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 42 

Abstract 43 

Background. Copy number variants (CNVs) are a type of polymorphism found to underlie phenotypic 44 

variation, both in humans and livestock. Most surveys of CNV in livestock have been conducted in 45 

the cattle genome, and often utilise only a single approach for the detection of copy number 46 

differences. Here we performed a study of CNV in sheep, using multiple methods to identify and 47 

characterise copy number changes.  Comprehensive information from small pedigrees (trios) was 48 

collected using multiple platforms (array CGH, SNP chip and whole genome sequence data), with 49 

these data then analysed via multiple approaches to identify and verify CNVs. 50 

Results.  In total, 3,488 autosomal CNV regions (CNVRs) were identified in this study, which 51 

substantially builds on an initial survey of the sheep genome that identified 135 CNVRs. The average 52 

length of the identified CNVRs was 19kb (range of 1kb to 3.6Mb), with shorter CNVRs being more 53 

frequent than longer CNVRs. The total length of all CNVRs was 67.6Mbps, which equates to 2.7% of 54 

the sheep autosomes.  For individuals this value ranged from 0.24 to 0.55%, and the majority of 55 

CNVRs were identified in single animals. Rather than being uniformly distributed throughout the 56 

genome, CNVRs tended to be clustered.  Application of three independent approaches for CNVR 57 

detection facilitated a comparison of validation rates. CNVs identified on the Roche-NimbleGen 58 

2.1M CGH array generally had low validation rates with lower density arrays, while whole genome 59 

sequence data had the highest validation rate (>60%).   60 

Conclusions.   This study represents the first comprehensive survey of the distribution, prevalence 61 

and characteristics of CNVR in sheep. Multiple approaches were used to detect CNV regions and it 62 

appears that the best method for verifying CNVR on a large scale involves using a combination of 63 

detection methodologies.  The characteristics of the 3,488 autosomal CNV regions identified in this 64 

study are comparable to other CNV regions reported in the literature and provide a valuable and 65 

sizeable addition to the small subset of published sheep CNVs.  66 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2016. ; https://doi.org/10.1101/041475doi: bioRxiv preprint 

https://doi.org/10.1101/041475
http://creativecommons.org/licenses/by/4.0/


3 

 

 67 

Background 68 

Copy number variants (CNVs) are a type of genomic polymorphism that potentially underlie a 69 

significant fraction of phenotypic variation [1]. CNVs are structural variants, defined as stretches of 70 

DNA that are greater than 1 kilobase (kb) in size and are duplicated or deleted in the genome of 71 

some individuals [2]. Mutation rate estimates for CNVs vary from 1.1x10-2 [3] to 1x10-8 per locus per 72 

generation [4, 5], which reflects the diverse processes by which CNVs are created. They can be over 73 

1 megabase (Mb) [6] and are thought to comprise approximately 1% of an individual’s genome, 74 

which is much higher than the 0.1% thought to comprise SNPs [7, 8].  CNVs can be present in the 75 

same or overlapping regions of the genome in multiple individuals, these regions are called copy 76 

number variant regions (CNVRs).  Copy number variants are distinct from another type of variant, 77 

indels (INsertions/DELetionS), in that indels are typically less than 1kb [2]. By definition they are also 78 

distinct from segmental duplications (SD). Segmental duplications are defined as being over 1kb in 79 

length with at least 90% sequence identity between the duplicated segments and are often not 80 

polymorphic in the population [9]. In many cases it is likely that segmental duplications were once 81 

CNVs that have subsequently become fixed in the population.  82 

 83 

There are many examples, particularly in humans, of CNVs influencing traits. These include multiple 84 

examples of CNVs associated with cancer susceptibility [10-12],  the association of the FCGR3B gene 85 

copy number variant with systemic lupus erythematosus (SLE) [13], and CCL3L1 gene copy number, 86 

which has been linked to HIV susceptibility [14].  There is also evidence for CNVs influencing traits in 87 

other animal and livestock species. A 133kb duplication containing four genes causes hair ridge in 88 

Rhodesian and Thai Ridgeback dogs [15]. The chicken Peacomb phenotype is under sexual selection 89 

and is caused by a 3.2 kb duplication in an intron of the SOX5 gene [16]. The Peacomb allele contains 90 

~30 copies of the duplication, with variation in copy number present within individuals with the 91 

Peacomb phenotype.  In pigs, Chen et al [17] found seven copy number variable genes that 92 
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overlapped quantitative trait loci (QTL) for, among other traits, carcass length, backfat thickness, 93 

abdominal fat weight, length of scapular, intramuscular fat content of longissimus muscle, body 94 

weight at 240 days and glycolytic potential of longissimus muscle. Although not an association 95 

analysis, Chen et al [17] identified one CNV that had previously been associated with skin colour in 96 

pigs [18].  97 

 98 

There have been many CNV studies in cattle, with a range of platforms used to identify CNVs [19-26]. 99 

Between 51 and 1265 CNVRs [20, 22] have been identified in the various cattle studies, with 100 

estimates of the proportion of the cattle genome thought to contain CNVRs ranging from 0.5 to 20% 101 

[22, 24].  Although the latter is likely to be an overestimate, the wide range in estimates is likely due 102 

to a number of factors, including the technology used to detect CNVs, different CNV calling criteria 103 

used, and the number of animals examined  104 

 105 

While there is one notable example of a CNV having a direct effect on a sheep trait – the agouti 106 

duplication influencing coat colour [27] - to date, little work has been published on copy number 107 

variants in the sheep genome. An initial survey assayed eleven sheep on a cattle Roche-NimbleGen 108 

385K oligonucleotide CGH array (oligo aCGH) which included 385,000 probes that were designed 109 

based on the cattle genome build btau_4.0 [28]. That study identified 135 CNV regions (CNVR) that 110 

covered approximately 0.4% of the sheep genome and ~0.01-0.13% of each individual’s genome, 111 

which is substantially less than the approximately 1% estimated by Pang et al [8] in humans. This 112 

suggests many more sheep CNVs remain to be identified. 113 

 114 

A number of approaches have been used to detect the presence of CNV. The main platforms are 115 

comparative genomic hybridisation (CGH) arrays [29-33], SNP arrays [34-37] and depth of coverage 116 

metrics applied to whole genome sequence data (e.g., [38-42]). Further, there are a variety of 117 

algorithms that can be used to analyse available resultant data. Perhaps the most widely used 118 
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platform is array CGH, as it represents a cost-effective method to detect CNVs on a genome-wide 119 

scale in multiple individuals [43].  120 

 121 

Trios have been used in CNV studies to determine the de novo mutation rate and to identify CNVs 122 

that represent heritable genetic units [4, 22, 44, 5]. This involves identifying CNVs in a father-123 

mother-progeny trio. CNVs present in progeny and at least one parent are thought of as heritable 124 

and CNVs present in progeny but not in either parent indicate either a de novo mutation or an error 125 

in CNV identification.   Given that CNVs are difficult to detect regardless of the platform or methods 126 

used, the best approach appears to be the conservative use of multiple methods to generate a set of 127 

high confidence CNV calls. 128 

 129 

Given the lack of a comprehensive study of sheep CNVs, the objective of this study was to conduct a 130 

survey of sheep CNVRs using a range of detection methods. A Roche-NimbleGen 2.1M CGH array 131 

was designed and 36 animals (which included sets of trios) were assayed. Independent detection 132 

approaches were used in an attempt to validate the results.    Finally, the CNVRs detected in this 133 

study were compared to those reported in an earlier survey of the sheep genome [28] and those 134 

detected in seven separate cattle studies [19, 20, 25, 28, 21-23]. 135 

 136 

Results 137 

Roche-NimbleGen 2.1M CGH array construction and application 138 

A total of four methodologies were used to detect CNV, with the main approach being the 139 

development and application of a 2.1M probe CGH array for the sheep genome. In total, 2,012,210 140 

probes were designed with an average spacing across the autosomes of approximately 1.2 Kb. The 141 

array was used to assay a total of 36 sheep genomes, consisting of 30 individuals drawn from the 142 

International Mapping Flock [45] and a further six from a Reference Panel of International Sheep 143 
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Genomics Consortium (ISGC) sheep (Supplementary Table 1).  The Roche-NimbleGen segMNT 144 

algorithm was used to call CNV segments in each animal compared to the reference animal.  Many 145 

different algorithms and criteria can be used to identify CNVs in array CGH data.  Criteria employed 146 

to filter CGH data include restricting calls based on probe number within the CNV segment and log2 147 

ratio (the ratio of test to reference probe intensity values) (Bickhart et al (2012); Liu et al., 2010; 148 

Fontanesi et al., 2011); Conrad et al., 2010); (Kijas et al., 2011)).  These criteria are often selected 149 

using the results from a self-self hybridisation experiment, whereby self-self calls are used to 150 

indicate false positive calls, and rely on the assumption that the self-self hybridisation CNV calls 151 

cover the range of characteristics of false positive calls. It requires selecting a balance between filter 152 

values for number of probes and log2 ratio, so as to eliminate self-self hybridisation calls and other 153 

false positives from the dataset. Other studies have used differences between expected versus 154 

observed probe intensities on the sex chromosomes to set log2 ratio filters (Conrad et al., 2010). 155 

However, this does not account for possible probe number differences between true versus false 156 

CNV calls.  As well as these filtering criteria, trios can be used to identify CNVs (Abecasis et al., 2010; 157 

Kijas et al., 2011; Krumm et al., 2012; Michaelson et al., 2012).  158 

In this study, rather than using self-self hybridisation results to empirically set filters to remove false 159 

positives, a combination of trios and self-self hybridisation results were used to develop a logistic 160 

regression model for predicting whether or not a CNV segment represented a true CNV.  The logistic 161 

regression model was developed using known positives (trio calls) and known false positives (self-162 

self hybridisation calls) and the following variables were tested to determine if they were significant 163 

in predicting true versus false CNV segment calls: absolute log2 ratio of the CNV segment call; 164 

whether the call was a deletion or duplication; length of the call (base pairs); natural log transformed 165 

length variable; double natural log transformed length variable; the square of the length variable; 166 

number of probes in the CNV segment call; natural log transformed probe variable; double natural 167 

log transformed probe variable; the square of the probe variable; and corresponding two- and three-168 

way interactions.  The variables that were significant in predicting true versus false CNV segment 169 
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calls were the absolute log2 ratio of the CNV segment call, the double natural log transformed length 170 

variable and the double natural log transformed probe variable.  The resultant model was then used 171 

to predict true CNVs in the wider dataset, with some further downstream processing.  The total 172 

number of autosomal segment calls predicted to represent true CNVs by our model, using CGH data 173 

from 30 animals, was 12,802.  After removing calls based on a series of quality filters, a total of 9,789 174 

autosomal CNV calls remained (Table 1). The mean absolute log2 ratio of these calls was 0.54 and the 175 

average length was 30kb with a range in length of 1kb-2.5Mb (Table 1). 176 

 177 

On average, 326 CNVs were detected per individual, with a median of 321 and range of 109 to 643. 178 

One animal had notably more CNV calls than the other animals, however, it had the same CNV 179 

content on the autosomes (as a percentage of total length in base pairs) as the other animals.  180 

 181 

Autosomal CNVR 182 

CNV information from all animals was combined to obtain 3,488 CNV regions on the ovine 183 

autosomes (Supplementary Table 2).  The average length of these CNVRs was 19kb, with a range of 184 

1kb to 3.6Mb.  Shorter CNVRs were more frequent than longer CNVRs in the genome. The total 185 

length of all CNVRs was 67.6Mbps, which equates to 2.7% of the sheep autosomes. For individuals, 186 

this value ranged from 0.24 to 0.55%. Most CNVRs were seen in just one animal (Figure 1), however 187 

1,424 (41%) were independently called in at least 2 individuals.  A small percentage (0.11%) of 188 

CNVRs were observed in all animals, which likely indicates the presence of a CNV in the reference 189 

animal only - the ‘reference effect’ [46]. The majority of CNVRs (58%) contained only deletion CNVs, 190 

38% of CNVRs contained only duplication CNVs and 4% were compound CNVRs, containing both 191 

duplication and deletion CNVs. 192 
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The number of CNVRs on each chromosome ranged from 76 on chromosome 27 to 185 on 193 

chromosome 19 (Figure 2).  As can be seen in Figure 2, there was a weak positive linear relationship 194 

between chromosome length and number of CNVRs (R
2
=0.27).   195 

The average spacing between CNVRs ranged from one every 347kbp on chromosome 19 to one 196 

every 1.2Mb on chromosome 1. The closest CNVRs were approximately 1.5kb apart, while the 197 

largest distance separating CNVRs was 8.5Mbps.  The two-sample Kolmogorov-Smirnov test showed 198 

that the distribution of the CNVRs in the genome (in terms of the inter-CNV distance) was 199 

significantly different to that which would be expected should the CNVRs be uniformly distributed 200 

(p-value = 4.56x10-7). Specifically, the CNVRs tended to be clustered together in the genome (Figure 201 

3). 202 

 203 

Cross platform verification of autosomal CNVRs in sheep 204 

A small subset of animals assayed with the 2.1M CGH array were also used for data generation with 205 

a lower density 385K CGH array (5 individuals), the OvineSNP50 BeadChip (24 animals) and whole 206 

genome sequence from the six reference panel animals (Supplementary Table 1). This facilitated an 207 

examination of the proportion of CNVRs independently called across platforms.  208 

 209 

The verification rate of CNVRs identified on the 2.1M CGH array on both the 385K CGH array and the 210 

OvineSNP50 BeadChip was low. Results from these analyses are presented in an additional file [see 211 

Additional file 1]. 212 

  213 

The final comparison utilised analysis of whole genome sequence from the six reference panel 214 

animals. Each individual was sequenced to between 9.8X and 14X genome wide coverage before 215 

variation in read depth was used to detect CNVR (see Methods). The same six animals had 852 216 

CNVRs arising from 1,164 CNV calls detected using the 2.1M CGH array.  Comparing the CNV calls 217 
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revealed 61% of the Roche-NimbleGen 2.1M CGH array CNV calls were independently identified in 218 

the sequence data (Table 2). Two thirds of the CNV calls that were verified were observed as a 219 

consistent deletion or duplication CNV across platforms in a specific animal. The remaining verified 220 

CNVs were observed as a CNV of the opposite type (deletion versus duplication) in the Poll Dorset 221 

animal. This animal was used as the reference animal on the Roche-NimbleGen 2.1M CGH array and 222 

therefore CNVs in this animal can be incorrectly observed as CNVs in the test animal when in fact no 223 

CNV is present in the test animal.  That is, a deletion in the Poll Dorset may be observed as a 224 

duplication in the test animal on the 2.1M CGH array, while in the sequence data, the test animal 225 

shows no CNV in the region but the Poll Dorset shows a deletion. The same is true for duplications in 226 

the Poll Dorset, which will be observed as deletions in the test animal, even if no CNV is present in 227 

the test animal in that region. 228 

There were instances where the sequence data showed that there was a CNV in the Poll Dorset and 229 

the test animal in the same region, but the type (duplication/deletion) of CNV in the test animal was 230 

not consistent between the 2.1M CGH array and sequence platforms. For example, a 2.1M CGH 231 

deletion that was observed as a duplication in the test and reference animal in the sequence data. 232 

These calls were considered to be verified as there were still CNVs present in the sequence data and 233 

it is possible that the magnitude of the log2 ratio of the CNV call on the 2.1M CGH array was higher in 234 

the Poll Dorset than the test animal which could result in inconsistencies between the types of CNVs 235 

detected. There were instances in the data where a CNV call of one particular CNV region could be 236 

verified in one animal and not in another animal, which indicates that the CNV is likely present in 237 

both animals but the sequence analysis failed to identify the CNV in one of the animals.  238 

 239 

Significant differences in absolute log2 ratio, length and GC content were observed between the 240 

sequence verified and non-verified 2.1M CGH array calls. Verified calls had higher absolute log2 241 

ratios (0.62 versus 0.50) and were longer (46kb versus 9kb) on average than non-verified calls. This 242 

suggests that longer calls with higher absolute log2 ratios are either more likely to represent true 243 
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CNVs or are easier to verify than shorter calls with lower absolute log2 ratios. Sequence 244 

corresponding to non-verified calls showed significantly higher (two-tailed t-test for proportions) GC 245 

content on average compared to verified calls – 44.6 versus 43.0%. Both verified and non-verified 246 

calls had significantly higher GC content compared to the genome average (42.6%). More 247 

duplications (72.4%) than deletions were verified on the sequence platform - 72.4% versus 54.7%.  248 

This is not surprising, as there was less variation in the sequence data in regions with low read 249 

depth, which reduces the ability to detect differences in copy number in these regions and hence 250 

also CNVs relating to deletions.  251 

Comparison of autosomal CNVRs to those identified in the sheep and cattle literature 252 

In total, we detected 378 (18%) of the 2,154 CNVRs reported in seven other sheep and cattle studies. 253 

Of the 2,154 CNVs detected in the seven other studies, 352 were present in more than one study. 254 

We detected 132 (38%) of the 352 CNVs observed in multiple studies, whereas we only detected 255 

14% of the CNVRs observed in just one other study (Table 3). The more frequently a CNVR was 256 

observed in the other studies, the more likely we were to detect the CNVR (Table 3). We were able 257 

to detect 31% of the CNVRs identified in the initial sheep study by Fontanesi et al [28] and between 258 

16-62% of CNVRs detected in the cattle studies.  259 

Eleven percent of the 3,336 CNVRs detected in this study and successfully mapped to the btau_4.0 260 

genome overlapped CNVRs in these other studies. This is lower than would be expected based on 261 

overlap between CNVRs from the other studies with each other, which ranges from 20-77%. By 262 

comparison, 28% of the CNVRs from the sheep study by Fontanesi et al [28] were observed in at 263 

least one of the cattle studies. 264 

Overlap between autosomal CNVRs and genes  265 

Of the 3,335 CNVRs identified on the Roche-NimbleGen 2.1M CGH array that mapped to OARv3 266 

autosomes, 1,335 (40%) overlapped the coding sequence of one or more genes; 45% of duplication 267 
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CNVRs, 36% of deletion CNVRs and 59% of deletion/duplication CNVRs overlapped genes. The 268 

proportion of duplications overlapping the coding sequence of genes was significantly different (Chi-269 

squared test, p < 0.0001) to the proportion of deletions overlapping genes. Based on permutation 270 

analysis, these proportions were significantly greater than that which would be expected if the 271 

CNVRs were randomly distributed in the genome (p=0.01). Both the agouti signalling protein and 272 

adenosylhomocysteinase genes were overlapped by one of our CNVRs, which confirms the presence 273 

of the agouti duplication reported by Norris and Whan [27] in this dataset, and thus provides a 274 

positive control for the CNVR identification methods presented here. It is important to note that the 275 

agouti duplication can be present in multiple copies [27], hence the reason that it shows up even 276 

upon comparison to another white fleeced sheep.  277 

 278 

Non-autosomal CNVRs 279 

The total number of chromosome X Roche-NimbleGen 2.1M CGH array segment calls predicted to be 280 

real was 697, however, 308 of these were observed as deletions in males. It is possible some of 281 

these are real, particularly if they are present in the pseudo-autosomal region, however, this cannot 282 

be confirmed in our analysis as we do not have a clear pseudo-autosomal boundary defined. After 283 

filtering all 697 CNV calls based on size and log2 ratios, 615 of these were predicted to be real, 284 

however, only 317 were either deletions or duplications in females or duplications in males. These 285 

317 were used to call CNVRs on chromosome X. In total, we estimate there are at least 114 CNVRs 286 

on chromosome X, representing approximately 3.2% of the length of the X chromosome.  In addition 287 

to chromosome X CNVRs, four CNVRs were identified on UMD3_OA_chrun, observed in one to ten 288 

animals. These CNVRs spanned a total length of 19,304bps.  289 

 290 

Including the 3,488 CNVRs observed on the autosomes, the 114 CNVRs observed on chromosome X 291 

and the 4 CNVRs identified on chromosome unknown (UMD3_OA_chrun), we estimate there to be 292 

approximately 3,606 CNVRs in the sheep genome. This includes CNVRs identified on chromosome X 293 
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and UMD3_OA_chrun. The total length of these 3,606 CNVRs is estimated to be 72.4Mbps, however, 294 

it is possible that some of the CNVRs on UMD3_OA_chrun may overlap those identified on the 295 

autosomes and therefore this number may be slightly lower. 296 

 297 

Discussion 298 

The results reported here provide a genome wide view of the frequency of CNV, an important class 299 

of genomic variant that is currently poorly characterised in the sheep genome.  Using a custom built 300 

Roche-NimbleGen 2.1M CGH array, 9,789 autosomal CNVs were detected in 30 sheep. On average 301 

these CNVs covered 0.4% of each animal’s genome. This is higher than that reported in the initial 302 

sheep survey where, on average, 0.05% of an individual sheep genome comprised CNVs [28]. The 303 

difference in estimates is not surprising as this study used a CGH array with 2.1 million probes while 304 

Fontanesi et al [28] used a CGH array with 385,000 probes. Based on probe spacing in the genome 305 

and the filters applied to the data, the earlier study detected CNVs greater than 30kb in length, on 306 

average, while this study had a resolution of ~4kb on average. As a result, differences in resolution 307 

may have resulted in differences in the number of CNVs detected. This is reflected in the datasets, 308 

with the average size of CNVs detected by Fontanesi et al [28] being 77.6kb (median 55.9kb) and the 309 

average size detected in this study being 30.3kb (median 8.7kb). The individual genome CNV 310 

composition estimates are similar to, but slightly lower than, estimates reported in humans (e.g., 311 

0.5%, [48]; 0.78%, [7]; and 1.2%, [8]).  312 

 313 

The 9,789 autosomal CNVs reported in this study correspond to 3,488 autosomal CNV regions in the 314 

30 animals tested, representing 2.7% of the sheep genome. This is approximately seven times higher 315 

than estimated in the initial sheep survey [28], which is to be expected as more animals were 316 

assayed in this study. This estimate is similar to the range of estimates in cattle [19, 25, 21, 26, 22, 317 

23, 20] and again similar but slightly lower than estimates in humans (3.7%, [7]; 5%,[48]). Estimates 318 
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in humans are likely to provide a more accurate estimate of CNV composition in the genome, as 319 

studies have involved more individuals and used a wider range of technologies, often employed 320 

together. As in the Fontanesi et al [28] study, this study suffers from the lack of a complete 321 

reference sheep genome. We used a sheep genome that was constructed using a cattle reference 322 

genome to design probes for inclusion on the 2.1M CGH array. The genome used, UMD3_OA, does 323 

not include any regions that are present in the sheep genome but that are not present in the cattle 324 

genome. This means that sheep CNVs in regions deleted or of low homology in the cattle genome 325 

are likely to have been undetected in this study. Future work will benefit from using a sheep 326 

reference genome for CNV analysis. However, the CNVRs presented in this study provide a 327 

substantial addition to the currently published sheep CNV regions, and bring the resource up to a 328 

level similar to that available in cattle. 329 

 330 

There were also 118 CNVRs identified on chromosome X and chromosome unknown. However, 331 

these were lower confidence calls and were not considered in further analyses.  Of the 3,488 332 

autosomal CNVRs identified in this study, 59% were observed in just one animal, which is 333 

comparable to results in the literature [7, 35, 22, 23, 37].  One and a half times more deletions than 334 

duplications were observed. This imbalance is one that is commonly reported in the literature [49, 335 

50, 22] and could be due to ascertainment bias. The ascertainment bias arises because the 336 

proportional difference between probe intensity of test and reference animals is greater for copy 337 

number losses than gains meaning that deletions are easier to detect than duplications.  338 

 339 

The CNVRs detected in this study tended to be clustered together in the genome.  This may be an 340 

artefact of the segMNT algorithm and our CNVR calling algorithm, which may have failed to collapse 341 

multiple CNVRs originating from one CNVR into one region.  However, similar distributions have 342 

been reported in other studies [5, 51-53] and also for the closely related segmental duplication 343 

variant [9]. If this clustering represents the true underlying distribution in the genome, then it may 344 
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indicate that the clustered CNVRs are the result of increased mutational activity in repetitive regions 345 

of the genome which could facilitate mechanisms such as non-allelic homologous recombination 346 

[54]. Determining if the CNVRs are a result of one mutational event or multiple mutational events 347 

would require detailed analysis of specific regions, probably using deep sequencing.  348 

 349 

There are reports in the literature that CNVRs are preferentially located outside of gene regions [51, 350 

55, 56, 37] and that those CNVs that do overlap genes are more likely to be duplications than 351 

deletions [7, 57, 37]. The rationale is that deletions are more disruptive to gene function than 352 

duplications and therefore are subject to greater selective pressure. In this study, a significant 353 

difference was observed in the proportion of duplications overlapping the coding sequence of genes 354 

compared to deletions – 0.45 versus 0.36. However, both of these proportions were significantly 355 

higher than would be expected if CNVRs were randomly distributed throughout the genome. 356 

Therefore, in this study there is no evidence to suggest that the CNVRs identified in this study are 357 

preferentially excluded from genic regions as has been suggested in the literature. Other results 358 

reported in the literature have also found an enrichment of CNVs in these regions [30, 53]. Cooper et 359 

al [53] suggest that CNVs that overlap segmental duplications (SDs) are more likely to be enriched in 360 

genic regions, while CNVs that do not overlap SDs are enriched in gene poor regions of the genome. 361 

As genes and segmental duplications are GC rich [58] and GC rich regions are more prone to CNV 362 

formation, then it is possible that certain types of CNVs are enriched in genic regions. While 363 

selection against or for CNVs and CNV formation mechanisms are reasonable explanations for the 364 

depletion or enrichment of CNVs in genic regions, it is also possible that differences reported in the 365 

literature are due to ascertainment bias introduced by using different methods for CNV detection. 366 

Again, this illustrates the difficulties associated with CNV identification. 367 

 368 

Compared to the lower density 385K CGH array and the OvineSNP50 BeadChip, whole genome 369 

sequencing exhibited the highest cross platform verification rate, with 61% of CNVs verified with this 370 
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platform. The CNVs that were unable to be verified were shorter and had lower absolute log2 ratios 371 

than calls that were able to be verified. Both verified and non-verified CNVs had significantly higher 372 

GC content than the genome average, which supports data from the literature reporting that GC-rich 373 

regions can be more prone to CNV formation [61, 62]. Non-verified CNVs had significantly higher GC 374 

content than verified CNVs. While it is possible that the non-verified CNVs were false negatives in 375 

the sequence analysis, it is also possible that they were false positives in the CGH dataset, as false 376 

positive CGH calls can be related to regions with high GC content [63, 64]. Future work could involve 377 

adjusting CGH intensity data for GC content.  378 

 379 

This study detected 18% of the CNVRs reported in seven other sheep and cattle studies [19, 20, 25, 380 

28, 21-23]. Thirty one percent of the CNVRs that were previously detected in an initial survey of 381 

CNVs in the sheep genome [28] were detected in this study.  We were able to identify all of the 382 

CNVRs that were observed in six of the other studies, but only 14% of CNVRs observed in just one 383 

other study. In fact, the more studies a CNVR was detected in, the more likely we were able to 384 

identify the CNVR in our analysis.  This trend was also reported by Kijas et al [22].  This suggests that 385 

either these CNVRs are less likely to be false positives or they may be more common than the CNVRs 386 

detected in just one study or, alternatively, they may be more likely to occur in both sheep and 387 

cattle. Common CNVRs will be present in more individuals in the population and therefore are more 388 

likely to be observed in the diverse range of animals tested in the different studies. Reasons that this 389 

study was unable to detect many of the CNVs from the other studies include: CNVs that occur in 390 

cattle but not sheep; rare CNVs not seen in our sample of sheep; and false negatives in our study 391 

due in part to the different methods used for CNV detection. Similarly, only a small number (11%) of 392 

CNVRs identified in this study overlapped CNVs detected in these seven other studies. Again, lack of 393 

overlap could be due to the different species or individual animals tested, different methods used 394 

for CNV detection, false negatives in other studies and false positives in our dataset. Confirmation 395 
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rates varied widely across the studies compared to our results. Variation in confirmation rates from 396 

different studies has also been reported in the literature for human CNV studies [66, 67].  397 

 398 

Conclusions 399 

In this study, comprehensive information from trios, multiple platforms and different algorithms 400 

were used with the aim of verifying CNV segment calls from the Roche-NimbleGen 2.1M CGH array. 401 

CNVs are difficult to verify and as is observed in the literature, a combination of approaches appears 402 

to be the best way to accurately detect CNVs on a large scale. It is likely that comprehensive 403 

sequencing or qPCR would provide clearer information about individual CNV regions and give an 404 

indication of the accuracy of the methods used to detect them. Regardless, characteristics of the 405 

CNV regions detected in this study are comparable to those reported in the literature, and the CNV 406 

regions identified here add to the initial survey of CNVs in the sheep genome by Fontanesi et al [28]. 407 

 408 

Methods 409 

Roche-NimbleGen 2.1M CGH array - design overview 410 

In total, 2,012,210 probes (50-75 base pairs in length) were distributed evenly on non-repetitive 411 

regions of the UMD3_OA ovine genome build (an in-house AgResearch comparative sheep genome 412 

assembly, built using cattle reference genome UMD3 [68] and accessible at 413 

www.sheephapmap.org/CNV/), with an average spacing of approximately one probe per 1,250 base 414 

pairs (bps) on the autosomes and one probe per 1700bps on chromosome X.  In addition to these 415 

probes, a further set of probes was designed around SNPs found on the Illumina OvineSNP50 416 

BeadChip, with the aim of increasing cross platform validation between the 2.1M CGH array and 417 

OvineSNP50 BeadChip.   This involved mapping SNPs and flanking sequence onto UMD3_OA. In 418 

some instances, SNP sequences did not map uniquely to the genome, with multiple hits on the same 419 
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chromosome, suggesting the possibility that multiple copies of the sequence could occur in adjacent 420 

duplicated regions (e.g. CNV). As these SNPs may have been in CNV regions, these regions were also 421 

used for specific probe design and inclusion on the array. Probes were also designed on 422 

chromosome unknown scaffolds. Chromosome unknown scaffolds represent sequence data that 423 

cannot be placed on the genome assembly. 424 

 425 

Roche-NimbleGen 2.1M CGH array design - targeted probe design around OvineSNP50 BeadChip 426 

SNPs 427 

In total, 28,754 out of 50,064 SNP sequences (either the 50bp OvineSNP50 BeadChip probe or 300bp 428 

flanking the SNP) successfully mapped to UMD3_OA (BLAST parameters -U T -F "m D" -e 1e-5, Korf et 429 

al [69]) and met the requirement of having three probes designed to cover them, as selected by one 430 

of the following two methods (Figure 4). The first involved designing a probe to cover the SNP base 431 

pair position. Flanking probes were designed within 400bp windows 100bp up- or down-stream of 432 

the SNP region, where the SNP region consisted of 300bps flanking the SNP position. If three probes 433 

were not obtained with this method, then a second method was used. This involved selecting a 434 

probe in the SNP region without requiring the probe to cover the SNP position, with flanking probes 435 

selected from 400bp windows 100bp up- or down-stream of the SNP region (Figure 4).  In total, 436 

86,262 probes were designed within or adjacent to 28,754 SNP regions.   437 

Of the 21,310 SNP sequences that could not be mapped to UMD3_OA, 240 were mapped by relaxing 438 

the BLAST parameters to -W 11 -q -1 -r 1 -s 0 -F "m D" -U T -X 40 [69].  A total of 634 probes were 439 

designed to cover 218 of these SNP regions. 440 

A subset of 401 SNP sequences mapped to UMD3_OA, but not uniquely - with two top hits on the 441 

same chromosome.  In total, 879 probes covering 323 of these positions were designed for inclusion 442 

on the 2.1M CGH array. 443 
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 444 

Roche-NimbleGen 2.1M CGH array design – chromosome unknown 445 

Chromosome unknown sequences (n=492) were merged into a virtual chromosome, 446 

UMD3_chrU_OA, with each sequence separated by 100 N’s. Probes were distributed at an average 447 

spacing of approximately one every 1,600bps on this chromosome. 448 

 449 

Roche-NimbleGen 2.1M CGH array – animals assayed 450 

Genomic DNA was extracted from blood samples of 36 animals (Supplementary Table 1), which were 451 

assayed on the 2.1M CGH array.  Thirty animals were from the International Mapping Flock (IMF) 452 

and consisted of families of trios (Figure 5).  The IMF animals are crossbreds of up to five different 453 

breeds – Texel, Coopworth, Perendale, Romney and Merino [45]. In addition to the IMF animals, six 454 

sheep, sequenced to approximately 10X coverage each, were also assayed on the 2.1M CGH array.  455 

These six animals were - Awassi, Merino, Poll Dorset, Romney, Scottish Blackface and Texel 456 

purebreds.  The Poll Dorset was used as the reference animal for all 2.1M CGH array hybridisations 457 

and was also run against itself in a self-self hybridisation to allow characterisation of false positive 458 

calls [70, 23]. 459 

 460 

Roche-NimbleGen 2.1M CGH array – segMNT output processing 461 

CNV segments were called in the assayed animals by Roche-NimbleGen using their proprietary 462 

segMNT algorithm. This software reports the average log2 ratio of a segment (the binary logarithm of 463 

the average of the intensity of the test animals probes in a segment call divided by the average of 464 

the intensity of the reference animals probes in the same region), the number of datapoints (probes) 465 

included in the segment and the length of the segment in base pairs.  466 
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The variance of normalised log2 ratio values over all probes for each animal was obtained. Five 467 

animals were deleted from the analysis as their log2 ratio data exhibited larger variation than 468 

observed in other animals, meaning that they were deemed to be failed CGH hybridisations. 469 

Segment calls with absolute log2 ratios less than 0.1 were removed from the analysis [7]. 470 

 471 

Validating Roche-NimbleGen 2.1M CGH array segment calls 472 

IMF trios were used to validate segment calls. If a progeny segment call was seen in at least one 473 

parent at an identical genomic location (same first and last probe included in the segment call and 474 

therefore same genomic start and stop position), the progeny call was considered validated. These 475 

calls were deemed to represent “true CNVs” for model building. 476 

Model used to predict CNVs in the wider dataset and downstream filtering 477 

For model building, validated progeny calls were deemed to represent true CNVs and self-self 478 

hybridisations were deemed to be false positives. Only autosomal segment calls were used. Forward 479 

stepwise logistic regression was used to construct a model, with a binary outcome variable 0 (self-480 

self) or 1 (validated trio segment call).  Variables used for model building were: absolute log2 ratio 481 

(absl2r); whether the call was a deletion or duplication; length, in bps; ln(length); ln(ln(length); 482 

length-squared; number of probes in segment call, datapoints; ln(datapoints); ln(ln(datapoints); 483 

datapoints-squared; and corresponding two- and three-way interactions. If the Wald chi-square 484 

statistic for a variable was significant at the 0.3 level it was added to the model. A variable remained 485 

in the model if it was significant at the 0.35 level.  486 

 487 

The crossvalidate procedure in SAS software (SAS version 9.1) was used to test model performance.  488 

This procedure omits one segment call in turn and re-calculates model coefficients based on all 489 

other segment calls per iteration. It then predicts the probability the omitted call represents a true 490 
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CNV.   Threshold values were applied to categorise calls as true or false based on their probabilities – 491 

true or false. Probability thresholds tested were 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.96, 0.97, 0.98 and 0.99. 492 

For each probability threshold tested, the number of times the procedure correctly predicted the 493 

known segment call status (true or false) was used as a measure of model accuracy.  The final 494 

probability threshold used was 0.95. 495 

 496 

The final model selected was,  497 

ln � �
�1 � ��	 
  �0.19 � 29.51����2� �  4.91�ln�ln���������� � 8.24�ln�ln������� ������ 

This model was applied to all segment calls not used in model development.  Segment calls equal to 498 

or greater than the probability threshold of 0.95 were retained. The dataset was further filtered to 499 

include only CNVs >=1kbp in length (so that they conformed to the definition of a CNV, as per [2], 500 

only CNVs with >= 3 probes in the corresponding segment call and with absolute log2 ratio >=0.25. 501 

These filtered segment calls were deemed to represent true CNVs. 502 

 503 

Segment calls on chromosome X were processed through the model and filtered as above. Filtered 504 

CNVs on chromosome X were considered to represent true CNVs for female individuals. Duplications 505 

on chromosome X in males were considered to represent true CNVs. Deletions on chromosome X in 506 

males were assumed to be inconclusive as they could be due to differences in the number of X 507 

chromosomes between the male test animal and the female reference animal. 508 

 509 

Segment calls on the virtual chromosome UMD3_chrU_OA were processed differently to segment 510 

calls on the autosomes and chromosome X.  Chromosome unknown sequences were collated into 511 

larger virtual chromosomes, UMD3_chrU_OA, with each sequence separated by 100 N’s. Segment 512 

calls on this virtual chromosome were discarded if they spanned more than one chromosome 513 

unknown sequence or if all probes on one chromosome unknown sequence were included in the 514 

segment call. The reason for excluding segment calls where all probes on the chromosome unknown 515 
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sequence were included in the call was because there was no way to compare the call to nearby 516 

sequence to determine if the log2 ratio was different to other stretches of DNA in the region. There 517 

were two Poll Dorset (self-self hybridisation) segment calls on UMD3_chrU_OA. The log2 ratios of 518 

these calls were -0.32 and -0.17.  Thus calls with absolute log2 ratios ≤0.32 were removed from the 519 

analysis. Segment calls that met these criteria and that contained at least two probes, while 520 

excluding at least two probes from the corresponding chromosome unknown sequence, were 521 

retained. 522 

 523 

CNV regions 524 

Across all animals, autosomal and chromosome X CNVs within 1,500bps of one another were 525 

collapsed into CNV regions (CNVRs). 526 

 527 

To determine if CNVRs were uniformly distributed in the genome, a simulated dataset of CNVRs was 528 

generated by randomly sampling genomic positions of the identified autosomal CNVRs from a 529 

uniform distribution.  Spacing was constrained so that CNVRs could not be within 1,500bps of each 530 

other.  The simulated dataset provided an expected distribution of CNVRs in the genome and 531 

corresponding pairwise distances between CNVRs. A Kolmogorov-Smirnov test was performed to 532 

determine if the distribution of pairwise distances between CNVRs in the observed dataset was 533 

significantly different from that seen in the simulated dataset.  534 

 535 

Verifying CNVRs across platforms 536 

Three other platforms were used for CNV identification – Roche-NimbleGen 385K CGH array, 537 

OvineSNP50 BeadChip, and Illumina HiSeq 2000 sequence data analysis, with each based on a 538 

different version of the ovine genome. To perform cross platform validation autosomal CNVRs 539 
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identified on the Roche-NimbleGen 2.1M CGH array were mapped to genomes BTA_OARv.2 (for use 540 

with the 385K CGH array), OARv1 (for use with the OvineSNP50 BeadChip) and OARv3 (for use with 541 

sequence data analysis).  CNVR sequence and 1,750bps flanking the start and stop of each CNVR 542 

were obtained. Sequences were masked with an ovine repeat database isgcandrepbase2 543 

(Supplementary file 1) and BLASTed against each genome, with parameters -F 'm D' -U T -Z 2000 544 

[69]. CNVR start and stop positions on each genome were approximated based on the BLAST 545 

alignment. When the predicted CNVR start position was a negative number, it was set to one (i.e. 546 

the first base pair of the chromosome).  547 

 548 

The Roche-NimbleGen 385K CGH array is based on the same technology as the Roche-NimbleGen 549 

2.1M CGH array; however, it has fewer probes covering the genome, with a probe density of 550 

approximately 1 probe per 6,000bps.  Twenty animals were run on the 385K CGH array, including 551 

five animals (Awassi, Merino, Romney, Scottish blackface and Texel) that were run on the 2.1M CGH 552 

array. The Poll Dorset was used as a reference on the 385K CGH array and the 2.1M CGH array. 553 

Autosomal CNVRs identified using the 2.1M CGH array were positioned on BTA_OARv.2 as described 554 

above. CNVRs positioned on BTA_OARv.2 autosomes were retained for cross platform verification. 555 

CNV segments called by the NimbleGen segMNT software in the 385K CGH dataset were processed 556 

to include only autosomal segments with absolute log2 ratios ≥0.25. Autosomal CNVRs in the five 557 

animals were considered verified if there was overlap between their processed 385K CGH segment 558 

calls and their 2.1M CGH array CNVR calls mapped to BTA_OARv.2. This comparison was performed 559 

separately for each animal. 560 

 561 

Twenty IMF and five sequenced animals had previously been genotyped on the OvineSNP50 562 

BeadChip. SNP genotypes for these animals were run through the cnvPartition (Illumina Inc., USA) 563 

and DNAcopy [47] algorithms.  DNAcopy results were filtered to include only calls with absolute log2 564 

ratios ≥0.25. Autosomal CNVRs identified with the 2.1M CGH array and successfully mapped to 565 
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OARv1 autosomes were considered verified if they overlapped autosomal CNVs predicted by 566 

cnvPartition or DNAcopy, in the same animal.  567 

 568 

Six animals assayed on the 2.1M CGH array were each sequenced to between 9.8X and 14X coverage 569 

by paired-end sequencing on the Illumina HiSeq 2000 platform at Baylor College of Medicine (NCBI 570 

short read archive accessions SRX150284, SRX150292, SRX150299, SRX150330, SRX150341, 571 

SRX150350).  The following analysis was carried out separately for each animal. Sequence reads 572 

were positioned on ovine genome OARv3 using the Burrows-Wheeler Alignment (BWA) algorithm 573 

[71] and pileup files [72] were used to retrieve read depth information at each base pair position on 574 

the autosomes. Reads were portioned into 1kbp overlapping bins, excluding repetitive sequence, 575 

using a sliding window of 200bps. Masked repetitive sequence positions were translated to genome 576 

build OARv3. As well as excluding repetitive sequence, for each chromosome a maximum read depth 577 

was set per chromosome to exclude potentially unmasked repeats from the CNV sequence analysis. 578 

The maximum read depth threshold was set based on inspection of the read depth distribution 579 

function with the aim of excluding outliers in read depth data.  Bins with a maximum read depth 580 

exceeding the threshold were deleted from the analysis. The average read depth over all base pairs 581 

was determined for each bin after correcting for GC content based on methods presented by Yoon 582 

et al [73]. 583 

 584 

Pseudo-Maximum likelihood was used to fit a mixture model to determine if the average read depth 585 

for each bin represented a homozygous deletion (copy number, CN=0), heterozygous deletion 586 

(CN=1), normal diploid copy number (2), heterozygous duplication (3) or homozygous duplication (4) 587 

in the genome. The mixture model used (Table 4) was a mixture of four normal distributions (for 588 

modeling CN = 1 to 4) and one half-normal distribution (for CN = 0). Constraints were placed on the 589 

parameters of the normal distributions so that the means and variances of the distributions 590 
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corresponding to CN =1, 3 and 4 were equal to respectively 1/2, 3/2 and 2 times the mean and 591 

variance of the distribution corresponding to CN = 2. Model fitting was done on a per chromosome 592 

basis, using the R function nlminb [74]. Specifically, seven parameters were estimated for each 593 

chromosome: !� and "
�

�, the mean and variance of read depth for a bin corresponding to CN = 2 (the 594 

“normal” diploid copy number); "
�

�, the variance of read depth for a bin corresponding to CN = 0 595 

(homozygous deletion) and four of the five mixture weights (prior probability of a bin falling into 596 

each of the five distributions). Where these parameters could not be estimated for a chromosome, 597 

average estimates based on all other chromosomes for a given animal were used. Table 5 details the 598 

starting values and lower and upper bounds used by nlminb for each parameter. Based on those 599 

parameter estimates, each bin was assigned to one of the five CNV classes by multiplying the values 600 

of each of the five probability density functions for each bin by the corresponding mixture weights 601 

(i.e., calculating the posterior probability of a bin being in each of the distributions) and selecting the 602 

CNV class with the highest value.  For each of the six animals, bins in regions corresponding to 603 

autosomal CNVRs identified on the 2.1M CGH array and mapped to OARv3 autosomes were used to 604 

determine if the CNVR was verified in the sequence data. Specifically, if at least one bin was 605 

observed as representing a CNV then the CNVR was considered to be verified. In instances where 606 

there was conflict between results from the sequence analysis and the 2.1M CGH array, individual 607 

animal data were compared to the reference (Poll Dorset) animal. This animal was used as the 608 

reference animal in the 2.1M CGH array experiments and therefore results for individual animals 609 

may be influenced by the corresponding copy number present in the Poll Dorset. 610 

Comparison of CNVRs to those identified in the literature 611 

CNVR sequences were masked against AgResearch ovine repeat database isgcandrepbase2 and 612 

BLASTed against btau_4.0 using BLAST parameters -F 'm D' -U T -Z 2000 [69] to obtain their positions 613 

on the genome. Genomic positions on btau_4.0 of CNVs identified from seven other sheep and 614 

cattle studies [28, 21-23, 25, 19, 20]  were obtained. An overlap of 1bp or more between autosomal 615 
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CNVRs identified in this study and these seven other studies was used to give an indication as to how 616 

many CNVs from other studies we were able to detect and how many of the CNVs detected in this 617 

study were also reported in the other studies. 618 

Overlap between autosomal CNVRs and genes 619 

CNVR sequences were masked (isgcandrepbase2) and BLASTed (parameters -F 'm D' -U T -Z 2000) 620 

against OARv3 to obtain their positions on the genome. Positions of the coding sequence of genes 621 

on OARv3 were provided by BGI (personal communication, Rudiger Brauning). Overlap between 622 

autosomal CNVRs and the coding sequence of genes were determined. CNVRs that overlapped gene 623 

coding sequences by 1bp or more were used to derive the proportion of CNVRs overlapping genes. 624 

Overlap with the agouti signalling protein and adenosylhomocysteinase genes were used as a 625 

positive control, as this locus is observed as duplicated in the sheep genome [27]. 626 

 627 

A Monte Carlo simulation was set up to randomly distribute the CNVRs throughout the sheep 628 

genome and to create a distribution of the expected proportion of deletion CNVRs and duplication 629 

CNVRs overlapping genes (by at least 1bp). One hundred iterations were run to generate 100 630 

expected proportions for both duplications and deletions. For both duplication and deletion CNVRs, 631 

the observed proportion was ranked along with the 100 simulated proportions and a two-tailed 632 

empirical p-value was calculated. 633 

Declarations 634 

List of abbreviations 635 

Absl2r - absolute log2 ratio  636 

bps - base pairs 637 

BWA - Burrows-Wheeler Alignment  638 

CGH - comparative genomic hybridisation 639 
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CNV - Copy number variants 640 

CNVR - CNV regions  641 

IMF - International Mapping Flock 642 

indels - INsertions/DELetionS  643 

ISGC - International Sheep Genomics Consortium 644 

Kb - kilobase 645 

Mb - megabase  646 

Oligo aCGH - oligonucleotide CGH array 647 

QTL - quantitative trait loci 648 

SD - segmental duplications 649 

SLE - systemic lupus erythematosus 650 

 651 

Ethics 652 

This study was carried out in strict accordance of the guidelines of the 1999 New Zealand Animal 653 

Welfare Act and was approved by the AgResearch’s Invermay, Animal Ethics committee (applications 654 

AE154 and AE10879). 655 

Availability of data and materials 656 

The UMD3_OA ovine genome build (an in-house AgResearch comparative sheep genome assembly, 657 

built using cattle reference genome UMD3 is accessible at www.sheephapmap.org/CNV/. Whole 658 

genome resequencing files are deposited in the NCBI short read archives (accessions SRX150284, 659 

SRX150292, SRX150299, SRX150330, SRX150341, SRX150350). The raw and SEGMNT processed HD 660 
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aCGH data are deposited in figshare https://dx.doi.org/10.6084/m9.figshare.3007282 along with a 661 

description file. 662 
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A description of the results of the cross platform (385K CGH and SNP50 chip) verification of CNV 913 

regions. 914 

  915 
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Table 1.  Characteristics of CNVs predicted true by the model (n=9,789) and filtered to remove 916 

artefacts. 917 

Variable Mean Median Std dev Min Max 

absl2r* 0.54 0.43 0.36 0.25 3.47 

length (bp) 30,332.02 8,706 107,369.37 1,003 2,522,449 

Datapoints# 14.99 9 23.91 3 446 

*absl2r is the absolute log2 ratio of the CNV.  # number of CGH array probes in the CNV. 918 

Table 2.  Cross platform verification results. Number of CNV calls that were verified and not verified. 919 

 Verification platform 

385K CGH 

array 

Illumina OvineSNP50 

BeadChip - cnvPartition 

Illumina OvineSNP50 

BeadChip - DNAcopy 

Sequence analysis ~ 

10X coverage 

Verified 17 (1.34%) 3 (0.04%) 101 (1.36%)  714 (61.34%) 

Not 

verified 

1,251 7,413 7,315 450 

Total 1,268 7,416 7,416 1,164 

 920 

Table 3.  Comparison between CNVRs observed in this study and CNVRs observed in the literature. 921 

Number of studies CNVR 

observed in 

Number of CNVR Number of these CNVR identified in this 

study (%) 

1  1,802 246 (13.7) 

2  255 82 (32.2) 

3  66 24 (36.4) 

4  20 16 (80.0) 

5  7 6 (85.7) 

6  4 4 (100) 
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 922 

Table 4.   Description of the pseudo-maximum likelihood derived mixture model for estimating copy 923 

number in sequence data.  924 

Copy number Distribution Mixture weights Mean Variance 

0 Half normal, 

centered on zero 

$� √2$"� "
�

� 

1 Normal $� 1
2 !� 

1
2 "��  

2 Normal 1 � $� � $� � $� � $� !� "�� 

3 Normal $� 3
2 !� 

3
2 "�� 

4 Normal $� 4
2 !� 

4
2 "�� 

 925 

 926 

Table 5.  Starting values of parameters estimated by pseudo-maximum likelihood. 927 

Variable Starting value Lower bound Upper bound 

!� !' -∞ ∞ 

"�� ")�� 0 ∞ 

"�� 1.5 0.01 ∞ 

$� 0.01 0 0.05 

$� 0.025 0 0.2 

$� 0.001 0 0.2 

$� 0.001 0 0.05 

 928 

 929 

 930 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2016. ; https://doi.org/10.1101/041475doi: bioRxiv preprint 

https://doi.org/10.1101/041475
http://creativecommons.org/licenses/by/4.0/


36 

 

Figure 1.  CNVR frequency across animals.  931 

Figure 2.  Number of CNVRs by chromosome length. Labels correspond to chromosome number. 932 

Figure 3. Cumulative density plot of the distances separating CNVRs. The red line reflects the 933 

observed pairwise distances between CNVRs, while the blue line reflects the simulated (expected if 934 

CNVRs are uniformly distributed in the genome) distances separating CNVRs. 935 

Figure 4. Selection of CGH array probes to cover OvineSNP50 BeadChip SNP positions. Two 936 

methods were used to select probe sets to cover SNPs. The first method (a) involved designing at 937 

least one probe to cover the SNP position, with two probes in flanking regions.  The second method 938 

(b) involved designing a probe within the 300bp region surrounding the SNP and two probes in 939 

flanking regions.  940 

 941 

Figure 5. Pedigree of International Mapping Flock (IMF) animals assayed on the Roche NimbleGen 942 

2.1M CGH array. Some animals (green) appear in more than one pedigree. Segment calls from 943 

animals IMF66, IMF91, IMF95, IMF108 and IMF112 (red) were removed from the analysis due to 944 

failed 2.1M CGH arrays. 945 

 946 

 947 
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