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Abstract 20 

Cell fate choice and commitment of multipotent progenitor cells to a differentiated 21 

lineage requires broad changes of their gene expression profile. However, how 22 

progenitor cells overcome the stability of their robust gene expression configuration 23 

(attractor) and exit their state remains elusive. Here we show that commitment of 24 

blood progenitor cells to the erythroid or the myeloid lineage is preceded by the 25 

destabilization of their high-dimensional attractor state and that cells undergo a 26 

critical state transition. Single-cell resolution analysis of gene expression in 27 

populations of differentiating cells affords a new quantitative index for predicting 28 

critical transitions in a high-dimensional state space: decrease of correlation 29 

between cells with concomitant increase of correlation between genes as cells 30 

approach a tipping point.  The detection of “rebellious cells” which enter the fate 31 

opposite to the one intended corroborates the model of preceding destabilization of 32 

the progenitor state. Thus, “early-warning signals” associated with critical 33 

transitions can be detected in statistical ensembles of high-dimensional systems, 34 

offering a formal tool for analyzing single-cell’s molecular profiles that goes beyond 35 

computational pattern recognition but is based on dynamical systems theory and 36 

can predict impending major shifts in cell populations in development and disease.  37 

 38 

Introduction 39 
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A multipotent stem cell or progenitor cell is in a state that poises it to commit to one of 40 

two or more predestined lineages and to differentiate. Yet, its state-characteristic gene 41 

expression profile in the high-dimensional gene expression state space is robustly 42 

maintained because the cell is in a stable attractor state [1,2] (“ground state” [3]) of the 43 

gene regulatory network (GRN). Thus, commitment to a lineage involves overcoming 44 

this stabilization as genes alter their expression in a coordinated manner to establish the 45 

new gene expression pattern that implements the new phenotype of the differentiated 46 

state (Fig 1). Individual cells can, due to noisy gene expression fluctuations, transiently 47 

approach the border of the attractor in one or several dimensions and thereby be 48 

transiently “primed” to exit the basin of attraction, and by chance or biased by external 49 

conditions, differentiate into one of the predestined lineage accessible to the respective 50 

multipotent progenitor [4,5,6,7]. However the fundamental question remains whether 51 

differentiating cells exit the progenitor attractor simply by harnessing rare chance 52 

configurations of expression of the appropriate regulatory proteins to “jump” into a new 53 

nearby stable attractor state [8,9,10,11] or instead, by undergoing a larger-scale 54 

destabilization of their (high-dimensional) gene expression state [12,13,14]. 55 

 56 

A cell fate choice and fate commitment driven by a destabilization of the progenitor 57 

attractor state until cells “spill out of it” would represent a critical state transition [15,16]. 58 

Herein, a stable attractor state of a system is gradually destabilized due to a steady and 59 

monotonical change in one characteristic of its underlying control structure (a systems 60 

parameter) until the system suddenly transits a “tipping point” (bifurcation) at which the 61 

stable attractor state disappears and other attractors become accessible. The progenitor 62 

cells in that destabilized attractor would then move to the(se) new stable state(s) that 63 

represent the gene expression pattern of new cell phenotypes. This formal description 64 

would explain multi-potentiality and the quasi-irreversible lineage restriction beyond a 65 

“point of no-return” [14].   66 

 67 

Critical transitions of a system (like a cell) can occur because of the presence of non-68 

linear interactions between its underlying component parts (genes, proteins) that 69 

collectively produce multiple distinct potential behaviors (cell phenotypic states) and if 70 

the realizable range of the value of critical parameters that characterize these interactions 71 

encompass qualitatively distinct behavioral regimes. Even if specific details of the 72 

interactions and the identity of the critical parameter are not known, stochastic 73 

fluctuations or certain perturbations can expose a system’s approach towards a critical 74 

state transition. This is manifest as “early warning signals” and is essentially a 75 

consequence of the destabilization of an attractor state that precedes the bifurcation event.  76 

Early warning signals can be exploited to predict a qualitative system-wide shift in a 77 
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complex nonlinear system, as has been applied to material properties, ecosystems, social 78 

systems and disease states [15,16,17,18].   79 

 80 

The principle of a bifurcation governing cell fate choice naturally unites the two 81 

classical models of binary cell fate decision of multipotent progenitor cells at 82 

developmental branch-point: the stochastic (intrinsic) and the deterministic (instructive) 83 

models [19,20,21,22,23].  In the stochastic model [24,25] the cells randomly assume a 84 

(pre)committed, or primed state that renders them responsive to the fate-specifying 85 

growth factor which then acts to selectively expand (“select”) these primed cells which in 86 

turn would proliferate and terminally differentiate.  In the deterministic model [26,27], 87 

the same factors act to specifically instruct the cell which gene to turn on and off to 88 

establish the gene expression pattern of the prospective fate. These two models are not 89 

mutually exclusive and experimental evidence support either scheme depending on 90 

experimental design [19,20,21,22,23]. 91 

 92 

Here we use single-cell gene expression analysis to examine in a model system the 93 

fate commitment of blood progenitor cells either into the erythroid cells (precursors of 94 

erythrocytes), promoted by the growth factor (cytokine) erythropoietin (EPO), or into the 95 

myeloid lineage (precursors of monocytes and granulocytes), promoted by the cytokines 96 

GM-CSF and IL-3. We show that the formalism of critical state transitions, so far only 97 

demonstrated for examples in which the system state is characterized by one variable 98 

[17], can (i) be applied to a high-dimensional system, namely the gene expression pattern 99 

defining a mammalian cell state, while (ii) at the same time, taking advantage of the fact 100 

that the system is present in an ensemble of replicates: a population of cells. To this end, 101 

we introduce a new index IC computed from high-dimensional single-cell gene 102 

expression profiles of cell populations and show that it can serve as an early warning 103 

signal for an impending cell state transition.  Critical transitions also explain the long-104 

observed phenomenon of “rebellious cells” that differentiate into the direction opposite to 105 

that instructed by the growth factors. Single-cell resolution analysis of cells exposed to 106 

conflicting stimuli also confirm that developmental trajectories are robust and 107 

predestined, as predicted by early models [14,28], and that the stochastic and 108 

deterministic scheme of cell fate control coexist. 109 

 110 

 111 

Results and Discussion 112 

1. Single-cell gene expression patterns during binary cell fate decision 113 

To determine if differentiation goes through a tipping point in high-dimensional gene 114 

expression state space we studied the commitment of the murine multipotent 115 
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hematopoietic precursor cell line EML into an erythroid and myeloid fate when 116 

stimulated by EPO and GM-CSF/IL-3, respectively [4]. We also treated cells with a 117 

combination of EPO and GM-CSF/IL-3 to separate a generic destabilization from the 118 

specific fate choice because we reasoned that the latter should be neutralized by the 119 

combination treatment. To ensure that heterogeneity of the starting cell population is due 120 

to dynamic fluctuations and not to pre-existing pre-committed cells (which would merely 121 

be selectively enriched by the respective growth factors) we used a cell line, as opposed 122 

to primary cells, that allows for the study of populations recently derived from a single 123 

common ancestor. We monitored transcript expression patterns at single-cell resolution 124 

using qPCR to harness the information provided by a statistical ensemble of (randomly 125 

distinct) cells which manifests the stability of a given nominal cell state.  126 

Exit from the progenitor state was first monitored by flow cytometry measurement of 127 

the down-regulation of the stem-cell markers Sca1 and c-kit. The induction of a bimodal 128 

distribution with a new discrete subpopulation with lower Sca1 (as well as c-kit) surface 129 

protein expression confirmed the switch-like state transition (Fig 1A).  Fig 1B shows the 130 

time course of single-cell transcript patterns of 19 selected genes (listed and explained in 131 

S1 Fig and S1 Table) known to be functionally involved in or to mark fate commitment 132 

of the EML cells, visualized by plotting each cell into the Cartesian space spanned by the 133 

three principal components (PC) following principal component analysis (PCA) to reduce 134 

the 19-dimenional state space (Appendix A Supplementary Methods). The “cloud” of 135 

untreated cells (black, depicted for reference for each time point) spreads upon treatment 136 

(colored balls), reaching highest diversity at day 3 (d3). The cells then coalesced into two 137 

distinct dense clusters at d6 (blue and red) representing the erythroid (red) and myeloid 138 

(blue) lineages which were identified by the characteristic expression of erythroid or 139 

myeloid transcript levels (S2 Fig and S1 Table). As shown in S3 Fig, in this single-cell 140 

qPCR, measurement noise was only a small fraction of the biological cell-to-cell 141 

variability, thus the dispersion of points in state space largely reflects the biological 142 

diversity of cells. Loading of gene scores show that PC1 captures the erythroid-myeloid 143 

dichotomy, whereas PC2 reflects the stemness-differentiation axis (S4 Fig). Single-cell 144 

measurement also provides the local cell density for each position in state space which 145 

can be visualized as the elevation of an approximate quasi-potential landscape [12] (Fig 146 

1C, legend) which shows the three attractor states as minima. 147 

 Intriguingly, at d3 some cells consistently went in the “wrong” direction, opposite to 148 

the instruction by the cytokines (e.g. some EPO-treated cells were associated with the 149 

myeloid cell cluster and vice versa). These “rebellious cells” disappeared at d6 – either 150 

by “transdifferentiating” to the “correct” lineage or by dying out (see below). Progenitor 151 

cells receiving a combined treatment also diverged at d3 but stayed in an intermediate 152 

“undecided” region of the state space before joining the myeloid cluster (Fig 1B).  Thus, 153 
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the conflicting signals delayed the fate decision but ultimately a uniform decision is 154 

made. This behavior corroborates the notion that gene expression change during lineage 155 

determination is not simply instructed by external growth factors, but also governed by 156 

intrinsic constraints that channel cells towards predestined attractors of the GRN and do 157 

not allow for stable intermediates, as Waddington first predicted [28]. In this case it 158 

appears that the attractor for the myeloid fate is more readily accessible.  159 

 160 

2.  High-dimensional critical state transition in ensemble of systems 161 

Independent of the (unknown) detailed dynamics of the underlying GRN, a 162 

destabilization and disappearance of even a high-dimensional attractor state is a 163 

bifurcation event and should display the signatures of an approach to a critical phase 164 

transition [16] at which cells would undergo a discontinuous switch towards the 165 

destination state. While the bimodal distributions of Sca1 (Fig 1A) after d3 already 166 

suggest a quasi-discrete transition, they cannot reveal a destabilization in a high-167 

dimensional state prior to the switch. Recently reported cases of critical transitions in 168 

stressed ecosystems and disease processes [refs. in [17]] pertain to low-dimensional 169 

systems in which typically one systems variable was observed longitudinally. By 170 

contrast, here we examine time snapshots of states of a high-dimensional system (19-171 

dimenional cell state vector) embodied by the GRN.  172 

From theoretical consideration, a critical destabilization and transition to a new 173 

attractor will be manifest in two changes in the correlation statistics (as explained and 174 

derived in S2 Appendix): First, a decrease of cell-cell correlation R(cell k, cell l) between 175 

all pairs of the n cell state vectors in the m=17-dimensional gene space; this reflects the 176 

expected increase of amplitudes of random fluctuation of gene expression due to the 177 

weakening “attracting force” in the “flattening” basin of attraction prior to the bifurcation 178 

[29,30]. Second, a concomitant increase of gene-gene correlation R(gene i, gene j) 179 

between all pairs of “gene vectors” that describe the gene expression values of each gene 180 

across all the cells; this corresponds to the increase of long-range correlations of state 181 

variables in time and/or space described in many phenomenological analyses of critical 182 

state transitions [17]( 9)( 9). The overall increase in the correlation between the gene 183 

vectors arises because of the symmetry-breaking destabilization and is plausible from two 184 

different perspectives: (i) as a consequence of the “range restriction effect” of correlation 185 

in statistics when the dominance of the symmetric stochastic fluctuations in the attractor 186 

yields to non-symmetric, regulated change of gene expression [31,32] or (ii) as a 187 

consequence of the appearance of a saddle-node in the dynamical system description 188 

through which the individual cells pass. A detailed mathematical derivation of is 189 

provided in the S2 Appendix. This reasoning motivates an index for critical transitions, 190 

IC: 191 
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where g are gene vectors and S are the cell state vectors at sample time t and ���… , … �� 194 

denotes the average of all Pearson’s coefficients of correlation. We postulate that IC 195 

increases towards a maximum when cells go through the critical state transition (see S2 196 

Appendix). Recently, Chen et al. proposed a similar index for full transcriptome time 197 

courses which for lack of single-cell resolution state vectors estimates state 198 

diversification differently and involves the prior computational selection of a subset of 199 

genes in the same data [30].  200 

Fig 2A shows the n×n heat map for cell-cell correlation coefficients ���� ,  ��� for 201 

all pairs of the n=1600 cells for the three treatments (EPO, GM-CSF/IL-3 and combined) 202 

at each time point t. The diagonal shows that correlation of cells within the populations 203 

decreases at d1 and notably at d3, compared to d0, and increases again at d6, indicative of 204 

a transient diversification of cell states and a return to a more homogenous population 205 

consistent with an attractor state. Since we also recorded the cells’ position with respect 206 

to the Sca1 surface marker expression (roughly partitioning the population into three 207 

fractions, Sca1-high (H), Sca1-medium (M) and Sca1-low (L) – see Fig 1A) one can see 208 

that the decrease of correlation was not due to comparing cells across subpopulations in 209 

bimodal populations (Fig 1A). The higher correlation among the cells within the extreme-210 

low Sca1 fraction (L’) in both EPO and GM-CSF/IL-3 treatment is consistent with 211 

advanced commitment of cells which are enriched in the Sca1-low fraction towards the 212 

erythroid fate as previously reported [4]. By contrast, the high correlation among the H 213 

cells at the end of EPO treatment reflects the “rebellious” cells that became myeloid 214 

under EPO treatment.  215 

The second criterion for a critical state transition, the increase in gene-gene 216 

correlation ���
� , 
���, between the genes is shown in Fig 2B. Both EPO and GM-217 

CSF/IL-3 treatment resulted in almost a doubling of ���
� , 
��� at d3 which returned 218 

towards baseline at d6. The heat-maps of the raw data (Fig 2C) show that the increase of 219 

���
� , 
��� resulted from correlated (red) as well as negatively correlated gene pairs 220 

(blue) at d1, but more pronounced at d3. By contrast, genes were mostly uncorrelated in 221 

the progenitor state, consistent with the dominance of random fluctuations around the 222 

attractor state.  223 

Together, the cell-cell and gene-gene correlation gave rise to a temporal course of 224 

the index IC that sharply peaked at d3 after induction of either fate commitment, which 225 

thus marks the critical transition and coincides with lineage separation in state space (Fig 226 

1B).  227 

 228 
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3. Alternative monitoring of myeloid commitment reveals rebellious cells 229 

To exclude that the gene-gene and cell-cell correlation behavior is an idiosyncrasy 230 

linked to monitoring the exit from the progenitor attractor along the direction of Sca1 231 

reduction, we also monitored and dissected differentiation along the axis of increase of 232 

the differentiation marker CD11b, a reliable indicator of myeloid differentiation (Fig 3A). 233 

Following GM-CSF/IL-3 treatment, CD11b surface expression first increased and then 234 

Sca1 decreased, from CD11bLOW/Sca1HIGH to CD11bHIGH/Sca1LOW. At d3, the time 235 

around which maximal destabilization was expected, the entire cell population split into 236 

three populations with respect to CD11b: Sca1HIGH/CD11bLOW (termed α), 237 

Sca1HIGH/CD11bHIGH (β) and unexpectedly, Sca1LOW/CD11bVERY-LOW (γ) (Fig 3A). 238 

Single-cell transcript analysis suggests that the α-subpopulation corresponds to the 239 

destabilized but not yet fully committed cells because it displays highest cell-cell 240 

diversity and high correlation of the gene vectors (Fig 3B). The cells of subpopulation β 241 

were most advanced toward the myeloid lineage (high expression of Gfi1, CEBPα and 242 

cJun transcripts) consistent with the high CD11b expression, whereas cells of 243 

subpopulation γ correspond to “rebellious” cells that moved in the opposite direction and 244 

displayed erythroid gene expression patterns, including a large number of EpoR positive 245 

cells, despite treatment with GM-CSF/IL-3 (S5A-D Fig). At d6 the γ population 246 

disappeared (Fig 3A), consistent with the rebellious cells in the PCA analysis of Fig 1B. 247 

However, addition of EPO to the culture medium rescued the γ cells (Fig 3C), and to a 248 

lesser extent, the α but not the myeloid committed β cells.  249 

This finding not only confirms that the rebellious γ cells have aberrantly moved 250 

towards the erythroid lineage despite myeloid instruction but also corroborates the notion 251 

of “cell selection” in fate control in which growth factors determine lineage also by 252 

acting as survival and mitogenic factors for early committed cells that express the 253 

cognate receptor – in this case the EpoR  [19,23,24]. 254 

 255 

4. Critical slowing down 256 

A dynamical signature of an approach to a critical transition that is often used in low 257 

dimensional systems is the “slowing down” of the relaxation of a state variable back to 258 

the original attractor state due to a reduced attracting force [15,17,18] after a small 259 

perturbation or noise-driven excursion. Although critical slowing down is linked to the 260 

flattening of the attractor and inherently associated with the increase in autocorrelation of 261 

the fluctuation of the state variables, and thus, not actually an independent criterion, its 262 

experimental assessment is distinct and often practical. Here critical slowing down was 263 

exposed by measuring the relaxation of sorted “outlier” cells which were (transiently) in 264 

an extreme state with respect to the projection into just one dimension, that of Sca1. We 265 

isolated the Sca1LOW tail of populations that were either treated for 1 day with GM-266 
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CSF/IL-3 to destabilize the progenitor state, or in untreated populations. As previously 267 

shown, the Sca1LOW fraction re-establishes the parental distribution within 5-6 days [4]. 268 

By contrast, cells exposed to GM-CSF/IL-3 for just one day which does not yet cause 269 

significant broadening of the distribution, required at least 9 days to reconstitute the 270 

parental Sca1 expression distribution from the same tail fraction (Fig 4). 271 

 272 

5. Transcriptomes confirm the scheme of rebellious cells 273 

 Finally, the repeated observation of “rebellious cells” is consistent with a 274 

bifurcation at which two (or more) new attractors become accessible when the progenitor 275 

attractor vanishes, representing the dichotomy between the two “sister” lineages [13,33].  276 

The destabilization of the progenitor state, unlike in canonical saddle-node bifurcations of 277 

most studied critical transitions [15,16,17,18], opens up a choice of two attractors, and 278 

despite an instructive bias towards either one imposed by the growth factors, this allows 279 

cells to “spill” into the “wrong” attractor if molecular noise overcomes the instructive 280 

bias toward the intended lineage. Thus, the existence of “rebellious cells” is also a 281 

signature of a critical transition.   282 

To show that such binary behavior is not an artifact of projection in one state space 283 

dimension (in this case, with respect to Sca1 or CD11b) but holds in the high-284 

dimensional state space, we measured the transcriptomes of the subpopulations that have 285 

either responded to the growth factor or appeared to have not responded – at least with 286 

respect to change in Sca1 expression (Fig 5). As shown earlier (Fig 1) all three treatments 287 

with the either cytokines as well as combined, triggered a split of the population into two 288 

distinct subpopulations with response to the progenitor marker Sca1 (bimodal distribution 289 

at d3, Fig 5).  290 

Intriguingly, cells from the Sca1HIGH subpopulation which appeared to have not 291 

responded after 3d in EPO because Sca1 stayed high (fraction #3 or H-Sca1 in Fig 5A) 292 

had a transcriptome that resembled that of the cells which had responded to GM-CSF/IL-293 

3 treatment and had down-regulated Sca1 (fraction #8 or L-Sca1 in Fig 5A).  Conversely, 294 

Sca1HIGH cells that had apparently not responded yet at d3 to GM-CSF/IL-3 (fraction #9 295 

in Fig 5A) displayed a more pronounced change of the transcriptome that was remarkably 296 

similar to that of Sca1LOW cells (fraction #2 that had responded to EPO). (For quantitative 297 

analysis of transcriptome similarities see S2 Table). In the combined treatment cells 298 

exhibited a transcriptome behavior that was similar to that of the nominally myeloid fated 299 

(GM-CSF/IL-3 treated) cells – in agreement with the single-cell transcript analysis (Fig 300 

1). 301 

The transcriptome measurement of subpopulations which appear to have not 302 

responded to the differentiation signal with respect to down-regulating the progenitor 303 

state marker actually have responded but by changes in the non-observed state space 304 
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dimensions, underscoring the importance of high-dimensional dynamics. The crosswise 305 

overall similarity of the transcriptome changes in the non-responders in one treatment to 306 

that of the responders in the other treatment strongly supports the model of a constrained 307 

dynamics with a finite number (here: two) of fate options that represent the predestined 308 

developmental potentials embodied by attractors that become accessible once the 309 

progenitor state is destabilized. This behavior of aberrant but defined behavior also 310 

reveals a stochastic, non-instructive component in fate determination.  311 

Specifically, we suspect that the rebellious cells are cells that following the 312 

flattening of the progenitor attractor initiated by the external differentiation signal 313 

erroneously enter the “non-intended” attractor that is also accessible because the 314 

stochastic gene expression fluctuations may, in some cells, overcome the instructive 315 

signal that bias the change toward a specific lineage attractor. Nevertheless the rebellious 316 

cells, being in the “wrong” fate, should eventually die because the lack of survival signals 317 

provided by the continuing presence of the same growth factor, as their disappearance in 318 

the measurement in Fig. 1 implies.  Thus instruction and selection synergize, in a two-319 

step scheme, in that cells must be instructed and be selected for in order to adopt a 320 

particular phenotype. This two-step process increases fidelity of fate determination in the 321 

tissue. 322 

 323 

6. Conclusion  324 

Here we show that exit from the multipotent progenitor state and commitment to a 325 

particular cell lineage exhibit signatures of a critical state transition because of the 326 

underlying destabilization of a high-dimensional attractor state. Fig 6 summarizes 327 

schematically the model. In doing so we confirm that the two classical models of cell fate 328 

control, instruction by extrinsic signals and selection of intrinsically predestined states 329 

[19,20,21,22,23], not only coexist but also complement each other within a formal 330 

concept.  331 

The framework of a critical transition has been used to describe sudden qualitative 332 

changes in a variety of complex systems in nature [15,16,17,18] and entails the “early 333 

warning signals” that herald the transition. We show here that early warning signs which 334 

essentially manifest the distortion of the attractor landscape that is intrinsically linked to 335 

most types of bifurcations (“tipping point”) can also be defined and detected for high-336 

dimensional dynamics.  337 

To do so we introduce an index IC, which is formally derived from dynamical 338 

systems theory [30] and whose increase serves as an early warning signal, indicating an 339 

approach to a bifurcation. IC is particularly useful for single-cell resolution snapshots of 340 

molecular profiles, as provided by RNA-seq [34] and CyTOF [35], of statistical 341 

ensembles of cells (=cell populations) taken at multiple time intervals during a biological 342 
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time course. This quantity is derived from a dynamical systems theory treatment of the 343 

actual underlying process and not from descriptive statistical pattern recognition as 344 

currently used to analyze single-cell molecular profiles. IC captures the information 345 

immanent in both the m gene vectors (the expression level of a gene across a large 346 

number n of individual cells) and the n cell vectors (the state of a given cell with respect 347 

to a large number of m genes), resulting in the data structure of a n x m matrix for each 348 

time point in the process being studied.  Thus, IC does not require continuous monitoring 349 

as in many studies of critical state transitions because much of the information is in the 350 

high dimensionality (m) and in the statistical ensemble (n) and thus could be of practical 351 

utility for predicting major shifts in cell populations and tissues relevant in development 352 

and disease.  353 

 354 

 355 

Material and Methods 356 

Culture and differentiation of EML cells 357 

Blood progenitor EML cells (ATCC CRL-11691) were cultured and maintained as 358 

described previously [24]. Multipotent EML cell population was stimulated with either 359 

EPO (to differentiate into erythroid cells), or GM-CSF/IL-3 and ATRA (to obtain 360 

myeloid cells) or a mixture of all cytokines for the “combined” treatment as previously 361 

reported [4,36]. Wright-Giemsa staining was performed with some modification 362 

following a reported protocol [37]. In brief, 60,000 cells in 250 µl of PBS + 1% FBS 363 

buffer were cytospun at 350 rpm for 5 minutes per slide and allowed to air dry for 10 364 

minutes. Slides were subjected to five 1-second dips in methanol, followed by Wright-365 

Giemsa staining solution (0.4% (w/v), Sigma). After a final rinse with water, slides were 366 

allowed to air dry for 30 minutes. Colored phase contrast images were obtained using a 367 

Zeiss Axiovert 200M microscope. 368 

 369 

Flow cytometry and fluorescent-activated cell sorting (FACS)  370 

Cell surface protein immunostaining and flow cytometry measurements were performed 371 

using established methods [4]. Briefly the antibodies Sca1-PE (BD Pharmingen 372 

#553335), ckit-FITC (BD Pharmingen #553355) and CD11b-FITC (BD Pharmingen 373 

#557396) were used at 1:1,000 dilutions in ice-cold PBS containing 1% fetal calf serum 374 

with (flow cytometry) or without (FACS) 0.01% NaN3. Appropriate unstained and 375 

single-color controls were used for gate definition and compensation set-up. Isotype 376 

control antibodies (BD Pharmingen #553988 for FITC and #553930 for PE isotype) were 377 

used to establish the background signal caused by non-specific antibody binding. 378 

Propidium iodide (Roche #11348639001) staining was used to identify dead cells that 379 

were removed from analyses. Flow cytometry analysis was performed on a BD 380 
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FACSCalibur cell cytometer with 10,000 viable events for each sample. Data were 381 

acquired using CellQuest Pro (BD) software and analyzed in FlowJo. 382 

For FACS sorting, the Sca1 protein distribution was measured and the expression 383 

distribution was gated into three regions according to the Sca1 expression level as Sca1-384 

Low, Mid and High on day 0, 1 and 6 or 4 regions on day 3 after differentiation initiation 385 

(Fig 1A). Single cell sorting was conducted on a BD Biosciences FACSAria III in lysis 386 

buffer (see below). For myeloid differentiation, cells were stained with antibodies for 387 

both Sca1 and CD11b protein markers and cell subpopulation were gated as illustrated in 388 

Fig 3A. For studies involving the dynamics of sorted subpopulations, antibodies were 389 

removed after sorting using brief incubation in a low-pH buffer [4]. 390 

 391 

Single-cell gene-expression analysis using OpenArray qPCR 392 

Single cells were directly sorted into 5.0 µl of lysis buffer (CellsDirect kit, Invitrogen) 393 

containing 4.25 µl Resuspension Buffer and 0.25 µl Lysis Enhancer using a FACSAria 394 

III (BD Biosciences). 0.5 µl RNaseOut (Invitrogen) was added to the lysis solution to 395 

protect the RNA from degradation. To ensure that liquid droplets containing single cells 396 

were deposited at the center of the well and not at the wall, the position was checked on 397 

the plastic film covering the PCR plate. To reduce the possibility of cell sticking to the 398 

wall of the PCR well plate, we used low-binding PCR plates (Axygen, #6509). As control 399 

sample, a small population of 100 cells were sorted into a single well for qPCR analysis. 400 

To test for contamination of sorted cells with mRNA from lysed dead cells, 5.5 μl liquid 401 

from the FACS instrument was collected and analyzed. After sorting, the samples were 402 

heated 75 ˚C for 10 min to accelerate the lysis process and samples were stored at -80 ˚C. 403 

From these single-cell lysate samples, cDNA was directly synthesized as described 404 

previously [36]. The obtained cDNA was pre-amplified by 18 cycles [36] and 405 

subsequently diluted with Tris-EDTA buffer at a ratio 1:10 resulting in templates for the 406 

real-time PCR analysis. This protocol led to less than 30 quantification cycles (Cq) during 407 

the single-cell qPCR analysis on an OpenArray system (Life Technologies). On this 408 

system, each qPCR plate consists of 12×4 subarrays and each subarray contains 8×8 409 

reaction chambers of 33 nl volume [38] (S 6A Fig). Each sample was divided into a 410 

subarray with 64 reaction chambers prior qPCR quantification. No-template (water) 411 

control was also run on each plate to check for non-specific products and/or presence of 412 

contaminants in the master mix. Following the amplification, the corresponding curves 413 

and C� values were processed using the OpenArray Real-Time qPCR Analysis software 414 

(version 1.0.4) with a quantification threshold of 100(+/-5). Specific PCR primers were 415 

pre-immobilized in the chambers (S 6B Fig) and released in the first cycle by heat. For 416 

each subarray, 2 µl of target sample was loaded into each well of a 384-well plate 417 

(Applied Biosystems); subsequently, 3 µl of the master mix reaction consisting of 418 
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TaqMan OpenArray Real-time PCR Master Mix (Applied Biosystems) was added to each 419 

well. Target and master mix were combined, centrifuged, and the 384-well plate was 420 

processed in the OpenArray AccuFill system (Applied Biosystems). During processing, 421 

2.1 µl of the reaction solution was transferred automatically from each well into the 422 

corresponding subarrays of a qPCR plate, where the reaction solution retains into the 423 

reaction wells due to the differential hydrophilic–hydrophobic coating between wells and 424 

surface of the qPCR array [38]. The qPCR step was performed using thermocycling 425 

conditions of 50 °C for 2 min, 95 °C for 10 min, 40 cycles of 95 °C for 15 sec and 60 °C 426 

for 1 min. 427 

 428 

Testing Taman qPCR assays 429 

We used off-the-shelf primers designed by Applied BioSystems (Life Technologies) for 430 

the analysis. The primers are usually designed to span exon-exon junction to target 431 

multiple splice variants of one transcript and to target only and specifically the gene of 432 

interest, avoiding amplification of genomic DNA. S3 Table lists all genes of interest, the 433 

inventoried TaqMan assay IDs (Applied Biosystems) and further relevant information 434 

where the manufacturer does not provide primer and probe sequences. To evaluate qPCR 435 

assay performance, calibration (standard) curves were generated by performing qPCR on 436 

a serial dilution of a prepared template. Each of these dilutions was dispensed into two 437 

subarrays of OpenArray plate leading to 6 technical qPCR replicates for each single cell 438 

sample. To minimize the effect of sampling errors on quantification precision, only 439 

sample/assay combinations with at least 3 quantifiable replicates were considered for 440 

preparing the standard curves. The GAPDH assay was not pre-immobilized on 441 

OpenArray plate but was independently tested on BioRad qPCR platform. 442 

 443 

Analysis of single-cell gene expression data  444 

Data analysis is described in more details in Supplementary Discussion. Single-cell 445 

expression data were initially analysed with OpenArray qPCR analysis software. For 446 

quality control, amplification curves were quality filtered and Ct thresholds were set for 447 

each assay with the same thresholds used across all experiments and cell populations. 448 

Data were subsequently exported to Excel as csv files. All of Cq values are available in 449 

S1 Table. Samples not expressing any gene were excluded from the analysis. 450 

Experimentally determined LODs were used as cutoff Cqs (S3 Table). Each assay was 451 

performed in triplicates, and the median of the triplicates was used for subsequent 452 

analysis. After this pre-processing, ΔCq was calculated as previously described [39]. 453 

Higher level of analysis such as correlation, clustering, and PCA was performed on log2-454 

transfromed expression data.  455 
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 456 

Gene expression profiling with microarrays and data analysis 457 

Microarray analyses were performed by the Vancouver Prostate Cancer centre. EML 458 

progenitor cell population was stimulated with EPO alone, IL-3/GM-CSF alone or a 459 

combination of all cytokines. On d3 and d6 after stimulation with different cytokines, the 460 

main “peaks” in the Sca1 distribution were gated and cell subpopulations were sorted 461 

using FACSAria III. Fig 1A and B illustrate the experimental design for the microarray 462 

experiments. Total RNA was extracted from 1×106 of sorted subpopulations using 463 

mirVana miRNA Isolation Kit (Ambion) following the manufacturer’s instructions. 464 

Genomic DNA was removed from the isolated and purified RNA using DNase I. Total 465 

RNA quality was assessed with the Agilent 2100 Bioanalyzer prior to microarray 466 

analysis. Samples with a RIN value equal to or greater than 8.0 were deemed acceptable 467 

for microarray analysis. Samples were prepared following Agilent's One-Color 468 

Microarray-Based Gene Expression Analysis Low Input Quick Amp Labeling v6.0. An 469 

input of 100 ng of total RNA was used to generate Cyanine-3 labeled cRNA. Samples 470 

were hybridized on Agilent SurePrint G3 Mouse GE 8x60K Microarray (Design ID 471 

028005). Arrays were scanned with the Agilent DNA Microarray Scanner at a 3 µm scan 472 

resolution, and data was processed with Agilent Feature Extraction 11.0.1.1. To filter out 473 

genes that were not expressed above the background noise, a raw intensity cutoff value of 474 

25 was applied because the correlation between the technical replicates decreases for 475 

higher levels. Green processed signal was quantile-normalized using the 476 

“normalize.quantiles” function in R that takes care of inter-chip variability. To filter out 477 

genes which did not change between the samples, the distribution of each gene across all 478 

samples was analyzed. Therefore the standard deviation (STD) distribution was 479 

calculated and only genes with STD > 10% were selected. As a result, 6297 genes passed 480 

the criteria and were selected as the 10% top genes among the samples. Self-organising 481 

maps (SOM) of the 10% top most varied genes (6297 genes) were generated using the 482 

Gene Expression Dynamics Inspector program (GEDI) [40]. Cluster analysis was 483 

performed using the “clustergram” function in Matlab R2012a Bioinformatics toolbox 484 

using hierarchical clustering with Euclidean distance metric and average linkage to 485 

generate the dendrogram. Input data was log2-tranformed values of normalized 486 

fluorescent intensity signals for genes of interest extracted from the samples and plotted 487 

as a heatmap. Data represented the average of n = 2 independent biological replicates. 488 

The normalized fluorescent intensity values of 17 genes of interest in the curated network 489 

were extracted from each sample.  490 

 491 

 492 
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 511 

Figure legends 512 

Fig 1. Single-cell analysis of transcript expression during binary fate decision in 513 

EML cells. (A) A progenitor EML cell population was stimulated with EPO (left), IL-514 

3/GM-CSF (right) or with a combination of EPO, GM-CSF/IL-3 (center). Flow 515 

cytometry histograms of Sca1 surface expression were gated into Sca1
LOW

 (L), 516 

Sca1
MEDIUM

 (M) and Sca1
HIGH

 (H) fractions or subpopulations (green boxes) during 517 

FACS sorting of single cells at the indicated days for use in later analysis (Fig 2). At d3, 518 

further division to account for the extreme outliers (L’, H’)* indicates “rebellious cells” 519 

(see text). (B) For visualization of individual cells’ transcript expression patterns (of the 520 

m=17 genes) cells were projected onto a dimension-reduced state space spanned by the 521 

three first principal components (PC) following principal component analysis (PCA, see 522 

S1 Appendix). Each sphere represents a cell, colored according to treatment: untreated 523 

progenitors (grey); cells treated with EPO (red), cells treated with GM-CSF/IL-3 (blue); 524 

and combined-treated cells (purple). (C) To calculate a quasi-potential landscape for the 525 

three cell types, a Gaussian filter with s =2 was applied to PC1 and PC2 coordinates of 526 

cells at d0 and  d6 treated with EPO and GM-CSF/IL-3 leading to a smooth 2-527 

dimensional distribution p. With the (quasi-)steady state assumption [15], the attractor 528 

landscape was visualized relative to a base level of 0 by –log(p +1).  529 

 530 
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Fig 2. Critical transition during lineage commitment. (A) Cell-cell correlation 531 

matrices displaying the Pearson correlation coefficient R(Sk, Sl) for all pairs of cells in 532 

states Sk and Sj (see S2 Appendix). R calculated for a set of 150 progenitor cells, 500 533 

EPO-treated, 500 GM-CSF/IL-3-treated and 450 combination-treated (COMB) cells from 534 

data used in Fig 1. Black squares (diagonal) emphasize the higher correlation between 535 

cells within the nominally same population. Two control genes (GAPDH and TBP) were 536 

excluded from this analysis. L’, L, M, H, H’ indicate the Sca1 fractions shown in Fig 1: 537 

extremely low, low, medium, high and extremely high level of Sca1 expression, 538 

respectively. (B) Average Pearson correlation coefficients for all cell-cell pairs (left) and 539 

all gene-gene pairs (center) as well as the state transition index Ic = �|�
� , 
��|�/540 

����� ,  ���� at various time points. Cell-cell correlation coefficients were calculated for 541 

the central fractions/subpopulations in panel A(*). Error bars indicate SEM. (C) Gene-542 

gene correlation matrices for the 17 genes of interest and the two endogenous control 543 

genes for the three treatments at various time points where correlation is indicated either 544 

by color (lower matrix triangle) or solid color segment in pie chart. Color values for 545 

magnitude of correlation coefficient for both matrices (A, C) are shown in color bar.  546 

 547 

Fig 3. Intermediate stage of myeloid commitment exhibits destabilization of 548 

progenitor state, alternative states and “slowing down” of relaxation. (A) flow 549 

cytometry dot plot of expression of Sca1 and CD11b upon treatment of the progenitor 550 

EML cells with GM-CSF/IL-3. Three distinct subpopulations on d3, designated, α, β and 551 

γ, in the (tri-modal distribution of CD11b flow cytometry histogram underneath (red line, 552 

treated; blue line, untreated). (B) Cell-cell correlation for 72 progenitor cells and 48 cells 553 

from each of the α, β and γ subpopulations, and gene-gene correlation for all 17 genes of 554 

interest and two endogenous control genes. Pearson correlation coefficient displayed as 555 

heatmap, same color scheme as in Fig 2. (C) Rescue by EPO of the “rebellious” 556 

=unintended γ subpopulation (pink curve) during myeloid differentiation. Three 557 

subpopulations (α, dark blue; β, light blue and γ, pink) were FACS sorted, antibodies 558 

removed and stimulated with EPO. Total cell number and viability were quantified on 559 

day of sorting (d3) and 4 subsequent days. Viability was determined based on % of cells 560 

excluding trypan blue. Each point represents average +/- STD for 2 biological replicates. 561 

 562 

Fig 4. Critical Slowing down of state relaxation during fate commitment. “Critical 563 

slowing down” of relaxation and restoring of parental distribution of the sorted Sca1-low 564 

outlier fraction in the treated population. Clonal EML progenitor cells were stimulated 565 

(top) with GM-CSF/IL-3 or not (bottom) and cells with lowest 15% Sca1 expression 566 

were FACS-sorted one day after stimulation. 567 

 568 
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Fig 5. Whole-population transcriptome analysis reveals transient alternative 569 

program (“rebellious cells”). (A) Sca1 expression population distribution in progenitor 570 

and cytokine-treated cells and transcriptomes of sorted subpopulations at indicated 571 

treatments/time points displayed as GEDI Self-organizing maps [40]. Progenitor EML 572 

cells were stimulated with EPO alone, with GM-CSF/IL-3 alone or with the combination 573 

of the two, and the Sca1-medium (M) fractions (d0 and d6) and/or the Sca1-Low and -574 

High subpopulations (d3) were FACS sorted and used for microarray analysis. (B) 575 

Hierarchical cluster analysis of the microarray-based transcriptomes of the samples in A 576 

(columns, correspondence indicated by the green numbers) for a subset of the 17 genes 577 

analyzed in single-cell qPCR (rows).  578 

 579 

Fig 6. Epigenetic landscape model of symmetry-breaking bifurcation event.  580 

Progenitor cells (grey-ish) stimulated with growth factors (e.g. ATRA/IL-3). This scheme 581 

illustrates the two stages of the model: starting with the treatment of progenitor attractor 582 

state, first, the destabilization of the (meta)stable attractor of the progenitor cells and 583 

generation of a poised unstable state and second, the opening of the access to the 584 

destination attractors (both intended and non-intended), allowing the cells to descend – 585 

further instructed by the cytokines to favor one of the two valleys. As explained in 586 

section 2 of results, the cell-cell and gene-gene correlation give rise to a gradual increase 587 

of the index IC that peaked at critical transition and coincides with lineage separation in 588 

state space. 589 

 590 

 591 

Supporting Information Captions 592 

 593 

S1 Appendix. Supplementary methods (data analysis) 594 

 595 

S2 Appendix. Supplementary discussion (with mathematical proof) 596 

 597 

S1 Fig. Manually curated model of gene regulatory network governing fate decision 598 

of CMP. Network of experimentally verified regulatory interactions of transcription 599 

factors involved in multipotency of the CMP state, fate decision and differentiation to the 600 

erythroid and myeloid lineages (S1 Table). The canonical GATA1-PU.1 circuit is 601 

highlighted in green. A few surface markers including c-kit (progenitor, grey box), EpoR 602 

(erythroid, red box) and CD11b (myeloid, blue box) were included in the network to 603 

control the cell differentiation behavior and used as markers for lineage commitment in 604 

experiments. The numbers point to the references listed in S1 Table.  605 

 606 
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S2 Fig. Gene expression profile of single-cell samples during differentiation. 607 

Expression profiles of 17 transcription factors and control genes (rows) in individual cells 608 

(columns) are visualized as a heatmap. Cell columns are arranged for days d1, d3 and d6 609 

with respect to different treatments where grey shades correspond to  untreated 610 

progenitors (d0), red shades to EPO treatment, blue shades indicate cells treated with 611 

GM-CSF/IL-3 and purple shades to combined treatment EPO+GM-CSF/IL-3 cytokines. 612 

The different shades of each color indicate the different Sca1 marker expression levels 613 

Sca1Low (L), Sca1Mid (M) and Sca1High (H) determined during FACS sorting where darker 614 

shades denote higher Sca1 expression. Gene rows were ordered according to their 615 

biological role as indicated on the left. 616 

 617 

S3 Fig. Technical noise associated with single-cell RT-qPCR is significantly smaller 618 

than biological cell-cell variability. (A) Quantification cycles (Cq) of 80 individual 619 

EML cells for GATA1 expression is reported. Values are means ± STD for up to 128 620 

technical replicates. (B) Quantification cycles (Cq) of up to 110 technical replicates are 621 

presented for 3 selected single-cells. Single-cell Cqs of biological samples clearly show a 622 

broader distribution relative to that of technical replicates. (C) Box plots represent the 623 

variability in terms of CV for technical replicates averaged over 110 realizations of the 624 

real-time PCR-steps on the ds-cDNA and the distribution of CV across all 80 individual 625 

EML progenitor cells for the GATA1 expression. The biological variation was 626 

significantly larger than the technical noise (p-value 2.2e-28, Mann-Whitney U test). 627 

Similar results were obtained for PU.1 (not shown). 628 

 629 

S4 Fig. Distinct trajectories of cell differentiation are observed upon stimulation of 630 

progenitor cells with cytokines in the PCA state space. (A) Principal component 631 

projections in a total of ~1600 haematopoietic cells including progenitor (black), single-632 

EPO treated (red-shades), single-IL3/GM-CSF treated (blue-shades) and combined-633 

treated (purple-shades) in the first three components determined from expression of all 17 634 

transcription factors and endogenous control genes. (B) Principal component loadings for 635 

PC 2 and 3 indicate the extent to which each gene contributes to the separation of cells 636 

along each component. (C) PCA weights of genes for the first three PCs reveals the 637 

importance of the individual genes to explain the difference between the different 638 

treatments and corresponding cell fate. (D) Cells in their attractor states still exhibit 639 

heterogeneous transcription profiles that can be traced back to individual genes. Cells 640 

treated with GM-CSF/IL-3 for 6 days are clearly located within the state space defined by 641 

the myeloid genes and cells treated by EPO exhibit 2 clusters where the lower one is 642 

governed by erythroid genes and the higher one by stemness genes. (E) Variance 643 
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explained by principal components show that the first three components jointly explain 644 

more than 70% of variation in the data. 645 

 646 

S5 Fig. Gene expression in individual cells from the progenitor population and the 647 

α, β, and γ subpopulations. (A-D) Heatmap representation of gene expression profiles 648 

for the set of 17 genes of the curated network and 2 endogenous genes as control in total 649 

216 single cells including 72 progenitor cells (panel A) and 48 single cells from each of 650 

the three subpopulations in the tri-modal Sca-1 population distribution on day 3 after 651 

GM-CSF/IL-3 treatment (Fig 3), α (B) β (C), and γ (D). Genes are ordered according to 652 

their reported biological role, as erythroid-associated (red box), stemness (green box), 653 

myloid-associated (blue box) and endogenous genes in all subplots. Based on the 654 

expressed genes, the β subpopulation seems to be committed to the myeloid lineage while 655 

the γ subpopulation is committed to the erythroid lineage. The α subpopulation exhints an 656 

indeterminacy with a bias towards the myeloid lineage. (E) PCA of all attractor cells (d0 657 

and d6) as shown in the S4 Fig combined with the cells from the α (yellow), β (green), 658 

and γ (pink) subpopulations support the above described similarity to the untreated EML, 659 

the GM-CSF/IL-3 stimulated and the EPO-stimulated cells, respectively. (F) Coefficient 660 

of variation CV (used as a cell-specific quantity to expose population dispersion) was 661 

calculated for each cell from the expression levels across all genes for each 662 

subpopulation. Histograms represent the number of cells at different level of the CV 663 

measure and show that cells in α subpopulation have higher spread of cellular CV values. 664 

 665 

S6 Fig. Representation of an OpenArray plate used for single-cell qPCR. (A) Each 666 

OpenArray (Applied Biosystems) is the size of a microscope slide. It holds 48 groups 667 

(subarrays, red rectangular) of 64 holes of 33 nl volume in which one PCR reaction 668 

occurs. A hydrophilic layer is at the interior surface of each hole and a hydrophobic layer 669 

is at the exterior surface of the plate allowing for filling the hole by surface tension. In 670 

total, each array carries 3072 qPCR reactions. (B) Specific PCR primers are pre-671 

immobilized in individual holes (by manufacturer, for customized assay patterns) and 672 

released by heat in the first cycle. (C) An example of the distribution of single-cell 673 

samples (SC) along with NTC (no template water control), IRC (inter-run calibrator) and 674 

100-cell control (PC) samples on an OpenArray chip. 675 

 676 

S7 Fig. Quality control of single-cell qCPR. (A) Inter-chip variability is evaluated using 677 

inter-run calibrator (IRC) sample. Each curve represents the distribution of Cq values of 678 

each gene across all OpenArray chips. The flat black curve represents the distribution of 679 

all genes across all chips. The inter-gene differences are up to 2 orders of magnitude 680 

larger than the inter-chip variability of the same gene. The inter-run calibrator was a 10-681 
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fold diluted sample of 18 cycles pre-amplified cDNA of 10 ng isolated RNA from EML 682 

progenitor cell population. (B-D) Correlation between gene expression in an ensemble of 683 

48 individual cells and 6 replicates of 100-cell pools is plotted. Cells used were from 684 

subpopulations, α, β and γ (subplots b-d) as presented in Fig 3 and 19 genes as listed in 685 

Table S3 were measured in triplicate in all single cells and bulk (100-cell) samples from 686 

each subpopulation. Mean expression for each gene was calculated across all single cell 687 

or pool samples. Note that the scaled mean expression for 100-cells pool was plotted 688 

against mean expression for single-cells. In all cases a high correlation between single -689 

cell data and bulk data with correlation coefficient of > 0.86 was observed. 690 

 691 

S1 Table. Regulatory interactions in the curated GRN model of binary fate decision 692 

in CMP. Table of the regulatory interactions (either activating (A) or inhibiting (I)) 693 

between the genes. For each interaction, the literature is referenced. All interactions have 694 

been reported in for murine hematopoiesis. 695 

 696 

S2 Table. Quantified dissimilarity between transcriptomes from micro-arrays 697 

between samples. Pair-wise dissimilarity between expression profiles (samples) was 698 

calculated based on the normalized gene expression levels for 6297 filtered genes (see 699 

METHODS) with 1 – R where R is the Pearson’s correlation coefficient which ranges 700 

from 0 to 1, meaning that 0 correspond to highest similarity and 1 to most different 701 

expression. Bootstrapping was performed by randomly selecting 30% of the genes in any 702 

sample to calculate the pair-wise dissimilarity metric and repeating the procedure 10,000 703 

times to generate the reported standard deviations. 704 

 705 

S3 Table. Evaluation of qPCR assays. Table lists all primer pairs and relevant 706 

information including IDs and amplicon length. All assays were inventoried. Identical 707 

PCR primers were used in the pre-amplification step and the subsequent singleplex qPCR 708 

step. In addition, the amplification efficiency and limit of detection (LOD) of the qPCR 709 

assays are given. To evaluate efficiency and LOD, a 1:2 serial dilution was prepared from 710 

18 cycles pre-amplified product from 10 ng RNA purified from EML progenitor cell 711 

population. Amplification efficiency was calculated according to: [10(1/-S)-1] × 100%. 712 

The slope was obtained by linear regression of the standards curve. Efficiency was 713 

determined as average of two biological replicates with 6 qPCR technical replicates each. 714 

The Cq value for the LOD is defined as the most diluted sample that results in positive 715 

amplification for 5 out of 6 replicates. 716 

 717 

S4 Table: Single-cell and 100-cell samples quantification cycles (raw) data. The 718 

quantification cycles (Cqs) for all analyzed single-cells as well as 100-cell-pool control 719 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2016. ; https://doi.org/10.1101/041541doi: bioRxiv preprint 

https://doi.org/10.1101/041541
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

samples are reported. Single cells from untreated EML control cells as well as EML cells 720 

treated with EPO, GM-CSF/IL-3 or a combination of all cytokines on d1, d3 and d6 of 721 

stimulation. Gene expression data for single-cell samples sorted from α, β and γ 722 

subpopulations generated upon GM-CSF/IL-3 treatment of EML are also included. 6 723 

replicates of the 100-cell samples were also sorted from each fraction and/or 724 

subpopulation and analyzed as control. 725 

 726 

 727 
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