are closed, there is little response to either pathway (Fig.133

2f). By specifically disinhibiting the branches targeted by pathway 1, we can open the gate for134

pathway 1. With gate 1 opened, the neuron is primarily selective to pathway 1 stimuli (Fig. 2g).135

The remaining impact of pathway 2 stimuli is due to the fact that the impact of excitatory inputs136

can never be fully counteracted by dendritic inhibition.137

The gating mechanism worsens when a fraction of excitatory input is mediated by AMPARs,138

but improves when a fraction of inhibitory input is mediated by GABAB receptors (Supplementary139

Fig. 3). Under in vivo conditions, the relative contribution of AMPAR-mediated inputs is likely140

quite low, as a result of a lower glutamate affinity and a stronger desensitization19. For parsi-141

mony, in the following sections, excitatory synaptic inputs are mediated only by NMDARs which142

are critical to the nonlinear dendritic computations, and inhibitory inputs are mediated only by143

GABAARs.144

Performance of gating in pyramidal neurons145

Which circuit properties determine the effectiveness of pathway-specific gating in our model? A146

neuron responds to its optimal stimulus from an input pathway with (baseline-corrected) firing147

rate (ron) when the pathway is gated-on, and (roff) when the pathway is gated-off, which could148

be readily measured experimentally. The gating selectivity is then quantified,149

Gating Selectivity = ron − roff

ron + roff
, (1)

which ranges from 0 (no gating) to 1 (perfect gating). We developed a multi-compartmental rate150

model18 that greatly improves the efficiency of the circuit model simulation. The rate model is151

fitted to quantitatively reproduce the activity of the spiking neuron model (Supplementary Fig.152

4, see Supplemental Information for details).153

We first tested how gating selectivity depends on our assumption of branch-specific disinhi-154
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bition in a single-neuron setting. Here we assume an alignment of excitation and disinhibition155

patterns, which can be achieved through synaptic plasticity as shown later. Each excitatory path-156

way targets Ndisinh randomly chosen dendrites, out of Ndend total dendrites, and this pathway is157

gated-on by specifically disinhibiting these same Ndisinh dendrites (Fig. 3a). Due to the random158

independent selection of targeted dendrites for each pathway, inputs from two different path-159

ways often overlap.160

We found that gating selectivity depends critically on the sparseness of the disinhibition (Fig.161

3b), defined as the proportion of targeted/disinhibited dendrites Ndisinh/Ndend. Gating selectiv-162

ity improves when disinhibition patterns are sparsened, because the proportion of dendrites that163

receive overlapping inputs is reduced. We can approximate the limit of Ndisinh/Ndend → 0 with164

non-overlapping disinhibition pattern (diamonds in Fig. 3b,c). In this case, the gating selectivity165

is highest but below 1, due to the remaining impact of inputs targeting inhibited dendrites, and166

is therefore modulated by the level of disinhibition (Fig. 3c).167

Pathway specific gating in an interneuronal circuit of SOM neurons168

We have shown that a key determinant of gating performance is the sparseness of innervation169

patterns onto the dendritic tree. Yet the connectivity from SOM interneurons to pyramidal neu-170

rons is dense25. Is it possible for the proposed gating mechanism to function in a cortical micro-171

circuit constrained by the dense interneuronal connectivity? To address this issue, we built an172

interneuronal circuit model, containing hundreds of VIP and SOM interneurons and thousands173

of pyramidal neurons, constrained by anatomical and physiological data. We considered “worst-174

case” conditions in which interneuronal connectivity is completely random (as our gating mech-175

anism can be facilitated by structured connectivity). Surprisingly, we found that relatively high176

gating performance is achievable under these conditions. We analyzed gating in this circuit in177

two steps: First, assuming SOM neurons are context-selective, we characterized how the SOM-178

pyramidal sub-circuit can support high gating selectivity. Second, we characterized how SOM179

neurons can become context-selective in the VIP-SOM-pyramidal circuit.180

First, we built a simplified model of a SOM-pyramidal sub-circuit (Fig. 4a), which corre-181

sponds roughly to a cortical L2/3 column (400µm ×400µm). The model contains Npyr (≈ 3,000)182

multi-compartmental pyramidal neurons, each with Ndend (≈ 30) dendrites, and NSOM (≈ 160)183

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2016. ; https://doi.org/10.1101/041673doi: bioRxiv preprint 

https://doi.org/10.1101/041673
http://creativecommons.org/licenses/by-nc-nd/4.0/


SOM neurons (see Supplementary Table 1). Here we analyze the dependence of gating selectiv-184

ity on the connectivity from SOM to pyramidal neurons. We consider worst-case conditions in185

which these connections are random, subject to the SOM-to-pyramidal connection probability186

of PSOM→pyr (≈ 0.6). Assuming that a SOM neuron chooses to target each pyramidal dendrite187

independently with a SOM-to-dendrite connection probability of PSOM→dend, then we have188

PSOM→dend = 1− (1−PSOM→pyr)1/Ndend (2)

≈ PSOM→pyr/Ndend , for small PSOM→pyr (3)

Under this assumption, a SOM neuron on average targets Ndend ·PSOM→dend/PSOM→pyr ≈ 1.5 den-189

drites of a pyramidal neuron given that the two are connected. Each SOM-dendrite connection190

can correspond to multiple (3-5) clustered synapses30. So each SOM neuron can make on aver-191

age 5-8 synapses onto a pyramidal neuron. The connection probability between two neurons is192

higher at closer proximity25, leading to a even higher number of contacts.193

In a default state, SOM neurons fire at a relatively high baseline rate around 10 Hz5,13, clos-194

ing the gates to all inputs. To open the gate for pathway 1, a randomly chosen subset (50%) of195

SOM neurons are suppressed, resulting in a pattern of disinhibition across dendrites. Again we196

assume the excitatory input pattern of pathway 1 is aligned with the corresponding disinhibition197

pattern. Notably, disinhibition patterns for different pathways generally overlap due to the ran-198

dom selection of SOM neurons and the random connectivity. This overlap can be reduced with199

either structured connections or inhibitory plasticity.200

Under the above assumptions, the circuit achieves a mean gating selectivity around 0.5,201

equivalent to ron ≈ 3roff. We found that the impact of these circuit parameters is determined202

by one critical parameter: the number of SOM neurons targeting each dendrite NSOM→dend =203

NSOM ·PSOM→dend ≈ 5 (Fig. 4b, see also Supplemental Mathematical Appendix). When we vary204

parameters while keeping NSOM→dend fixed, the gating selectivity remains largely constant (Fig.205

4c-e). We found that gating selectivity is highest when NSOM→dend is small (Fig. 4f), and de-206

creases as we increases NSOM→dend. Because the overall strength of inhibition has a simple effect207

on the gating selectivity (Fig. 3c), we keep it fixed when varying other parameters.208

Each dendrite should more appropriately be interpreted as an independent computational209

unit. When inhibitory connections control individual excitatory connection through pre-synaptic210
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receptors24 or by targeting spines3, the independent unit would be single excitatory synapses.211

This leads to a lower effective value of NSOM→dend, then a higher gating selectivity.212

Pathway specific gating in an interneuronal circuit of SOM and VIP neurons213

Having analyzed the SOM-pyramidal connectivity, we next examined how SOM neurons can be214

context-selective, and characterized the gating selectivity in a circuit model containing VIP, SOM,215

and pyramidal neurons. On top of the previous SOM-pyramidal sub-circuit, We added NVIP VIP216

neurons that only target SOM neurons4. Here we assume VIP neurons target all SOM neurons217

with connection probability PVIP→SOM. Broadly speaking, we found two scenarios in which SOM218

neurons can be suppressed selectively based on the context, depending on the targets of the219

top-down or locally-generated control inputs (Fig. 5).220

In the first scenario, control inputs target VIP neurons solely (Fig. 5a). In this intuitive sce-221

nario, control inputs excite VIP neurons, which in turn inhibit SOM neurons thereby disinhibit-222

ing pyramidal dendrites. Gating selectivity is high only if a small proportion of VIP neurons is223

targeted by control (Fig. 5b), indicating that VIP neurons must be context-selective, and VIP-224

SOM connections need to be sparse (Fig. 5c). VIP-SOM connectivity could possibly be effectively225

sparse on the scale of a cortical column, since the axonal arbor of VIP neurons are rather spatially226

restricted31. When varying parameters, we kept fixed the overall baseline inhibition received by227

each SOM neuron and the overall strength of control inputs.228

In the second scenario, excitatory control inputs target both VIP and SOM neurons (Fig. 5d).229

If the VIP-SOM connectivity is dense, then VIP neurons activated by control inputs will provide230

nearly uniform inhibition across all SOM neurons (Supplementary Fig. 5). However, SOM neu-231

rons can receive selective excitation if the control inputs only directly target a subset of SOM232

neurons. If the inhibition is on average stronger, then the overall effect is a selective suppression233

of SOM neurons (Supplementary Fig. 5). As a result, gating selectivity no longer depends on234

the proportion of VIP neurons targeted by control inputs, but does depend on the proportion of235

SOM neurons targeted (Fig. 5e). Therefore SOM neurons are context-selective, but VIP neurons236

need not be. Similarly, gating selectivity does not depend on the connection probability from237

VIP to SOM neurons, PVIP→SOM (Fig. 5f).238

In summary, in order to achieve branch-specific disinhibition, control inputs targeting in-239
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terneurons have to be selective. Notably, the level of specificity required for the control inputs240

depends strongly on the neurons they target. When targeting only VIP neurons, the control in-241

puts have to be highly selective (Fig. 5a,b). However, when control inputs target both VIP and242

SOM neurons, high gating selectivity can be achieved in a much broader range of parameters,243

reducing the level of specificity required (Fig. 5d,e).244

Pathway specific gating in an interneuronal circuit of SOM, VIP, and PV neurons245

PV neurons receive inhibition from themselves and SOM neurons, and project to perisomatic ar-246

eas of pyramidal neurons1. Suppression of SOM neurons therefore also leads to disinhibition of247

PV neurons and an increase of somatic inhibition onto pyramidal neurons. We included PV neu-248

rons into our interneuronal circuit model (Fig. 6a), and found that this inclusion and the con-249

sequent increase in somatic inhibition strictly improve gating selectivity in a wide range of pa-250

rameters (Fig. 6b). Since the SOM-to-PV and PV-to-pyramidal neuron connections are dense27,251

a selective pattern of SOM suppression will result in an elevated somatic inhibition that is al-252

most uniform across pyramidal neurons (Supplementary Fig. 6). Furthermore, we proved that253

an uniform increase in somatic inhibition will always improve gating selectivity, except when the254

somatic inhibition is unreasonably strong (see Supplemental Mathematical Appendix).255

For an intuitive explanation, consider a linear input-output function in the soma. Gating256

selectivity is based on the relative difference between the pyramidal neuron responses when257

the gate is open (ron) and when the gate is closed (roff). Providing an equal amount of somatic258

inhibition in these two conditions is equivalent to subtracting both values by the same constant,259

which will enhance the relative difference.260

Inhibitory modulation of synaptic plasticity and learning pathway-specific gating261

A critical feature of our scheme is the alignment between excitation and disinhibition patterns262

(Fig. 1c): pyramidal dendrites targeted by an excitatory input pathway are also disinhibited when263

the gate is open for that pathway. Dendritic disinhibition can regulate synaptic plasticity32,33. We264

hypothesized that such an alignment can naturally arise as a result of the regulated plasticity. To265

test this hypothesis, we first established a realistic calcium-based plasticity model for dendrites266

in our reduced spiking neuron model. Pre- and post-synaptic spikes induce calcium transients267
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in dendrites, which determine the synaptic weight changes34 (Fig. 7a). We fitted parameters of268

the model to capture experimental data35 (Supplementary Fig. 7). Our model also quantitatively269

predicts findings that were not used in the fitting.270

The calcium-based plasticity model allows us to naturally study the effects of dendritic dis-271

inhibition on synaptic plasticity and their functional implications. Again we assume that pre-272

and post-synaptic firings are Poisson spike trains with specified rates. We found that dendritic273

inhibition can shift the plasticity from potentiation to depression, even when the pre-synaptic274

excitatory input rate and the post-synaptic firing rate are both kept constant (Fig. 7b), consis-275

tent with previous modeling findings33. We note that plasticity models based solely on pre- and276

post-synaptic neuronal firing would not predict the inhibitory modulation of synaptic plasticity.277

We then tested whether disinhibitory regulation of plasticity can support the development of278

excitation-disinhibition alignment, as needed for pathway-specific gating (Fig. 7c). Importantly,279

the strength of disinhibition is realistic, similar to those used throughout this paper. Initially,280

excitatory synapses from each pathway are uniformly distributed across the dendritic branches281

of single neurons. Different excitatory pathways are then activated one at a time. Whenever a282

pathway is presented, a particular subset of dendrites are disinhibited, while the rest of the den-283

drites remain inhibited. Through calcium-based excitatory plasticity, the activated excitatory284

synapses targeting the disinhibited dendrites become strengthened, whereas those targeting the285

inhibited dendrites become weakened. Synapses not activated remain the same regardless of286

the inhibition level (see Fig. 7b). After learning, the alignment of excitation and disinhibition287

patterns support pathway-specific gating (Fig. 7d,e; compare with Fig. 2e), with a gating selec-288

tivity around 0.7. These findings show that a key aspect of the gating architecture, namely the289

alignment of excitation and disinhibition patterns, can emerge naturally from the interaction290

between excitatory synaptic plasticity and context-dependent disinhibition.291

Modeling a flexible behavior with pathway-specific gating292

How is gating at the neural level related to gating at the behavioral level? Is moderate gating293

selectivity (e.g., ∼0.5 as above) sufficient to explain performances in flexible cognitive tasks? To294

address these issues, we applied our model to a context-dependent decision-making task26. In295

this task, the behavioral response should be based on either the motion direction or the color of296

11

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2016. ; https://doi.org/10.1101/041673doi: bioRxiv preprint 

https://doi.org/10.1101/041673
http://creativecommons.org/licenses/by-nc-nd/4.0/


a random-dots motion stimulus, depending on the context cued by a rule signal (Fig. 8a).297

We built a stylized neural circuit model to implement this task using pathway-specific gat-298

ing through dendritic disinhibition (Fig. 8b). The local circuit comprises a sensory network and299

a decision network. The sensory network contains pyramidal neurons that receive convergent300

sensory inputs from both motion and color pathways, and they group into four pools accord-301

ing to their selectivities to color and motion evidence. The dendrites of pyramidal neurons are302

controlled by the VIP-SOM interneuronal circuit described above (Fig. 8c, 5d). A subset of pyra-303

midal neurons with high gating selectivity projects to the decision network. Pyramidal neurons304

representing color and motion evidence for the same target project to the corresponding deci-305

sion neural pool. The decision network, as modeled previously36, is a strongly recurrent network306

that generates a winner-take-all decision based on its inputs.307

We fitted the performance of the model to a monkey’s psychometric behavioral data from308

[26], using three free parameters in the model, namely the proportion of sensory neurons that309

project to the decision network, and the overall connection strengths from the input pathways to310

the sensory network and from the sensory network to the decision network. By fitting these three311

parameters, we obtained a quantitative match of the empirical psychometric performance, as a312

function of relevant (Fig. 8e) and irrelevant (Fig. 8f) features. Our model shows that the impact of313

the irrelevant information should be stronger when the relevant information is more ambiguous314

(with lower motion coherence, for instance) (Fig. 8g). Although at its default parameters the315

interneuronal circuit model can show similar task performance as the empirical data, we found316

that it can no longer fit the empirical performance if we significantly degrade the neural gating317

selectivity (Supplementary Fig. 8). This simulation therefore serves as a proof-of-principle to318

demonstrate the potential of dendritic disinhibition as a mechanism for pathway-gating, and as319

a link to assess the utility of neural gating selectivity in terms of flexible behavioral performance.320

Discussion321

A canonical cortical microcircuit motif specialized for disinhibition of pyramidal neuron den-322

drites was proposed theoretically8 and has received strong empirical support from a series of323

recent experiments4–7,12,13,37. Here we explored the functional roles of dendritic disinhibition324
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using computational modeling, at both the single-neuron and circuit levels. In contrast to so-325

matic disinhibition, dendritic disinhibition can gate the inputs to a neuron8,29. We propose that326

dendritic disinhibition can be utilized to gate inputs from separate pathways, by specifically dis-327

inhibiting dendrites that receive inputs from a target pathway.328

We studied the effectiveness of gating in an interneuronal circuit constrained by experimen-329

tal data, which have become available only in recent years thanks to the advance of optogenetics330

and other experimental tools. Where data are not available, we considered the “worst-case sce-331

nario”, namely, connections from VIP to SOM neurons, and from SOM to pyramidal dendrites are332

completely random, which is most likely not the case38 and any specificity would facilitate our333

proposed mechanism. Although the SOM-to-pyramidal connections are dense, we found that334

the connectivity from SOM neurons to pyramidal dendrites are actually sparse enough to sup-335

port branch-specific disinhibition. We found that the increase of somatic inhibition mediated336

by the SOM-PV-pyramidal neuron connections further improves gating selectivity. We demon-337

strated that branch-specific clustering of excitatory pathways can naturally emerge from disin-338

hibitory regulation of synaptic plasticity. As proof of principle, we applied this mechanism to a339

model for a recent experiment using a context-dependent decision-making task26.340

Inhibitory connections in cortex tend to be dense25. This finding has led to the proposal that341

cortical inhibition functions as a locally non-selective “blanket of inhibition”27. In contrast, our342

study offers an alternative perspective, which is compatible with dense interneuronal connectiv-343

ity and has very different implications for circuit functions. The dense connectivity is measured344

on a cell-to-cell level. Nonetheless, connections from dendrite-targeting SOM interneurons can345

be sparse at the level of the dendritic branch, and therefore potentially selective as required for346

our gating scheme. Our alternative proposal is fundamentally grounded in consideration of den-347

dritic branches as functional units of computation18.348

Circuit requirements for pathway-specific gating349

A key assumption and prediction of our model is clustering of excitatory pathways onto pyrami-350

dal neuron dendritic branches. The computational benefits of input clustering have been previ-351

ously proposed39. There is mounting experimental evidence for input clustering, from anatom-352

ical and physiological studies21,22[for a review see 23]. Consistent with our model, experimental353
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studies have shown that input clustering can emerge through NMDAR-dependent synaptic plas-354

ticity40, and that clustering is functionally related to learning22,41. Our model assumption that355

branch-specific clustering occurs at the level of pathways remains to be directly tested.356

Another feature necessary for our mechanism is the alignment between excitation and dis-357

inhibition, which we found can be achieved through synaptic plasticity on excitatory synapses.358

This feature could also potentially be achieved through inhibitory plasticity42, by adapting the359

disinhibition pattern to align with fixed excitatory inputs. These two forms of plasticity are com-360

plementary, and both are likely at play. Indeed, a recent study found that during motor learning,361

spine reorganization on dendrites of pyramidal neurons is accompanied by change in the num-362

ber of SOM-neuron synapses onto these dendrites38. One appeal of studying excitatory plasticity363

here is that our calcium-based plasticity model could be quantitatively constrained by data and364

therefore tested in a biologically plausible regime. At present, much less is known experimentally365

about the dependence of inhibitory plasticity on pre- and post-synaptic spike timing, dendritic366

calcium levels, or the class of interneuron43.367

Model predictions368

Our model makes specific, experimentally testable predictions. One of the most straightfor-369

ward and testable predictions is that SOM neurons should show context/rule selectivity in some370

context-dependent or rule-based tasks. Surprisingly, we found that VIP neurons need not be371

context-selective, as long as SOM neurons are directly receiving context-selective excitatory con-372

trol inputs (Fig. 5d-f). Experimental disruption of these context-selective interneurons should373

impair the animal’s ability to perform context- or rule-dependent choice tasks. The context-374

selectivity of SOM or VIP neurons is not necessarily presented in every behavioral task. For in-375

stance, a recent study, recording in mouse prefrontal cortex during a auditory discrimination376

task, found highly homogeneous responses within SOM and VIP populations10. We propose that377

SOM neurons are more likely to exhibit selectivity to context or task in experiments in which the378

animal performs multiple tasks and branch-specific dendritic spikes also exhibit task selectivity379

[e.g., 44, Adler & Gan, Society for Neuroscience, 2015]. A direct test of our model awaits future380

experiments in a task-switching paradigm in order to examine gating of different pathways into381

association cortical areas and the selective changes of activity in SOM neural subpopulations.382
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We emphasize that interneuron classes in our model should be more appropriately interpreted383

according to their projection targets rather than their biochemical markers.384

Branch-specific dendritic spikes are already observed experimentally, and SOM neurons are385

critical for this branch-specificity44. It is however unknown whether SOM-mediated inhibition is386

also branch-specific. Direct patch-clamping of pyramidal-neuron dendrites in vivo45 can isolate387

inhibitory currents on individual branches, and provide a direct test for our hypothesis, although388

such an experiment is technically difficult at present. Our plasticity model predicts that SOM389

interneurons play a critical role in the learning-related emergence of branch-specific clustering390

of excitatory synapses on pyramidal neuron dendrites22.391

Relation to other gating models392

Flexible gating, or routing, of information has been a long-standing problem in computational393

neuroscience46, for which a number of models have been proposed. Among proposed ideas are394

dynamic synaptic weight modulation47, gain modulation46, synchrony in the input signals16,395

perfect balance of excitation and inhibition17, up/down state-switch in dendrites48, switching396

between different neural pools that receive inputs from distinct pathways49, and rule signaling397

as a selection vector26. Gating cortico-cortical communication has also been proposed as a role398

of the basal ganglia50. Notably, most of these models implement a form of soft gating, which399

modulates the effective strength of incoming pathways instead of performing a binary on-off400

switch on them.401

These prior models did not exploit the computational power of dendrites (except for [48])402

or the roles of specialized classes of interneurons. Harnessing dendrites rather than popula-403

tions of intermediate neurons saves the number of neurons needed by many-fold. Only in the404

limit of one dendrite per pyramidal neuron does our mechanism become conceptually similar405

to gating mechanisms operating on the neuronal level49. Furthermore, we propose a concrete406

microcircuit mechanism for dendritic gating that is constrained by empirical findings and makes407

a number of testable predictions.408

The gating mechanism as studied here is nonlinear but not binary. In the biologically plausi-409

ble regime of inhibitory strength studied here, shunting inhibition on a dendritic branch still al-410

lows synaptic input to appreciably elevate the dendritic voltage and thus impact the soma, which411
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decreases the gating selectivity of the neuron. Gating selectivity is also limited by the number of412

dendritic branches (or more generally, quasi-independent computational units) on a pyramidal413

neuron. Due to these limitations, our mechanism may be better suited to coarse gating of dis-414

tinct pathways rather than transmission of more fine-grained top-down signals. Multiple mech-415

anisms may jointly contribute to gating function, and our proposed mechanism is most likely416

compatible with the aforementioned proposals.417
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Figure 1. Dendritic disinhibitory circuit as a mechanism for pathway-specific gating. (a) Subcellular

microcircuit motif for gating through dendritic disinhibition. Dendrites of pyramidal neurons are inhibited

by SOM interneurons, which are themselves inhibited by VIP interneurons. A control input (representing

a context or a task rule) targeting VIP interneurons (and potentially SOM neurons) can thereby disinhibit

pyramidal neuron dendrites, opening the gate for excitatory inputs targeting these dendrites. (b) Circuit

configuration for pathway-specific gating. Pyramidal neurons receive converging inputs from multiple

pathways, e.g. visual and auditory. Single neurons in these areas are selective to multiple stimulus

features, indicated here by color and frequency. The processing of each pathway is regulated by the control

input. (c) Inputs from different pathways target distinct subsets of dendrites of these pyramidal neurons.

A pathway can be gated-on by specifically disinhibiting the dendrites that it targets, corresponding to an

alignment between excitation and disinhibition. Disinhibition is represented by dashed lines.
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Figure 2. Context-dependent gating of specific pathways. (a) A reduced compartmental neuron with a

somatic compartment connected to multiple, otherwise independent, dendritic compartments (only three

shown). (b) Excitatory inputs can generate a local, regenerative NMDA plateau potential in the dendrite.

As number of activated synapses increased, there is a sharp nonlinear increase in the evoked dendritic

membrane depolarization (VD). (c) Disinhibition of the targeted branch opens the gate for the excitatory

input.

(d) A pyramidal neuron receives converging inputs from multiple pathways carrying different stimulus

features, giving it selectivity to a preferred stimulus for each feature dimension. Each input pathway

targets separate dendrites, which are disinhibited correspondingly in each context by top-down control

inputs (not modeled here). (e) Tuning curve for input pathway 1, when only this pathway is activated.

The input pathway encodes a stimulus feature, e.g. motion direction, with a bell-shaped tuning curve for

the input. The preferred feature value corresponds to higher input firing rate. When gate 1 is open by

disinhibiting the dendrites targeted by input pathway 1, the neuron exhibits strong tuning (light blue).

When gate 2 is instead open, the neuron exhibits weak tuning for the feature (dark blue). The amount

of inhibition reduced for a disinhibited dendrite, i.e. the disinhibition level, is 30 Hz.

(f,g) Two dimensional tuning curves when both pathways are activated. (f) In the default context, no

dendrites are disinhibited and both pathways are gated off. The neuron exhibits weak responses regardless

of the stimulus features. (g) When gate 1 is open by disinhibiting branches targeted by pathway 1, the

response of this neuron is dominated by tuning to the pathway 1 stimulus, although pathway 2 has a

residual impact.
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Figure 3. Characterization of gating selectivity in pyramidal neurons.

(a) Schematic of gating, presenting pathway 1 input when gate 1 is opened (left) or gate 2 is opened

(right). There are Ndend available dendrites in total. Each input pathway targets Ndisinh dendrites.

To gate a pathway on, these exact Ndisinh dendrites are disinhibited, creating an aligned pattern of

disinhibition. Each pathway selects dendrites randomly and independently from other pathways, which

can result in overlap of the excitation-disinhibition patterns across pathways. When Ndisinh is large,

projections from different pathways are more likely to overlap. The neuron’s firing rate is ron and roff in

response to the preferred stimulus of the gated-on (left) and gated-off (right) pathway respectively. The

gating selectivity is defined as (ron − roff)/(ron + roff), which is 1 for perfect gating and 0 for no gating.

(c) Gating selectivity increases as excitation/disinhibition patterns become sparser, i.e. with a smaller

proportion of targeted and disinhibited dendrites for a pathway (Ndisinh/Ndend). Diamonds mark the case

of non-overlapping excitatory projections, corresponding to the limit of maximal sparseness. (d) Gating

selectivity is higher with stronger disinhibition, for all sparseness levels.
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Figure 4. Gating selectivity as functions of SOM-pyramidal circuit parameters

(a) A biologically-constrained model for a cortical column of SOM and pyramidal neurons. We only mod-

eled the SOM-to-pyramidal connections. The model is subject to experimentally-measured constraints of

the following parameters: number of SOM neurons (NSOM), connection probability from SOM to pyra-

midal neurons (PSOM→pyr), and the number of dendrites on each pyramidal neuron (Ndend). We consider

the “worst case” scenario that the SOM-to-dendrite connections are random. Finally we assume for now

that control input for each pathway suppresses a random subset of SOM neurons. The different contrasts

used are for illustration purpose only.

(b) A critical parameter for the SOM-to-pyramidal circuit is the number of SOM neurons targeting each

dendrite (NSOM→dend). This parameter can be calculated using other experimentally-measured parame-

ters under the assumption of random connectivity, NSOM→dend = NSOM · [1− (1−PSOM→pyr)1/Ndend ].

(c-e) Gating selectivity only weakly depends on Ndend (c), NSOM (d), and PSOM→pyr (e) if NSOM→dend

is kept constant by co-varying another parameter. The plotted curve marks the mean and the shaded

region marks the bottom 10% to top 10% of the neuronal population.

(f) Gating selectivity is high when each dendrite is targeted by a few SOM neurons. Given experimental

measurements of PSOM→pyr ≈ 0.6, Ndend ≈ 30, NSOM ≈ 160, we obtained NSOM→dend ≈ 5, leading to rela-

tively high gating selectivity ∼ 0.5. Total strength of inhibition onto each pyramidal dendrite is always

kept constant when varying parameters.
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Figure 5. Two possible schemes of control for the interneuronal circuit.

We built a simplified circuit model containing VIP, SOM, and pyramidal neurons. (a-c) Control signals

target only VIP neurons. (a) In this scheme, for each pathway, control inputs target a random subset of

VIP neurons. And the connection probability from VIP to SOM neurons is PVIP→SOM. (b,c) Good gating

selectivity is only achieved when a small subset of VIP neurons is targeted by control inputs (b), and

when the VIP-SOM connections is sparse (c).

(d-f) Control signals target both VIP and SOM neurons. (d) In this scheme, we assume that for each

pathway control inputs target a random subset of VIP and SOM neurons. (e) Gating selectivity depends

on the proportion of SOM (blue) but not VIP (green) neurons targeted by control input. (f) Gating

selectivity does not depend on PVIP→SOM. Curves and shaded regions are as in Fig. 4.
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Figure 6. Somatic inhibition improves gating selectivity.

(a) PV neurons project to the somatic areas of pyramidal neurons, and are inhibited by SOM neurons

and themselves. Suppression of SOM neurons cause disinhibition of PV neurons, therefore an increase in

somatic inhibition onto pyramidal neurons.

(b) A moderate increase in somatic inhibition always improves gating selectivity. We included PV neurons

and their corresponding connections in the model of Fig. 5d. Gating selectivity increases as a function

of the SOM-to-PV connection weights (wSOM→PV) in a wide range (see Supplementary Mathematical

Appendix for a proof). However, when gating selectivity is low without PV neurons (light curve), the

peak of this increase is lower and the slope is sharper. Gating selectivity starts to decrease when the SOM-

to-PV connection, therefore the somatic inhibition, is too strong that the responses of many pyramidal

neurons are completely suppressed.
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Figure 7. Learning to gate specific pathways.

(a) Model schematic. Pre- and post-synaptic spikes both induce calcium influx. The overall synaptic

weight change is determined by the amount of time the calcium level spends above thresholds for depres-

sion (θd ) and potentiation (θp)34. The model is fitted to experimental data, and is able to quantitatively

predict results not used in the fitting (Supplementary Fig. 7).

(b) Dendritic inhibition makes potentiation harder to induce. With background-level inhibition (light

blue), synaptic weight change shows three regimes as a function of excitatory input rate: no change for

low rate, depression for medium rate, and potentiation for high rate. With a medium level of inhibition

(dark blue), potentiation requires a higher excitatory input rate. With relatively strong inhibition (black),

potentiation becomes impossible within a reasonable range of excitatory input rates. The post-synaptic

rate is fixed at 10 Hz.

(c) Learning paradigm. (Left) Excitatory synapses from each pathway are initialized uniformly across

dendrites. When pathway 1 is activated, specific branches of the neuron are disinhibited (dashed line),

i.e. gate 1 is open. During learning, only one pathway is activated at a time. (Right) After learning,

activated excitatory synapses onto the disinhibited branches are strengthened, while activated synapses

onto inhibited branches are weakened, resulting in an alignment of excitation and disinhibition patterns.

Synaptic weights of non-activated synapses remain unchanged (not shown).

(d) Response properties of the neuron before learning. (Top) Tuning curve of the neuron when only

pathway 1 is presented. The neuron shows no preference to the gate opened prior to learning. (Bottom)

Two-dimensional tuning curve of the neuron when both pathways are simultaneously presented and gate

1 is open. See Fig. 2 for the definition of the tuning curves. (e) Response properties of the neuron after

learning. (Top) The neuron shows strong tuning to pathway 1 input when gate 1 is open. (Bottom)

When both pathways are presented, the neuron’s response is primarily driven by pathway 1 stimulus,

although pathway 2 stimulus also affects the neuron’s firing.
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Figure 8. Pathway-specific gating in an example context-dependent decision-making task.

(a) A flexible decision-making task. Depending on the context, subject’s behavioral response should be

based on either the color or the motion direction of the stimulus.

(b) The circuit model scheme. Motion and color pathways target associative-sensory neurons, which are

subject to context-dependent disinhibitory control. Neurons preferring color and motion evidence for the

same target project to the corresponding neural pool in the decision-making circuit.

(c) Associative-sensory neurons receive converging inputs from both motion and color pathways, and are

controlled by the dendrite-targeting interneuronal circuit.

(d-f) Fit and prediction of behavioral performance. Behavioral performance in the motion context as

a function of motion coherence (d) and color coherence (e) for a monkey (dots), and the model’s fit

(line). Experimental data are extracted from [26]. The model can capture the behavioral performance

of a monkey. (f) In the model, impact of the irrelevant pathway (color) is strongest when the relevant

pathway signal is weak (with low motion coherence).
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Online Methods534

A summary of all types of models used and where they are used can be found in Supplementary535

Table 2.536

Spiking pyramidal neuron models537

For the fully reconstructed multi-compartmental pyramidal neuron model (Supplementary Fig.538

1a-d), we adapted a previously developed model based on a layer 2/3 pyramidal neuron in the rat539

somatosensory cortex reported by [51]. We used the passive membrane parameter set; results are540

essentially the same with the active membrane parameter set. Simulations were implemented541

with the NEURON simulator52.542

The reduced multi-compartmental spiking neuron model is comprised of multiple dendritic543

compartments and one somatic compartment. All dendritic compartments are equivalent, not544

directly coupled to each other, and coupled to the soma. There are 10 dendritic compartments545

for all simulations using this model (Fig. 2,7). The number of dendrites does not change the546

results as long as we normalize the dendrite-soma coupling strength with respect to the number547

of dendrites. The soma is modeled as a leaky-integrate-and-fire compartment with dynamics548

following:549

CS
dVS

dt
=−gL,S(VS −EL)−

∑

i
gc (VS −Vi ,D )+ Isyn,S (4)

where the subscripts S and D correspond to soma and dendrites, respectively. Vi ,D is the mem-550

brane potential of the i−th dendrite. CS is the membrane capacitance, EL is the resting potential,551

gL is the leak conductance, gc is the coupling between each dendritic compartment and the so-552

matic compartment. We set CS = 50.0 pF and gL,S = 2.5 nS, producing a 20-ms membrane time553

constant for soma. We also set EL =−70 mV and gc = 4.0 nS. The somatic spiking mechanism is554

integrate-and-fire, with spike threshold −50 mV, reset potential −55 mV, and refractory period 2555

ms. The dynamics of the dendritic membrane potential (VD ) follows556

CD
dVD

dt
=−gL,D (VD −EL)− gc (VD − V̂S)+ Isyn,D (5)

where V̂S is the somatic shadow potential53, which follows the same equation as VS , except with557

no spiking and resetting. We set CD = 20.0 pF and gL,D = 4.0 nS, producing a 5-ms membrane558
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time constant54. After a somatic spike, the back-propagating action potential is modeled as an559

3-ms-delayed voltage increase of 10 mV in all dendrites55.560

The main free parameters of the reduced-compartmental model, gc and gL,D , were chosen to561

match in vitro properties reported by [54]. Specifically, a single-synapse dendritic EPSP of 1-mV562

peak is attenuated to about 0.05 mV in the soma, and a dendritic NMDA plateau potential evokes563

a somatic depolarization with the peak around 10 mV. We also made several efforts to adapt564

our model to mimic physiological in vivo conditions, including excitation-inhibition balanced565

background inputs and reduced soma-dendrite coupling. We used an in-vivo set of parameters566

whenever appropriate (Fig. 2d-g and Fig. 7c,d). The soma-dendrite coupling is reduced five-567

fold to gc,vivo = 0.8 nS, to achieve the stronger signal attenuation observed in high-conductance568

state56. In this regime, the soma also receives excitatory and inhibitory background inputs, 500569

Hz of 2.5-nS AMPAR input and 150 Hz of 4.0-nS GABAR input, to approximate the excitation-570

inhibition balanced background input that gives the neuron a baseline Poisson-like firing rate571

around 3 Hz. Reduced spiking neuron simulations were implemented with the BRIAN neural572

simulator57. All simulation codes are available on ModelDB.573

We used four types of synapses, AMPAR, NMDAR, GABAAR, and GABABR. Since GABABRs574

are only used briefly in (Supplementary Fig. 3), we denote GABAA simply as GABA. AMPAR and575

GABAR synapses are modeled as linear:576

Isyn =−g̃synssyn(V −Esyn) (6)

dssyn

dt
=−

ssyn

τsyn
+∑

i δ(t − ti ) (7)

where ssyn is the gating variable representing the proportion of open channels, g̃syn is the max-577

imum synaptic conductance, Esyn is the synaptic reversal potential, τsyn is the synaptic time578

constant, and ti are pre-synaptic spike times. We set τAMPA = 2 ms, EAMPA = EE = 0 mV, EGABA =579

EI =−70 mV, and g̃GABA = 4.0 nS. For dendrite-targeting inhibitory synapses τGABA,dend = 20 ms,580

whereas τGABA,soma = 10 ms for soma-targeting inhibitory synapses. These are based on the ob-581

servations that dendrite-targeting inhibition tend to be slower58,59. In Supplementary Fig. 1d,h,582

g̃AMPA = 2.5 nS. In Supplementary Fig. 3, g̃AMPA ranges from 0 to 2.5 nS. Otherwise g̃AMPA is set583

as 0 nS (no AMPAR input).584

GABABR synapses are post-synaptic. Each spike at time ti increases the gating variable sGABAB (t )585
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by γGABAB [exp[(t − ti )/τGABAB,decay]−exp[(t − ti )/τGABAB,rise]], where γGABAB is a normalizing fac-586

tor such that the peak of the above expression is 1. Then the total input current voltage depen-587

dent is588

IGABAB =−g̃GABAB sGABAB fGABAB (V ) (8)

where fGABAB (V ) = 33.33mV · (0.5−2/(1+exp((V +98.73)/12.5))), as obtained from [60].589

NMDAR synapses include a voltage-dependent magnesium block fMg(V ) and saturating gat-590

ing variable sNMDA:591

INMDA = −g̃NMDAsNMDA(V −EE ) fMg(V ) (9)

fMg(V ) =
[

1+exp
(
−V −Vhalf

Vwidth

)]−1

(10)

with Vhalf = −19.9 mV and Vwidth = 12.48 mV61. The NMDA conductance g̃NMDA = 2.5 nS. The592

NMDAR gating variable dynamics follow:593

dsNMDA

dt
= − sNMDA

τNMDA,decay
+αNMDAxNMDA(t )(1− sNMDA) (11)

dxNMDA

dt
= − xNMDA

τNMDA,rise
+

∑

i
δ(t − ti ) (12)

with τNMDA,decay = 100 ms, τNMDA,rise = 2 ms, and αNMDA = 0.3 ms−1. This choice of αNMDA sets594

sNMDA to be roughly 0.4 at its peak after a single spike62,63. With this value of αNMDA, the satura-595

tion of NMDA starts to get prominent around firing rate r = 1/(αNMDAτNMDA,riseτNMDA,decay) ≈ 16596

Hz. By default in simulations with the reduced spiking model, the excitatory inputs are 15 inde-597

pendent NMDAR synapses with the same rate. Fewer number of excitatory synapses can become598

insufficient to elicit NMDA plateau potential. Since GABAR and AMPAR synapses are linear, their599

inputs are directly represented by the overall rates.600

Each excitatory synapse also has a calcium concentration level with arbitrary unit, which601

consists of two components, one NMDAR-dependent and one voltage-gated calcium-channel602

(VGCC) dependent: [Ca2+] = [Ca2+]NMDA + [Ca2+]VGCC. The NMDAR-dependent component is603

modeled as leaky integration of the NMDAR current:604

τCa,decay
d[Ca2+]NMDA

dt
=−[Ca2+]NMDA +κNMDAINMDA (13)
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where κNMDA is a scaling parameter with unit pA−1. The VGCC component is evoked by post-605

synaptic spikes that back-propagate into dendrites. Each spike induces a bi-exponential in-606

crease:607

[Ca2+]VGCC(t ) = κVGCCγCa
∑

i

[
exp

(
− t − ti

τCa,decay

)
−exp

(
− t − ti

τCa,rise

)]
(14)

Here γCa is a normalizing constant so that the peak response to one spike is κVGCC. And κVGCC is608

again a scaling parameter. τCa,decay = 30 ms is estimated from [35]. τCa,rise = 2 ms is used mainly609

to make [Ca2+] continuous.610

NMDA plateau potential611

The voltage of a dendrite receiving NMDAR and GABAR inputs follows612

CD
dVD

dt
= −gL,D (VD −EL)− gc (VD − V̂S)

−
∑

j
g̃NMDAsNMDA,j(t )(VD −EE ) fMg(VD )−

∑

k
g̃GABAsGABA,k(t )(VD −EI )

where j and k are indices of NMDAR and GABAR synapses respectively. Denote613

gNMDA(t ) =
∑

j
g̃NMDAsNMDA,j(t ) (15)

as the total NMDA input conductance onto this dendrite. The maximum value of gNMDA(t ) is614

simply gNMDA,max =
∑

j g̃NMDA = NNMDAg̃NMDA, where NNMDA is the number of NMDAR synapses.615

Similarly616

gGABA(t ) =
∑

k
g̃GABAsGABA,k(t ) (16)

If we ignore the coupling between this dendrite and its soma for now, and consider constant617

synaptic conductances gNMDA = gNMDA(t ), gGABA = gGABA(t ). Then we have618

CD
dVD

dt
= −gL,D (VD −EL)− gNMDA(VD −EE ) fMg(VD )− gGABA(VD −EI ) (17)

Since we have EI = EL , the steady-state dendritic voltage VD,ss satisfies619

0 =−(VD,ss −EL)− gNMDA

gL,D + gGABA
(VD,ss −EE ) fMg(VD ) (18)

This equation can be solved numerically, resulting in the curve in Supplementary Fig. 2d.620
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Pathway-specific gating in single pyramidal neuron621

Gating is performed by disinhibiting a specific subset of dendrites. Disinhibited dendrites always622

receive 5 Hz background inhibition. The disinhibition level is defined as the difference between623

the rates of inhibition received by inhibited and disinhibited dendrites.624

In Fig. 2d-g, each pathway targets two dendrites with 15 NMDAR synapses on each den-625

drite. The dendrites targeted by each pathway do not overlap. For each pathway, the input rate626

(uE ) follows a bell-shaped tuning to the stimulus value (z): uE = 40exp(−z2) Hz, where z ranges627

between −2.4 and 2.4. The disinhibition level is 30 Hz (from 35 Hz to 5 Hz).628

Presented alone, the preferred stimulus (z = 0) from one pathway increases the output firing629

rate by ron (roff) when the pathway is gated on (off). The gating selectivity is defined as630

ron − roff

ron + roff
, (19)

For Fig. 3, excitatory pathways can overlap. In the context with gate 1 open, Ndisinh dendrites631

are disinhibited. Excitatory pathway 1 targets these Ndisinh dendrites, each with strength 25 nS,632

and similarly for gate 2 and pathway 2. The Ndisinh dendrites disinhibited for gate 2 are chosen633

randomly and independently from the Ndisinh dendrites disinhibited for gate 1. For each Ndisinh634

and Ndend, ron,roff are averaged across all possible projection patterns.635

Rate pyramidal neuron model636

The rate model is fitted with simulation data from the spiking model with in-vivo parameters637

(Supplementary Fig. 4). The time-averaged voltage of a dendritic compartment (V D ) is mod-638

eled as a sigmoidal function of total excitatory input conductance (g E , see below for definition)639

following:640

V D = fV (g E , g I ) = 30 ·
[

1+ tanh
(

g E − g1/2

β

)]
+V0 +EL (20)

The mid-point g1/2 is proportional to the total inhibitory conductance g I plus the leak conduc-641

tance of the dendrite gL,D , as expected from the constant conductance scenario (Supplementary642

Fig. 2c)643

g1/2 = bg ·
(
gL,D + g I

)
(21)
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Based on our observation of the reduced spiking model, we modeled the width β as an exponen-644

tially increasing function of inhibition:645

β= k ·exp
(
g I /γ

)
(22)

This increase of width β as a function of g I captures the linearization effect of sparse inhibi-646

tion on the voltage-input function (Fig. 2c). Fit values of the parameters are bg = 5.56, k = 9.64647

nS, γ = 6.54 nS, V0 = 0.78 mV. The model is fitted to a simulated 10-dendrite spiking neuron648

model. When simulating dendrites of the spiking model, somatic shadow voltage is clamped at649

-60 mV, and back-propagating action potential is fixed as a Poisson spike train of 10 Hz. This phe-650

nomenological model allows us to interpolate the dendritic voltage for a large range of excitatory651

and inhibitory inputs very rapidly.652

The firing rate of the soma is modeled as a power law function of input current I :653

r = fr (I ) = [max(0, I +174.86)/45.16]2.89 (23)

Here I is the sum of the input current from dendrites and also the somatic inhibition from PV654

neurons whenever applicable. The parameters are fitted from simulation of the reduced spiking655

model. We assume the somatic voltage fluctuates around Ereset, and denote the mean dendritic656

voltage 〈VD〉. Then the input current from dendrites is Idend→soma = Gc · (〈VD〉 −Ereset), where657

Gc is the total dendrite-soma coupling of all dendrites. Gc = 8 nS. Since we assume Gc is fixed658

whenever we vary the number of dendrites (Fig. 3,4), the somatic function does not depend on659

the number of dendrites and need not be re-parametrized. So I = Idend→soma+∆IPV→soma, where660

∆IPV→soma is the change in somatic inhibition from PV neurons.661

For inputs to the rate model, g E and g I are the time-averaged total conductance of all excita-662

tory and inhibitory synapses, respectively. For NMDAR-only excitatory input, the approximated663

time-averaged gating variable sNMDA of a single synapse receiving input rate rE follows,664

sNMDA = 1− (1+ rEτNMDA,riseτNMDA,decayαNMDA)−1 (24)

For NNMDA synapses each with maximal conductance g̃NMDA, the total excitatory conductance665

is666

g E = NNMDAsNMDAg̃NMDA (25)
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Therefore, g E saturates as sNMDA does. Because the GABAR conductance is linear in its input667

rate, the total inhibitory conductance is668

g I = rIτGABAg̃GABA (26)

where rI is the overall inhibitory input rate onto that dendrite.669

Interneuron Models670

SOM neurons are modeled as simple rate neurons with a rectified linear f-I curve. The firing rate671

of a SOM neuron is672

rSOM = max(0,βSOM(Isyn,SOM − Irh,SOM)) (27)

where max(x,0) is a rectified linear function of x. Irh,SOM = 40 pA is the rheobase, i.e. the min-673

imum current required to activate the neuron, and βSOM = 90 Hz/nA is the f-I curve slope for674

SOM neurons, which we matched to data from [64]. SOM neurons typically display adapting675

responses to constant input, and the synapses of SOM neurons show short-term-plasticity. We676

ignored these aspects of temporal dynamics because here we are interested in the steady-state677

response. SOM neurons receive 150 pA input current in the default state, leading to a baseline678

firing of SOM neurons around 10 Hz as observed experimentally5,13.679

For VIP neurons, we assume that the control input targets Ncontrol,VIP = round(NVIP·Pcontrol,VIP)680

of them. On average VIP neurons are assumed to fire at r VIP = 5 Hz. Therefore the VIP neurons681

non-activated by the control input fire at 0 Hz, while those targeted by the control input fire at682

(5 ·NVIP/Ncontrol,VIP) Hz.683

PV neurons are modeled simply as linear rate neurons with a f-I curve slope of βPV = 220684

Hz/nA, because their activities never reach zero in our model. Since we are only interested in685

their change of activities in response to SOM neuron suppression, the spontaneous activity of686

PV neurons is irrelevant to our model.687

Interneuronal Network688

The full interneuronal network model contains pyramidal, SOM, VIP, and PV neurons. The net-689

work model is roughly based on a L2/3 cortical column microcircuit, and contains 3000 pyrami-690

dal neurons, 160 SOM neurons, 140 VIP neurons, and 200 PV neurons65. However, the analysis691
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applies more generally. Pyramidal neurons are modeled as multi-compartmental rate neurons692

as described above. We typically used Ndend = 30 dendrites, approximately corresponding to693

pyramidal neurons in associative areas66. The number of pyramidal neurons does not affect our694

results.695

The SOM-to-dendrite connections are set randomly. Instead of drawing each connection696

randomly and independently with a fixed probability, we assume that each dendrite is targeted697

by precisely NSOM→dend SOM neurons, when NSOM→dend is an integer, so that each dendrite698

receives the same amount of net inhibition in the default state. The identities of SOM neu-699

rons targeting each dendrite is randomly chosen. The total inhibitory conductance received700

by each dendrite is denoted and fixed as GSOM→dend = 40 nS, then for each SOM-dendrite con-701

nection the conductance is GSOM→dend/NSOM→dend. Each SOM-dendrite connection can con-702

tain multiple synapses, which we are not explicitly modeling here because GABAergic synapses703

are linear such that we only need to consider the total conductance. When NSOM→dend is not704

an integer, we interpolate. Each dendrite is targeted by ⌈NSOM→dend⌉ SOM neurons, where all705

synapses but one have weights GSOM→dend/NSOM→dend, while one has weight GSOM→dend · (1−706

⌊NSOM→dend⌋/NSOM→dend). Given the connection probability from SOM to pyramidal neurons707

PSOM→pyr, the number of SOM neurons NSOM, and the number of dendrites on each pyramidal708

neuron Ndend, we set709

NSOM→dend = NSOM · [1− (1−PSOM→pyr)Ndend ] (28)

This is the mean number of SOM neurons targeting each dendrite if the SOM-to-pyramidal con-710

nections were completely independent and random.711

The VIP-to-SOM connections are set in the same way as the SOM-to-dendrite connections.712

Since SOM neurons only have one compartment each, we have NVIP→SOM = NVIP · PVIP→SOM.713

When control inputs target both VIP and SOM neurons, we have PVIP→SOM = 0.6. When control714

inputs only target VIP neurons, we have PVIP→SOM = 0.1. Within 100µm the connection proba-715

bility is measured to be around 0.6 (Supplementary Table 1). However, note that the connection716

probability from VIP to SOM neurons on a column scale is unknown. The spatially-restricted ax-717

onal arbors of VIP neurons31 suggest that the connection probability may fall quickly as a func-718

tion of the VIP-SOM distance. Therefore on the scale of a column, the connection probability719
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could still be as low as 0.1. Total inhibitory connection weight from VIP neurons received by each720

SOM neuron is 30 pA/Hz, and is distributed onto each synapse the same way SOM-to-dendrite721

connection weights are set. For NVIP = 140 and PVIP→SOM = 0.6, the connection strength of each722

synapse is about 0.4 pA/Hz. This is close to the unitary VIP-to-SOM IPSQ of 0.7 pA/Hz measured723

in [4]. Notice here the connection is current-based because SOM neurons are described by a f-I724

curve.725

The SOM-to-PV, PV-to-PV, and PV-to-pyramidal soma connections are all set similar to the726

connections above. We set PSOM→PV = 0.8, PPV→PV = 0.9, PPV→soma = 0.64. The total inhibitory727

connection strength from SOM neurons to each PV neuron is varied in Fig. 6b. The total in-728

hibitory connection from PV neurons to each PV neuron is 30 pA/Hz, and from PV neurons to729

each pyramidal neuron is 30 pA/Hz. Denote the resulting connection weight matrix WSOM→PV,730

WPV→PV, WPV→soma, then in steady state the change in somatic inhibition ∆Ipyr across pyramidal731

neurons is732

∆Isoma =WPV→soma∆rPV (29)

where ∆rPV is the change in PV activities. And we have733

∆rPV = (1/βPV −WPV→PV)−1WSOM→PV∆rSOM (30)

where ∆rSOM is the change in SOM activities before and after control inputs. 1 is identity matrix.734

The precise values of these PV-related parameters do not matter.735

Control inputs are excitatory. Here we are agnostic about their origin. They could be locally736

generated or from long-range projections. Control inputs can target subsets of SOM and VIP737

neurons. The mean strength of the control inputs across the whole population is always kept as738

a constant. When control inputs target SOM neurons, Ncontrol,SOM = round(NSOM ·Pcontrol,SOM)739

of SOM neurons are targeted, with current 75 ·NSOM/Ncontrol,SOM pA. Therefore across the whole740

population the averaged current input is 75 pA. When control inputs target VIP neurons, each of741

the Ncontrol,VIP targeted VIP neurons fire at (5 ·NVIP/Ncontrol,VIP) Hz. For Fig. 5a-c when control742

inputs only target VIP neurons, we set Pcontrol,SOM = 0,Pcontrol,VIP = 0.1. Pcontrol,VIP has to be low743

otherwise the gating selectivity would be very close to 0. For Fig. 5d-f, when control inputs744

target both SOM and VIP neurons, Pcontrol,SOM = 0.5,Pcontrol,VIP = 0.5. Setting Pcontrol,SOM = 0.5745
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does not result in the highest gating selectivity. We did not make particular efforts to fine-tune746

these parameters.747

Finally, excitatory inputs carrying stimulus information for one pathway target the corre-748

sponding disinhibited dendrites. When we opened the gate for pathway 1, suppose one dendrite749

receives averaged inhibitory conductance g I . Then the total excitatory conductance g E from750

pathway 1 onto this dendrite is751

g E =

⎧
⎪⎪⎨

⎪⎪⎩

(1− g I /gI ,th) · gE ,max , g I < gI ,th

0 , g I ≥ gI ,th

(31)

gI ,th is a inhibitory conductance threshold we defined. Therefore when inhibition is weak (disin-752

hibition is strong), excitation is inversely proportional to inhibition level. However, when disin-753

hibition is weak, there will be no excitatory input at all. Having a cut-off threshold gI ,th prevents754

excitatory inputs from targeting every dendrite and therefore being overly dense. We set gI ,th =755

4.0 nS. Since we have set the sum of conductances of all inhibitory synapses to be GSOM→dend =756

40 nS, each SOM neuron fires around 10 Hz prior to disinhibition, and τGABA,dend = 20 ms, the757

time-averaged conductance received by each dendrite in default is g I = rIτGABA,dendGSOM→dend =758

8.0 nS. Therefore by setting gI ,th = 4.0 nS, excitatory synapses only target dendrites that are at759

least disinhibited by half. We set the maximum time-averaged excitatory conductance target-760

ing each dendrite to be gE ,max = 25 nS. This value is chosen so that excitation is strong enough761

to excite a disinhibited dendrite, but not strong enough to excite a strongly inhibited dendrite762

(Supplementary Fig. 4).763

In (Supplementary Table 1), we summarized the raw experimental data used to constrain764

the model.765

Synaptic plasticity model and learning protocol766

The synaptic plasticity model is calcium-based. The calcium dynamics is described above, and767

the synaptic weight change given these calcium dynamics is modeled with the formalism from768

[34], restated below for clarity with slightly modified notations.769

Over the time of stimulation, the calcium trace spends timeαp above the potentiation thresh-770

old θp , and time αd above the depression threshold θd . Then the average potentiation is Γp =771
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γpαp , and the average depression is Γd = γdαd , where γp and γd are the potentiation and de-772

pression strengthes respectively. Since the synapse is assumed to be bistable (DOWN or UP773

states), denote ρ as the probability of the synapse staying in the UP state, which evolves over774

time in response to the calcium trace crossing thresholds. Then define ρ as the long-term time775

average of ρ, and σ2
ρ as the standard deviation of ρ. Then776

ρ =
Γp

Γp +Γd
(32)

σ2
ρ =

σ2(αp +αd )

Γp +Γd
(33)

where σ is the amplitude of noise and τ is the time constant of weight change. In long term, the777

probability to switch from DOWN to UP state U and from UP to DOWN states D are given by778

U = 1
2

(
1+erf

(
− 0.5−ρ+ρe−(Γp+Γd )/τ

√
σ2
ρ(1−e−2(Γp+Γd )/τ)

))
(34)

D = 1
2

(
1−erf

(
− 0.5−ρ+ (ρ−1)e−(Γp+Γd )/τ

√
σ2
ρ(1−e−2(Γp+Γd )/τ)

))
(35)

erf(·) is the standard error function. For convenience, we set the weight of DOWN state to w0 = 0,779

and the weight of UP state w1 = 3. Then following stimulation, the weight after learning wpost =780

wpre(1−D)+ (w1 −wpre)U , given the weight before learning wpre.781

We fitted the free parameters of the model with experimental data from [35]. In simulation of782

the plasticity experiment, we modeled the pre-synaptic extracellular stimulation by 40 NMDAR783

synapses simultaneously receiving one spike. This stimulation alone causes a 2.8 mV depolar-784

ization on the soma, which is within the range of observed values (1–3 mV) for that experiment.785

It also brings the dendrite close to the NMDA plateau threshold, allowing for strong interaction786

between pre- and post-synaptic spikes. As in the experiment, all pairings are repeated 60 times.787

The somatic shadow voltage is clamped at −60 mV.788

The model is fitted to data points from Fig. 2 and 3d in [35], and is used to predict data from789

Fig. 3b therein. Notice that two data points in the test dataset (their Fig. 3b) are already included790

in their Fig. 2 and 3d. In all of these cases, there is one pre-synaptic spike, and usually a burst of791

post-synaptic spikes. The time lag in Supplementary Fig. 7a is defined as the timing difference792

between the first post-synaptic spike in the burst and the pre-synaptic spike. In Supplementary793

Fig. 7a,b, there are 3 post-synaptic spikes. In Supplementary Fig. 7b,c, the pre-synaptic spike794
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is either 10 ms earlier than the first post-synaptic spike in the burst, or 10 ms later than the last795

post-synaptic spike. In Supplementary Fig. 7a,c, the post-synaptic burst, when there is one,796

has frequency of 50 Hz (inter-spike-interval of 20 ms). The fit parameters are the following. The797

scaling parameters for calcium traces, κNMDA = 0.371 and κVGCC = 0.957. The depression and po-798

tentiation rates are γd = 39.9 and γp = 177.6. The potentiation threshold for calcium is θp = 2.78.799

In fitting this particular dataset, we found that there is a certain level of redundancy in parame-800

ters; the number of parameters needed to be free is less than the total number of potentially free801

parameters. We therefore fixed two parameters using values in [34] which were fitted to another802

dataset: the amplitude of the noise σ = 3.35 and the time constant of synaptic weight change803

τ = 346.36 s. The depression threshold is θd = 1. Before the plasticity-inducing experiment, we804

have wpre = 1 which corresponds to g̃NMDA = 2.5 nS for each NMDAR synapse. So after learning,805

the actual synaptic conductances are g̃NMDA = wpost ·2.5 nS.806

Just like the spiking pyramidal neuron model, the plasticity model fitted with in-vitro data807

needs to be recalibrated to behave properly under in-vivo-like conditions67. We reduced the808

scaling parameters for calcium traces to κ̂NMDA = 0.75κNMDA, mimicking a reduced extracel-809

lular calcium concentration, and to κ̂VGCC = 0.2κVGCC, resembling attenuated effect of back-810

propagating action potentials in high-conductance in-vivo state. These changes also ensure the811

weights of non-activated synapses do not change substantially throughout the simulation. In812

Fig. 7b, the plasticity inducing protocol is 300-s long. The post-synaptic firing is fixed at 10 Hz.813

In Fig. 7c-e, inputs from both pathways initially target every dendrite with 15 synapses of the814

same weight g̃NMDA = 2.5 nS. Each gate is opened by disinhibiting 2 distinct dendritic branches.815

During learning, all synapses from the gated-on pathway are activated at 50 Hz, whereas the816

gated-off pathway is not activated. The post-synaptic rate is set at 10 Hz. To measure gating817

selectivity before learning, 8 of the 15 synapses on each dendrite are activated for both pathways.818

After learning 5 of 15 synapses were activated, the number is chosen so that before and after819

learning the total excitatory conductance is the same.820

Context-dependent decision-making network821

We modeled the context-dependent decision-making task from [26]. In the experimental task,822

the stimulus is a mixture of random dots that are leftward- or rightward-moving and are red or823
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green. The stimulus can be described by its motion and color coherence. Motion coherence for824

rightward motion can take 6 values (−0.5, −0.15, −0.05, 0.05, 0.15, 0.5). Color coherence for color825

red also takes 6 values (−0.5, −0.18, −0.06, 0.06, 0.18, 0.5). On each trial, the color and motion co-826

herence are independently and randomly chosen, resulting in 36 possible stimuli. In Fig. 8d, the827

performance with respect to motion coherence is averaged across all color coherences. Similarly828

for Fig. 8e, the performance with respect to color coherence is averaged across all motion co-829

herences. In Fig. 8f, the curve for strong motion coherence is averaged across motion coherence830

−0.5 and 0.5. Similarly for medium and weak coherences.831

The context-dependent decision-making circuit model contains two components. The first832

is a mixed-selective sensory network, which uses the VIP-SOM-pyramidal neuron circuit model833

described above. The mixed-selective sensory neurons receive motion and color inputs from the834

sensory stimulus. Here the motion and color inputs do not signal the actual motion and color of835

the stimulus, but rather the motion and color evidence for a particular target. For convenience,836

the motion direction corresponding to target 1 is denoted left, and the color corresponding to837

target 1 is denoted red, and similar for motion right and color green. This treatment follows the838

analyses and modeling of [26]. There are four pools of neurons in this network. Each pool prefers839

a particular combination of motion and color, e.g. left and red. Each neuron pool is modeled840

exactly as those in Fig. 5d, where the circuit connectivity is random and control inputs target841

both VIP and SOM neurons, using the base parameter set described above. The input to each842

dendrites is 15 NMDAR synapses with rate determined by the coherence (coh) of their preferred843

motion and color input, as 40 · (1+coh) Hz36,68. For example, a neuron that prefers left and red844

inputs would receive 40 · (1+cohleft) Hz input on its dendrites targeted by motion pathway, and845

40 · (1+cohred) Hz on its dendrites targeted by color pathway. Note that cohleft =−cohright. The846

excitatory input for each pathway is set the same way as it is above, however now the maximum847

conductance of these input synapses gsen is one free parameter.848

The second component of the network is a decision network. This network is a two-pool849

rate model36, using the parameter set therein with no recurrent AMPAR current. The pool rep-850

resenting choice 1 receives input from a subset of the left-red neuron pool in the mixed-sensory851

network. Sensory neurons are sorted according to their gating selectivity, and only the top Pproject852

fraction of these sensory neurons project to the decision networks. Pproject is also a free parame-853
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ter. The right-green pool projects to the choice 2 pool. The other two pools do not project to the854

decision network because only the left-red and the right-green pools have congruent preferences855

for choice 1 and choice 2, respectively, based on the how color and motion evidence are defined.856

In order to fit experimental behavioral choice data efficiently, we further approximated the deci-857

sion network with a decision function. We assumed that the probability of selecting choice 1 (P1)858

is determined by the difference ∆Idec (pA) between the input currents to the two choice pools.859

We fitted this function by simulating the decision network with mean input current 15.6 pA to860

both pools, yielding861

P1 =
[

1+exp
(−∆Idec

σ

)]−1

(36)

with σ = 0.99 pA. The second free parameter of the model is the projection strength Jdec of the862

mixed-sensory input, such that ∆Idec = Jdec(rleft,red − rright,green). rleft,red is the average firing rate863

of the left/red-preferring pool.864

The three free parameters gsen,Pproject, Jdec are fitted to behavioral data of each monkey in865

[26]. The fit parameter values are gsen = 1.21 nS, Pproject = 0.36 and Jdec = 15.0 pA/Hz for mon-866

key F, and are gsen = 1.80 nS, Pproject = 0.083 and Jdec = 4.37 pA/Hz for monkey A. Importantly,867

the data used to fit the model is far from being sufficient. Also our circuit model is simplistic.868

Therefore these fitted parameter values do not reflect our estimates of these quantities in the869

brain. Rather, these fittings demonstrate that the proposed circuit architecture can potentially870

capture behavioral performance. As shown in Supplementary Fig. 8, if neural gating is strongly871

degraded, then no set of these fit parameters can capture behavioral performance.872

Model fitting in general873

Model parameters are fitted to experimental or simulation data in various contexts. These fitted874

models include the rate pyramidal neuron, the calcium-based plasticity model, and the context-875

dependent decision-making network. In all these cases, parameters are chosen to minimize the876

squared-error between the model and data using sequential least squares programming (SLSQP)877

method from the SciPy library (scipy.optimize.minimize, with method ’SLSQP’).878
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Figure S1. Dendritic disinhibition powerfully gates dendritic nonlinearity.

(a-d) Dendritic disinhibition controls NMDAR-dependent nonlinearity in a reconstructed compartmental

neuron model. (a) A morphologically reconstructed compartmental model of a layer 2/3 pyramidal

neuron (1) receives excitatory and inhibitory inputs uniformly distributed onto one basal dendrite. (b)

Excitatory inputs can generate a local, regenerative NMDA plateau potential in the dendrite. As the

number of activated synapses is increased, there is a sharp nonlinear increase in the evoked dendritic

membrane depolarization (VD). (c-d) Presynaptic spike times are modeled as Poisson-distributed events.

(c) In response to synaptic input mediated by NMDAR channels, the mean dendritic voltage across

time (V D) increases nonlinearly as a function of excitatory rate (light blue). Moderate inhibition largely

suppresses NMDA plateau potentials even for high excitatory input rate (dark blue). (d) The effect of

inhibition is much weaker when excitatory input is mediated by AMPARs. 20 excitatory synapses are

used as input in (c,d). (e-h) A reduced compartmental neuron model captures the nonlinearity of the

morphologically reconstructed model. (e) A somatic compartment is connected to multiple, otherwise

independent, dendritic compartments (only three shown). (f-g) Modeling results in the reconstructed

neuron model (b-d) are reproduced by the simplified model. 15 excitatory synapses are used as input in

(g,h).
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Figure S2. Effects of NMDA receptor saturation and low-rate inhibition. (a-d) NMDAR saturation

allows for much stronger inhibitory control. (a) Using an NMDAR model with saturation allows mild

dendritic inhibition to powerfully control dendritic voltage. Note that voltage of the inhibited dendrite

(dark blue) never reaches the same level as the disinhibited dendrite (light blue). (b) The same level of

inhibition has a much smaller effect when we used a non-saturating NMDAR model. (c) For constant

synaptic conductance, the steady-state voltage of one dendritic branch (Vss) increases sharply with the

effective input gNMDA/(gL + gGABA), where gNMDA, gL, and gGABA are the NMDAR, leak, and GABAR

conductances, respectively. The dashed line indicates the threshold θNMDA below which Vss is stably

in the low state. (d) The NMDR conductance, and therefore gNMDA/(gL + gGABA), saturates at high

input rates to NMDAR synapses. With moderate inhibition, the saturated value of the effective input

can be lower than the threshold θNMDA for an NMDA plateau potential. (e-h) Low-rate (temporally

sparse) Poisson inhibition generates irregular NMDA plateau potentials and graded encoding of input

rate. Inhibition is said to be temporally sparse when the product of the inhibition rate rI and the time

constant τGABA of GABAR is much smaller than 1, i.e. rI ·τGABA ≪ 1 (e) Due to relatively high input

rate and long time constant, the NMDAR gating variable averaged across synapses is nearly constant in

time. Each trace corresponds to a different excitatory input rate, ranging from 30Hz (bottom) to 50Hz

(top); the same applies to (f,g). (f) Inhibitory conductance is temporally sparse due to a low background

inhibition rate of 5 Hz. (g) The dendritic voltage switches stochastically in time, into and out of the

NMDA plateau potential. (h) The dendritic voltage across time exhibits a bimodal distribution, due to

stochastic switching. The excitatory rate is set to 40 Hz (asterisk in (g)).
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Figure S3. Pathway-specific gating with varying levels of AMPAR and GABAB conductance. In the

majority of our work, dendritic excitation is mediated only by NMDARs and dendritic inhibition only by

GABABRs. Here we show how pathway-specific gating varies with the inclusion of AMPAR and GABAB

inputs. (a) Pathway-specific gating when excitatory input is mediated solely by NMDARs, adapted from

Fig. 2g for comparison. (b) When the excitatory input is conducted solely by AMPARs (maximum

conductance g̃AMPA =2.5 nS for each synapse), the gating performance is strongly degraded. All other

conditions are kept the same in (a) and (b). Disinhibited dendrites receive 30-Hz disinhibition. (c) Gating

selectivity (which ranges from 0 for no gating to 1 for perfect gating, see Experimental Procedures for

the definition) decreases as a function of the AMPA conductance ratio. Here AMPA conductance ratio is

defined as g̃AMPA/(g̃AMPA + g̃NMDA), which is 0 in the NMDAR-only case and 1 in the AMPAR-only case.

g̃AMPA + g̃NMDA is held constant at 2.5 nS. (d) Gating selectivity increases as a function of the GABAB

conductance ratio. This is due to both the slower dynamics of GABAB receptors and the inward-rectifying

potassium (KIR) conductance activated by GABAB receptors (2; 3). Here excitatory inputs are mediated

by NMDARs only. (e) Gating selectivity remains high for a wide range of combinations of AMPA and

GABAB conductance ratio.
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Figure S4. Multi-compartment rate model for pyramidal neurons based on the reduced spiking neuron

model. (a) The neuron model is comprised of multiple dendrite compartments, whose mean voltages are

modeled with a family of sigmoidal functions. These dendritic voltages are converted into currents and

fed into a somatic compartment, whose firing rate output is modeled with a power-law function. (b) The

mean dendritic voltage (V D) as a function of excitatory and inhibitory inputs. (Blue) Simulation of the

reduced-compartmental spiking neuron model. 15 NMDAR inputs fire at a Poisson rate of 30 Hz with

conductance ranging from 0.25 to 5.0 nS, resulting in total conductance (g E ) approximately between

0 and 50 nS. Each curve corresponds to a different inhibitory input rate, ranging uniformly from 0 Hz

(top curve) to 100 Hz (bottom curve), in increment of 10 Hz. (Black) Fit of the simulation results.

All curves are simultaneously fit with a family of sigmoidal functions, where parameters of the sigmoid,

i.e. mid-point and width, are controlled by inhibition. The back-propagating action potential is fixed at

a rate of 10 Hz. (c) Somatic firing rate as a function of input current from dendrites (and potentially

PV neurons). In our model, since at resting state the mean dendritic voltage is lower than the somatic

voltage, the input current is negative. The simulation result of the spiking model (Blue) is fit with a

power-law function (Black).
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Figure S5. Mechanism of control. (a) In this scenario, we assume that for each pathway control

inputs target a random subset of VIP and SOM neurons. (b-c) Input currents onto SOM neurons (only

20 shown). (b) 50% of the SOM neurons receive excitatory currents from control (red). 50% of VIP

neurons receive excitatory control, but due to the high random connectivity from VIP to SOM neurons,

inhibitory currents onto SOM cells are nearly uniform (blue). (c) The sum of the excitatory and inhibitory

currents onto SOM neurons, i.e. the total currents, are primarily inhibitory and vary strongly across SOM

neurons. The overall inhibitory currents are results of overall stronger inhibition. The variability across

SOM neurons are mainly inherited from the selective excitatory control input.
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Figure S6. Inclusion of PV neurons results in a uniform somatic inhibition across pyramidal neurons.

(a) SOM suppression lead to PV disinhibition and somatic inhibition. Same as Fig. 6a. (b) The

change in the SOM-to-PV input currents after the control input. The change in currents is disinhibitory

(net excitatory) with a small standard deviation compared to the mean across PV neurons. Notice

that although the control input results in a selective suppression of SOM neurons (Supplementary Fig.

5c), the change in the SOM-to-PV currents is almost uniform due to the high SOM-to-PV connection

probability. (c) The change in the PV-to-soma input currents after the control input is net inhibitory and

again uniform across somas. Therefore a selective suppression of SOM neurons results in a non-selective

inhibition across somas through PV neurons.
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Figure S7. Fit and prediction of the plasticity model compared to experimental data. (a-c) A pre-

synaptic spike is paired with multiple post-synaptic action potentials (AP). Light symbols mark data

showing synaptic weight change (weight after learning/weight before learning) when varying the pre-post

time lag (a), post-synaptic AP frequency (b), and number of post-synaptic spikes (c). In (b,c), the

presynaptic spike either precedes (blue) or follows (red) the postsynaptic spikes. Curves in (a-b) show

the model fit, with the same set of parameters. (c) The model generalizes to predict data not used to

fit the model. Experimental data are extracted from (4).
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a b

Figure S8. Fits of behavioral data as we vary parameters of the interneuronal circuit. (a) The model fit

to behavioral data in motion context when we set NSOM→dend = 20. The fit is much degraded compared

to Fig. 8. From Fig. 4 we know that NSOM→dend is the critical parameter for gating selectivity measured

on the neural level. (b) The sum of squared errors of the model fit as a function of NSOM→dend. For a

large range of NSOM→dend, the model can nearly fit the data optimally. The fit starts to degrade when

NSOM→dend > 10. Dashed line indicates the error level of the optimal sigmoidal fit, where data are directly

fitted to logistic functions. The sum of squared errors shown here is the median error of 50 different

model realizations and fits.
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2 Supplemental Table

3 Mathematical Appendix

3.1 Gating selectivity critically depends on NSOM→dend

The gating selectivity is defined as the mean gating selectivity across neurons,

Gating selectivity = Eneuron

[
ron − roff

ron + roff

]
(1)

For each neuron, the neural activity given the gated-on pathway is

r̃on = fr (〈V D,on〉) (2)

, where 〈V D,on〉 is the mean dendritic voltage across all the dendrites on that neuron for the

gated-on pathway. Notice here for simplicity we used an input-output formulation for the so-

matic compartment that is slightly different from the one used in the main text (the results are

the same)

r = fr (〈V D〉) = r0 +
(
〈V D〉−EL

Vr

)nr

(3)

After correcting for the baseline, we have

ron = fr (〈V D,on〉)− fr (EL) (4)

=
(
〈V D,on〉−EL

Vr

)nr

(5)

Similarly

roff =
(
〈V D,off〉−EL

Vr

)nr

(6)

So

roff/ron =
[

(〈V D,off〉−EL)/(〈V D,off〉−EL)
]nr

(7)

In the limit of large number of dendrites on each pyramidal neuron, we can replace the av-

eraged dendritic voltage with its expectation over dendrites ED[·].

〈V D,on〉 ≈ ED

[
V D,on

]
(8)
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Parameter Value References Layer Area Animal

Proportion of SOM neurons among

inhibitory neurons

0.208 (5) L2/3 S1 mouse

Proportion of VIP neurons among in-

hibitory neurons

0.2 (5) L2/3 S1 mouse

Total number of inhibitory neurons in

a column

676±116 (6) L2/3 S1 rat

Baseline activity of SOM neurons 6.2±0.7 Hz (7) L2/3 S1 mouse

Unitary IPSQ from SOM to pyramidal

neurons

1.5±0.3 pC (8) L2/3 V1 mouse

Unitary IPSQ from VIP to SOM neu-

rons

0.69±0.33 pC (8) L2/3 V1 mouse

Connection probability from SOM to

pyramidal neurons (within 200µm)

0.71±0.03 (9) L2/3 frontal

cortex

mouse

Connection probability from VIP to

SOM neurons (within 25−100µm)

0.625±0.12 (8) L2/3 V1 mouse

Number of basal dendrites on each

pyramidal cell (number of total tips)

28.8±2.4 (10) L2/3 V1 rat

Number of basal dendrites on each

pyramidal cell (maximum branches at

fixed radius)

20±2.6 (11) L3 V1 monkey

Number of basal dendrites on each

pyramidal cell (maximum branches at

fixed radius)

34.2±4.9 (11) L3 anterior

cingulate

cortex

monkey

Table S1. Raw experimental data used to constrain the VIP-SOM-pyramidal disinhibitory circuit. The

error estimates are also taken from the references when available. Some of the data are extracted from

their figures since the value is not reported in texts. Specifically, the proportion of VIP neurons is inferred

from the proportion of 5HT3a neurons among interneurons and proportion of VIP neurons among 5HT3a

neurons.
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Model Figure

Fully-reconstructed spiking pyramidal neuron

model

Supplementary Fig. 1a-d

Reduced multi-compartmental spiking pyramidal

neuron model

Fig. 2,7, Supplementary Fig. 1e-h,2,3

Multi-compartmental rate pyramidal neuron

model

Fig. 3-6,8, Supplementary Fig. 4-6,8

Rate SOM neurons Fig. 4-6,8, Supplementary Fig. 5,6,8

Rate VIP neurons Fig. 5,6,8, Supplementary Fig. 5,6,8

Rate PV neurons Fig. 6, Supplementary Fig. 6

Calcium-based synaptic plasticity Fig. 7, Supplementary Fig. 7

Table S2. All types of models used, and their corresponding result figures.

Under this approximation, ron and roff would be the same for every neuron, therefore we

have

Gating selectivity = ron − roff

ron + roff
(9)

= −1+2/
(
1+

[
(ED[V D,off]−EL)/(ED[V D,on]−EL)

]nr
)

(10)

(11)

Since dendritic voltage is determined by the total excitatory and inhibitory conductance re-

ceived,

V D = fV (g E , g I ) (12)

= 30 ·
[

1+ tanh
(

g E − g1/2

β

)]
+V0 +EL (13)

= 30 ·
[

1+ tanh

(
g E −bg ·

(
gL,D + g I

)

k ·exp
(
g I /γ

)
)]

+V0 +EL (14)

(15)

Remember that for each pathway, we assume that the excitatory input conductance is a

deterministic function of the inhibitory conductance received when the corresponding gate is
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open.

g E =

⎧
⎪⎪⎨

⎪⎪⎩

(1− g I /gI ,th) · gE ,max , g I < gI ,th

0 , g I ≥ gI ,th

(16)

Denote this rectified linear function as g E = fE (g I ). For convenience consider two pathways, the

inhibitory conductance for gate 1 is g I ,1 and for gate 2 is g I ,2. And excitatory conductance for

pathway 1 and 2 are g E ,1 = fE (g I ,1) and g E ,2 = fE (g I ,2) respectively. Then

ED

[
V D,on

]
= 30 ·

[

1+ED

[

tanh

(
fE (g I ,1)−bg ·

(
gL,D + g I ,1

)

k ·exp
(
g I ,1/γ

)
)]]

+V0 +EL (17)

(18)

and

ED

[
V D,off

]
= 30 ·

[

1+ED

[

tanh

(
fE (g I ,2)−bg ·

(
gL,D + g I ,1

)

k ·exp
(
g I ,1/γ

)
)]]

+V0 +EL (19)

(20)

We assumed that each dendrite is targeted strictly by NSOM→dend SOM neurons, and since we

are keeping the total amount of inhibition GSOM→dend received by each dendrite fixed, the time-

averaged conductance of each connection is GSOM→dend/NSOM→dend. We also assumed that each

SOM neuron gets suppressed with probability 1−p. Then the number of non-suppressed SOM

neurons targeting each dendrite nSOM→dend follows a binomial distribution

nSOM→dend ∼ B(NSOM→dend, p) (21)

And

g I ,1 =GSOM→dend/NSOM→dend ·nSOM→dend (22)

Therefore NSOM→dend determines the distribution for g I ,1, g I ,2, g E ,1, g E ,2, ED

[
V D,on

]
,ED

[
V D,off

]
,

and finally the gating selectivity. In summary, in the limit of a large number of dendrites, we have

shown that gating selectivity only depends on the parameter NSOM→dend.
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3.2 Gating selectivity strictly improves with somatic inhibition

Denote the f-I response function of the somatic compartment as f (·), and assume the dendritic

input current to the soma is Ion and Ioff when the gate is open or closed respectively. Also denote

the somatic inhibitory current as IPV. For convenience, assume IPV > 0, so the outputs of the

pyramidal neuron are

ron = f (Ion − IPV) (23)

roff = f (Ioff − IPV) (24)

respectively. We consider only the case when ron,roff > 0, which means input stimuli have a net

excitatory effect. Also we have IPV < Ioff. Since ron,roff are baseline corrected, we should have

f (0) = 0. Here we derive the necessary and sufficient condition for gating selectivity

S = ron − roff

ron + roff
(25)

to strictly increase with IPV.

We have

∂S
∂IPV

(26)

= ∂
∂IPV

[ ron−roff
ron+roff

] (27)

= 1
(ron+roff)2 · [(ron + roff)

∂
∂IPV

(ron − roff)− (ron − roff)
∂

∂IPV
(ron + roff)] (28)

= 2
(ron+roff)2 · [roff

∂ron
∂IPV

− ron
∂roff
∂IPV

] (29)

So

∂S
∂IPV

< 0 (30)

is equivalent to

roff
∂ron

∂IPV
< ron

∂roff

∂IPV
(31)

In a few more steps, we can easily derive that the necessary and sufficient condition for gating

selectivity to improve with somatic inhibition is that

( f ′(I ))2 − f (I ) · f ′′(I ) > 0 ,∀I > 0 (32)
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where f ′(I ) = d f (I )
dI .

We can easily see that for any power law function f (I ) = aI b ,

( f ′(I ))2 − f (I ) · f ′′(I ) = (abI b−1)2 −aI b ab(b −1)I b−2 (33)

= a2bI 2b−2 (34)

is strictly larger than 0, as long as b > 0.
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