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I. INTRODUCTION

Any technology experiences a phase of explosive growth as a consequence of the com-

binatorial potential that pervades innovation (Arthur 2009). As more inventions become

available, the repertoire of possible artefacts that can be created using previous pieces, de-

signs or modules expands exponentially. The textbook example is provided by electronics

(Williams 1985). Starting from the first large, clumsy and inefficient transistor, a rise of In-

formation Technology (IT) became a reality due to the open-ended nature of combinatorial

logic (any circuit can be designed from small pieces) and the parallel development of software

engineering (Mens and Demeyer 2008). Actually, these two domains coevolved over time,

completely changing our relationship with information and design. Synthetic Biology (SB)

is an emerging field that offers a similar potential to change the biotechnology landscape.

Largely inspired in standard IT, it focuses on the translation into the biological realm of

engineering pillars such as modularity, orthogonality and standarization (Purnick and Weiss

2009).

In just one decade, SB has moved from proof-of-concept designs to several flagship

achievements attributed to SB-driven strategies. These include microbial drug synthesis,

production of new biofuels or novel approaches to disease treatment (Church et al., 2014).

The newborn discipline has risen great expectations but also considerable hype. One par-

ticular claim is the capacity of SB to exploit combinatorial design principles as the engine

of novel, more complex living machines by assembling functionally self-contained parts such

as promoters, coding sequences, ribosome binding sites, terminators or protein domains. In

this context, the informational nature of living systems (Maynard Smith 2000, Nurse 2008)

supports an analogous path of technological development. But the LEGO-like notion of

the field has been seriously questioned (Kwok 2010) thus raising two questions. The first

is the value of the similarities between IT and SB. The second, whether the landscape of

SB designs is growing as a consequence of combinatorial design. In order to answer these

questions, a quantitative, systems-view of the technological landscape is needed.
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FIG. 1 Frequency use of LEGO, software and genetic parts. Three systems are represented: (a)

LEGO pieces, (b) genetic parts from the Registry of Standard Biological Parts (RSBP, blue) and

software components within the JAVA library (red). Here we display, using a log-log scale, the

rank-frequency distributions, where the most frequent element has rank r = 1, followed by the next

more frequent r = 2 and so on. The r − th point gives the frequency N(r) of use of the r−ranked

piece. The first set (a) gives the frequency of block use in Lego constructions (Crompton 2012)

and we indicate the exact pieces for r = 1, 10, 100. More ”generalist” pieces have lower ranks and

widespread use. The other two distributions (b) also indicate how often a given part (biological or

technological) participates in any engineered design (a genetic construct or a package). Both have

long tails that fit Zipf’s law, i e. N(r) ∼ r−γ with γ = 1, as indicated by the dashed lines.

II. HARDWARE OR SOFTWARE?

Mounting concerns have emerged in relation to the ambiguity of the industrial engineering

and electronic metaphoric pools (de Lorenzo, 2011; Porcar et al., 2015), on the difficulties

for living things to fit rational design (Collins et al., 2014) or on the inexactitude of the

very concept of cells as biomachines (Nicholson, 2013). Are designed constructs like small,

widely re-usable components? (Andrianantoandro et al., 2006). If not, its potential as a

fast expanding, successful technology might be questionable. What kind of approach can be

used to prove or disprove the appropriateness of the analogy? Because the currently adopted

representation of cells and synthetic circuits is in terms of logic gates, genetic parts might

appear closer to hardware components. In this context, it has been recognised that genetic

pieces are actively read-out as a source of algorithmic instructions (Walker and Davies 2013).

By contrast, transcription factors (and other parts of the molecular cell machinery) work as

hardware operating on genetic instructions. If we need to compare technological fields, a new

comparative frame could be software engineering. Using system-level, network approaches, it
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has been shown that software systems can be described as complex webs of interacting parts

(Valverde et al., 2002; Myers, 2003; Potanin et al., 2005) characterised by an extensive reuse

of subsystems. More importantly, there are remarkable convergent traits shared between

large software structures and molecular cell networks (Solé et al., 2011). In this paper, we

will identify global patterns of interaction in networks of co-occurrence of genetic parts used

in SB designs in order to search for a fingerprint of combinatorial reuse.

There is an additional reason to consider software engineering here. A specially rele-

vant connection between software development and the potential future of synthetic biology

stems from the serious challenges experienced by the former shortly after it started to rise.

Already in the 1960s, rising concerns emerged once software projects started to become more

complicated, poorly specified and prone to unexpected failures and defects. The failure of

software to match continuous advances in hardware constrained the capacity of programmers

to effectively use machine characteristics (Dijkstra, 1972). The main cause of this failure

was a combination of poor quality and the lack of reusability of software components. Both

factors led to chronic maintenance problems (Hooper and Chester 1991). A proposal to

solve this ”software crisis” was based on the reuse of interchangeable components (McIlroy,

1976). This reuse-based approach to software development, although promising, had limited

applicability except for libraries of highly-specialised domains, e.g., mathematical routines.

Instead of a successful standardisation, a multiplicity of libraries, codes and programming

languages and specialised domains emerged. Soon it became clear that even reliable parts,

once in a new context, are not necessarily reliable (Coulange 1998). Some of the problems

were solved two decades later while others still persist today (Garlan et al., 1995; Mili et

al., 1995). For most practitioners of SB design, the previous story might sound familiar.

III. GENETIC PARTS VERSUS NETWORKS OF PARTS

The most used and well characterised compilation of biological parts are BioBricksTM , a

repository of up to 7822 DNA sequences, most of which issued from the international Genet-

ically Engineered Machine (iGEM) competition. Critical meta-analyses on the performance

of Biobricks are scarce (Vilanova and Porcar, 2014). In the present work, we have tackled for

the first time a global analysis of the biological components from the Registry of Standard

Biological parts (http://parts.igem.org/Registry_API), and compared its structure and
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FIG. 2 The landscape of software networks versus synthetic biology webs of genetic parts. (a) A

network can be defined using genetic parts as components: any two parts that have been used to

build a new construct are connected by a link. The global pattern of links is shown in (b) for the

Biobrick network and, (c) for the JAVA network of software dependencies.

re-use features with both LEGO c© (Crompton, 2012) and a large software system (Valverde

et al., 2002).

The LEGO c© metaphor has been often used within SB (Cserer and Seiringer, 2009;

Collins, 2012) as a way of referring to the combinatorial potential: not surprisingly, the

maximum award in iGEM is given in the form of an aluminium BioBrick trophy. There is a

statistical pattern, which is shared by all the systems discussed here. It is given by the rank-

frequency distribution, which gives the number of times N(r) that the r-th most common

element has been found in a given collection of Lego sets, displayed in Fig. 1a (Crompton,

2012). In Fig. 1b we plot (blue dots) the corresponding distribution for the frequency of use
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of genetic parts. A similar pattern is shared by the frequency of use of software components

within the JAVA library, a good example of object-oriented software (Fig. 1b, red dots).

Here too, most elements in the library are used in a very specific way, whereas a few are

widely used. In both cases, N(r) follows the so called Zipf’s law (Newman, 2005) for large

r. Zipf’s law is characterised by a power law decay where frequency decays inversely with

rank, i. e. N(r) ∼ r−γ with γ = 1. The origins of this fat-tailed statistics has been studied

and are known to be a consequence of extensive reuse of existing structures by developers

(Valverde and Solé, 2005).

Both distributions are highly skewed, indicating that they are dominated by a few, very

common pieces while most pieces are rare. This indicates that a handful of objects are

easily incorporated (the ”generalists”, i. e. small pieces capable of gluing together other

elements) while the majority are specialised. These are broad statistical distributions that

can be obtained from different types of mechanisms. Having fat-tailed distributions is no

guarantee that reuse is the leading mechanism. To test this possibility, we need to measure

the actual interactions among parts.

IV. NETWORK STRUCTURE AND PATTERNS OF REUSE

The frequency-rank distribution does not incorporate the real architecture of technological

complexity, which is associated to the way elements connect to each other. This means that,

in order to get a global picture of the organisation of these systems, a network approach

is required (Dogorovtsev and Mendes 2003; Newman, 2010; Valverde and Solé, 2005). By

considering the links existing among gates within electronic circuits (Ferrer et al., 2001),

libraries within software projects (Valverde et al., 2002; Myers, 2003; Potanin et al., 2005),

gene networks (Teichmann and Babu, 2004) or influences among inventions (Valverde et

al., 2007), it is possible to unravel the origins of the networks connecting logic components,

programs or patents. Of note, several studies have shown that genetic networks and software

programs share common structural principles (Yan et al., 2010). To further investigate

the parallelisms and differences between software and BioBricks, we performed a network

analysis of dependencies among JAVA components and genetic parts.

From the Registry of Standard Biological Parts (RSBP) we reconstructed the graph

(hereafter GR) of logical dependencies among parts. The way this was done is illustrated
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in Fig. 2a with an example. Here, a node represents a biological part and a link between

two parts indicates that they are simultaneously engineered within the same construct. The

arrows point from a given object to its constituents. The result of this is the BioBrick

network, which is composed by several disconnected subgraphs. Most parts in the Registry

(88%) belong to one single, large subgraph (Fig. 2b) which we have studied in detail. A

few highly connected components create a dense central region, while the majority of nodes

are, in average, associated with a small number of other parts. For comparison, in Fig. 2c

we also display the largest connected component of the JAVA software network (hereafter

GR). In both cases, links describe the use dependencies among either software (Valverde

et al., 2002) or biological parts. The different shape of both graphs suggests very different

global patterns of organisation, as confirmed by our quantitative study. One obvious and

significant difference is the distinct density of connections. The JAVA graph is sparse, as

most technological networks, exhibiting a reduced average number of links (average degree)

resulting from a supervised pruning of redundant relationships. This is one desirable feature

that is far from present in the RSBP graph, where many connections seem to indicate that

no such supervised process is at work. Instead, as new parts are added, they are likely to

be connected to other parts irrespective of the increasing redundancies that can arise.

A common trait in many complex networks is the presence of Small-World (SW) effect

(Watts and Strogatz, 1998). It is characterised by two key traits: (a) very small path lengths

dL, i. e. short paths separating any two arbitrary nodes; and (b) a high clustering coefficient

C: many triangles are present, indicating that two nodes sharing a given node are likely to

be also connected between them. This feature has proved in systems with extensive reuse.

The standard definition of the SW assumes two basic conditions: (1) dL ≈ drand and (2)

C � Crand; in which we compare the values of dL and C with the expected values drand and

Crand of a random version of the networks with all links randomly assigned. Technological

webs such as GJ are small worlds: here we have dL(GJ) = 5.4, drand(GJ) = 6.28 and

C(GJ) = 0.016 whereas the Registry graph is clearly not a SW because dL(GR) = 3.42 and

C(GR) = 0.0002. Here, we have a very low clustering (close to random) and the path length

is below the random expectation drand(GR) = 4.14.

Dramatic differences arise when looking at the modular structure of these webs. A de-

sirable, universal feature of both biological and technological networks is the presence of

modularity (Baldwin and Clark, 2000). Modular patterns provide a source of robust local
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division of labor within a complex system: damage or malfunction of parts within a mod-

ule do not propagate outside it. In a network context, a module is (roughly speaking) a

subsystem such that its components are more connected among them than with the rest

of the network. Modularity is measured by means of a parameter Q that weights to what

extent a given network exhibits modular architecture (Newman, 2010). Here Q is close to

1 if the system is composed of very well-defined, weakly disconnected modules; whereas low

values indicate that the system is weakly (or not) modular. Standard systems as JAVA have

high Q values (here QJ = 0.75) revealing that the technology is characterised by modules

of functionally related components but also displaying multiple dependencies between these

modules. By contrast, the Registry network has a rather small Q value (QR = 0.3), very far

from its theoretical maximum. Such a lack of modular architecture tells us that there are

no communities of more or less functionally related pieces. Almost everything connects with

the ”trivial” hubs, with little more organisation. Other measurements confirm this picture.

Taken together, our results indicate that the Registry graph is far from a well-organised

modular network, and thus lacking the expected attributes of a technological system with

differentiated subparts.

V. LESSONS FOR THE FUTURE

The comparative analysis we report here between biological parts and software compo-

nents reveals that the landscape of SB, as captured by the network of dependencies, is

completely different from the scenario predicted by extensive reuse. Our results reveal that

the current iGEM repository strongly deviates from the desirable scenario where different

parts are easily combined with others. Instead, it simply shows that a few parts are very

often used as almost inevitable components with no additional reuse. The immediate conse-

quence of this is a very limited potential for innovative combinations. As it happened with

the early crisis of software development, the promise of reusability within SB will not be

met unless new directions are taken.

Although the poor reusability potential of the iGEM landscape paints a rather grim pic-

ture, we might gain some insight from the historical development of software. In the early

years of IT, programming required to get very close to hardware: programming involved

so-called machine code, essentially writing chains of 0’s and 1’s and it was difficult to write

8

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 29, 2016. ; https://doi.org/10.1101/041640doi: bioRxiv preprint 

https://doi.org/10.1101/041640


and very time-consuming. The first language, FORTRAN, was easy to learn and simpli-

fied software development. At that time, it was assumed that the programming language

would eliminate coding and debugging, solving problems at a low cost. Just ten years later,

these expectations completely failed to be fulfilled. It was discovered that bugs are always

present and considerable effort is invested in finding and correcting them (McIlroy, 1976).

Poor programming practices and inappropriate integration in large software projects have

led to disaster (Hey and Pśpay, 2015): in 2002, software bugs cost the US economy an

estimated $59 billion annually, or about 0.6 percent of the gross domestic product (Tassey,

2002). Correcting and maintaining large software projects cannot be achieved without a cost

and good solutions have only been obtained after the introduction of software engineering.

Nevertheless, we can claim an overall success for software as a major technology.

As for the SB engineering practices, two main points should be made. One is that the

lack of reusability unraveled by our analysis is a consequence of independent, unconnected

and non-standardised experimental practices. The quality and depth of documentation of

Biobricks has been improving over time, but we still see a growing library of unconnected,

case-specific constructs with small (or no) reusability. Even if documentation is complete,

we lack understanding of what to expect when different, previously unrelated parts are

combined for a new construct. An improved theoretical framework is much needed. Secondly,

we should also face the possibility of novel ways of thinking about engineering biology. A

major difference between SB and its technological counterparts is that synthetic constructs

are built to work inside an already functional biological machinery where hardware and

software meld. Even if we accept the metaphor of cells as machines (Lazebnik 2002) most of

the current SB is intended to add or modify very small parts of an organism that is different

in many ways from any existing man-made hardware. Our limited capacity for replacing or

connecting multiple parts effectively confines ourselves within the domains not of technology

but tinkering.
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