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Abstract 

Fluid intelligence is a crucial cognitive ability that predicts key life outcomes across the lifespan. 

Strong empirical links exist between fluid intelligence and processing speed on the one hand, and 

white matter integrity and processing speed on the other. We propose a watershed model that 

integrates these three explanatory levels in a principled manner in a single statistical model, with 

processing speed and white matter figuring as intermediate endophenotypes. We fit this model in a 

large (N=555) adult lifespan cohort from the Cambridge Centre for Ageing and Neuroscience (Cam-

CAN) using multiple measures of processing speed, white matter health and fluid intelligence. The 

model fit the data well, outperforming competing models and providing evidence for a many-to-one 

mapping between white matter integrity, processing speed and fluid intelligence. The model can be 

naturally extended to integrate other cognitive domains, endophenotypes and genotypes. 
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1.1 Introduction 
Fluid intelligence, or fluid reasoning, is a core feature of human cognition. It refers to the ability to 

solve novel, abstract problems that do not depend on task-specific knowledge (Blair, 2006; Carroll, 

1993; Deary, 2012; Horn and Cattell, 1966). In contrast to crystallized intelligence, which continues to 

improve across most of the lifespan, fluid intelligence shows strong age-related declines (Horn and 

Cattell, 1966; Salthouse, 2009). Understanding the causes of this decline is important for healthy 

ageing, as preserved fluid intelligence is strongly associated with independent day-to-day functioning 

(Tucker-Drob, 2011; Willis and Schaie, 1986), and is inversely related to mortality risk (Aichele et al., 

2015). At the other end of the lifespan, low fluid intelligence in adolescence predicts poor outcome in 

later life (Huepe et al., 2011) and is a risk factor for psychopathologies such as schizophrenia (Blair, 

2006; Snitz et al., 2006). However, our understanding of how this crucial cognitive ability relates to 

broader, mechanistic frameworks of cognition and the brain is limited. A promising line of research 

focuses on the relationships between fluid intelligence, processing speed and white matter 

organisation. Although intriguing, these empirical relationships are often interpreted in isolation, 

relating fluid reasoning to processing speed (e.g. Sheppard & Vernon, 2008), processing speed to 

white matter (e.g. Penke et al., 2010), or fluid intelligence to white matter (e.g. Haász et al., 2013), 

but never the three together. One unresolved question is therefore whether fluid intelligence, 

processing speed and white matter can be thought of as part of a single, hierarchical system.  

Here, we propose a statistical framework to examine this question, developed by formalizing 

a conceptual model taken from the literature on psychopathological constructs and their causes. This 

so-called ‘watershed model’ (Cannon and Keller, 2006) uses the metaphor of a river system to 

illustrate how complex behavioural traits can be seen as the downstream consequence of many small 

upstream (e.g., neural/genetic) contributions. From this perspective, the relationship between fluid 

intelligence (hereafter FI), processing speed (PS) and white matter (WM) is hierarchical, such that WM 

influences PS, which in turn affects performance on tests of FI. We show that this model naturally 

accommodates a wide and disparate range of empirical findings, integrates a series of relatively well-
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established findings into a single larger model, and, most importantly, can be formally tested using 

Structural Equation Modelling (SEM). We derive a variety of statistical predictions that follow from 

the watershed model, and use SEM to test these predictions empirically in a large (N=555), 

population-based sample of ageing adults (18-87 years, Cam-CAN). First, we examine the empirical 

evidence concerning FI, PS and WM. 

1.2 Processing speed, fluid intelligence and white matter 

Processing speed refers to the general speed with which mental computations are 

performed. It has been considered a central feature of higher cognitive functioning since the 

development of the first formalized models of (fluid) intelligence (Salthouse, 1982; Spearman, 1927). 

It shows comparatively steep age-related declines, similar to or even stronger than FI (Horn & Cattell, 

1966; Salthouse, 2000; Schaie, 1994), including in longitudinal samples (Deary and Der, 2005). 

Processing speed is a broad concept that has can be measured in a variety of ways (Salthouse, 2000). 

One common approach is to use a set of tasks with strict time-limits, and consider the shared 

variance across those tasks to reflect an individuals’ ability to perform cognitive tasks under time 

pressure (Babcock et al., 1997). Even purely physiological measures have been considered, such as 

the latency of neural evoked responses (Salthouse, 2000, Schubert et al., 2015). Other possibilities 

include the parameters estimated from response time distributions in a single task, such as the mean, 

standard deviation and exponential for an ex-gaussian distribution, or parameters such as drift rate 

and boundary separation in diffusion models (Matzke & Wagenmakers, 2009, Ratcliff, Smith, Brown, 

& McKoon, 2016). Here, we focus on the most basic and simple notions of processing speed, 

sometimes called psychomotor speed, namely the mean and standard deviation of RT distributions 

for simple tasks. 

The empirical association between PS and FI is one of the most robust findings in psychology 

(Sheppard and Vernon, 2008). This association holds across the lifespan (Salthouse, 1994), in both 

healthy elderly (Ritchie et al., 2014) and in the extremes of mental retardation (e.g. Kail, 1992). 

Longitudinal studies of either end of the lifespan show similar patterns. Dougherty and Haith (1997) 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2016. ; https://doi.org/10.1101/041368doi: bioRxiv preprint 

https://doi.org/10.1101/041368
http://creativecommons.org/licenses/by/4.0/


A WATERSHED MODEL FOR FLUID INTELLIGENCE5 

 

5 

 

showed that infant reaction time at 3.5 months predicts IQ several years later, and Fry and Hale 

(1996) showed in 214 children and adolescents how longitudinal changes in processing speed 

mediated changes in fluid intelligence and working memory. At the other end of the lifespan, declines 

in PS and FI show considerable correlations in old age, with estimates ranging from .53 (Zimprich & 

Martin, 2002) to .78 (Ritchie et al., 2014) . Similarly, a large longitudinal cohort study (Ghisletta, 

Rabbitt, Lunn, & Lindenberger, 2012) showed that a considerable portion of within-subject age-

related decline was shared between FI and PS. Although few studies have explicitly examined the 

temporal ordering of developmental changes, those that do generally find that declines in PS affect 

declines in FI and related cognitive abilities. For instance, Kail (2007) examined 185 children (age 8-

13) tested twice on multiple outcomes, and found that the best mediation model described a 

developmental cascade, wherein improvements in processing speed affected working memory which 

in turn enhanced reasoning. In older adults, Robitaille et al. (2013) showed in two separate cohorts 

that within-subject declines in processing speed mediated within-subject declines in multiple 

cognitive domains, including fluid reasoning. Finally, Finkel, Reynolds, McArdle and Pedersen (2007) 

used bivariate latent change score models in older adults to show that processing speed was a leading 

indicator of cognitive changes, including in abstract reasoning tasks. Together, these behavioural 

findings suggest a strong relationship between processing speed and fluid reasoning ability. 

The most common metric of PS is the central tendency, such as the mean or median, of RTs 

on a simple reaction time task. However, individual differences in the variability of RTs also relate to 

fluid reasoning ability (Rabbitt, 1993), such that less variable responses are associated with higher 

scores on fluid reasoning tasks. This ‘cognitive consistency’ in RTs has been shown to predict cognitive 

performance in elderly subjects beyond mean RT (MacDonald, Li, & Bäckman, 2009). Both the central 

tendency and variability of PS predict all-cause mortality (Batterham et al., 2014; Hagger-Johnson et 

al., 2014), supporting the idea that both are important and independent components of PS. The role 

of variability can be observed even on the purely neural level: A study using EEG in young adults 

(Euler et al., 2015) found evidence for the role of variability of neural responses, such that individuals 
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with more stable (less variable) responses to novel stimuli tended to have higher fluid reasoning 

ability.  

Recent work suggests that the proper conceptualisation of the relation between PS and FI is 

as a causal factor (e.g., Kail, 2000; Rindermann and Neubauer, 2004; Robitaille et al., 2013). The most 

influential causal account comes from Salthouse (1996), who suggested at least two mechanisms by 

which PS affects cognitive performance, namely the limited time mechanism and the simultaneity 

mechanism. The former suggests that in any timed task, slower speed of processing simply precludes 

the timely completion of cognitive operations, leading to poorer scores; the latter suggests that high 

PS is necessary to juggle mental representations simultaneously, in order to perform complex 

cognitive operations (see Burzynska et al., 2013, for neuroimaging evidence for this claim). More 

recent work (Schubert et al., 2015) used drift-diffusion and EEG modelling to show that there are 

multiple components to processing speed, and that these components play different causal roles in 

different cognitive tasks. In summary, nearly all of the papers reviewed above, either explicitly or 

implicitly, consider PS to be a ‘lower’, or more fundamental, mental process that is not identical to FI 

itself (see also Schubert et al., 2015). We can also go further down this presumed causal hierarchy to 

understand the possible determinants of PS. One such candidate is the structural organization of 

white matter tracts. 

Among the most influential studies showing the importance of white matter organisation are 

two papers by Penke and colleagues, who showed that the first principal component of fractional 

anisotropy (FA, a measure of white matter organization) predicted both information processing speed 

(Penke et al., 2010) as well as general intelligence (Penke et al., 2012). Further work has shown that 

decreased WM organisation has been associated with decreased PS both in healthy adults (Tuch et 

al., 2005; Penke et al., 2010) and in individuals suffering from clinical conditions associated with WM 

loss such as Multiple Sclerosis (Kail, 1997, 1998; Roosendaal et al., 2009; Segura et al., 2010; see 

Bennett & Madden, 2013, for a review). However, in a sample of 90 older adults, Yang, Bender, & Raz 

(2014) did not find strong associations between white matter organisation and reaction time 
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components derived from a diffusion model. WM organisation has also been associated with the 

variability of RTs in children (Tamnes et al., 2012), in healthy controls and preclinical Alzheimer’s 

dementia (Jackson et al. 2012), and decline in WM has been proposed as a key cause of age-related 

changes in cognition (O’Sullivan et al., 2001). This relationship between WM and performance 

variability has been found to strengthen with age (Fjell et al., 2011; Laukka et al., 2013; Lövdén et al., 

2013b). Other studies have found direct relationships between WM measures and FI (Haász et al., 

2013; Kievit et al., 2014) and specific neural (including white matter) structural correlates of intra-

individual variability (MacDonald et al., 2009, 2006). Similarly, lesions in WM predict age-related 

declines in mental speed (Rabbitt et al., 2007a). Assessing a broad set of cognitive and neural markers 

in a large, age-heterogeneous cohort, Hedden et al. (2014, p. 1) conclude that ‘The largest 

relationships linked FA and striatum volume to processing speed and executive function’.  

A critical link in our model is the behavioural consequence of the microstructural properties 

evident in the white matter structures, as they are presumed critical for signal transmission between 

disparate regions of cortex. Various mechanisms (although none demonstrated definitively) have 

been proposed to explain the relation between WM and PS. One hypothesis is that inefficient signal 

transmission weakens the signal in neural activity, and/or increases the background noise, ultimately 

leading to slower decisions (Kail, 1997; Rolls and Deco, 2015). While ageing is generally thought to be 

accompanied by reduced neuronal plasticity, a growing number of models have addressed the 

complex—and not uniformly depressing—possibility that age-related changes in brain-behaviour 

relationships are driven by shifting adaptations to this changing signal-to-noise ratio (Welford, 1984). 

Such approaches take as a premise the idea that aging reflects a progressive refinement and 

optimization of generative models used by the brain to predict states of the world (Moran et al., 

2014). In this context, observed reductions in axonal density in aging (Peters, 2009) may reflect long-

term pruning and adaptation. A related hypothesis that is gaining support is the proposal that age-

related demyelination affects propagation of action potentials (Bartzokis et al., 2010), an explanation 

consistent with slowing in patients with MS (Turken et al., 2008). Unlike MS, however, observations of 
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an age-related increase in dystrophic myelin are relatively rare in macaque microscopy studies, 

leading Peters (2009) to propose remyelination with shorter internodes as the cause of age-related 

slowing observed in neurophysiological data. Whilst much further research is needed, 

these mechanistic accounts help to explain the strong and consistent neurocognitive relationship 

between PS and WM (Bennett and Madden, 2014; Penke et al., 2010; Turken et al., 2008). Together 

this suggests a hierarchical relationship, where WM affects PS, which in turn affects FI. Below, we 

describe a model that can integrate these diverse findings. 

1.3 Watershed Model 
Our goal is to integrate the three explanatory levels (FI, PS and WM) into a single model that 

can address the range of empirical findings described above. This a general challenge in cognitive 

neuroscience, namely that of reductionism (Kievit et al., 2011a): How do we best relate the 

phenotype observed at the ‘higher’ level of measurement (e.g., scores on a test of fluid intelligence) 

to ‘lower’ levels of explanation (e.g., WM structure)? We next show how a theoretical model from the 

field of psychopathology can be translated into a testable psychometric model to achieve this goal.  

In psychopathology, single cause models for mental disorders such as schizophrenia were 

initially popular, but have not been successful: Despite being highly heritable and having various 

structural brain correlates, the search for single (or even a limited set of) genetic loci has not yielded 

candidates that explain more than a trivial percentage of the variance of the phenotypes of interest. 

Recently, the ‘watershed model’ proposed by Cannon and Keller (2006) has provided a conceptual 

framework to help understand the potential multiple determinacy between various explanatory levels 

in the study of mental disorders (see also Penke et al., 2007)1.  

                                                 
1 Note that this notion of a ‘watershed’ should not be confused with the term ’watershed’ as used in reference 
to differential cerebral blood perfusion and arterial beds in aging, e.g. Raz, (2005); Suter et al., (2002). 
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A simplified representation of the watershed model is shown in Figure 1. The central idea is 

that an observable phenotype can be thought of as the mouth of a river (denoted by “1” in the 

Figure), and is the end product of a wide range of small, causal, genetic influences (genotypes) that 

exert their influence through a series of intermediate endophenotypes (such as neural and cognitive 

variables). A crucial assumption in this model is that genetic influences do not directly affect the 

phenotype, but do so indirectly via endophenotypes. These endophenotypes are the hypothesized 

intermediate mechanistic steps between many small genetic influences that together exert 

considerable influence (the idea of many small genetic effects has been referred to as the Fourth Law 

of behavioural genetics, c.f. C. F. Chabris, Lee, Cesarini, Benjamin, & Laibson, 2015). Such a model 

allows us to integrate the disparate known endophenotypes as potentially independent upstream 

‘tributaries’ (denoted by “2a”-“2d”) that all contribute to the distal consequence (“1”). 

This model has a variety of conceptual benefits, including the fact that it naturally 

accommodates the constellations of antecedent causes that can contribute, independently, to some 

aggregate behavioural phenotype. This proposed causal heterogeneity explains the relative lack of 

Figure 1: A watershed model of psychopathology (adapted from Cannon & Keller, 2006). Point “1” represents the most 
complex phenotype, such as schizophrenia (or fluid intelligence for our purposes). Points “2a-2d” represent endophenotypes, such 
as lower-level behavioural consequences; points “3a-3g” represent the neural antecedents of those behavioural phenotypes. Points 
4a-4d represent hypothetical genetic influences (not measured here) 
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success of directly mapping phenotypes onto genetic markers: Given that there is inherent 

multiplicity in the phenotype, the path from genetic causes to phenotypic outcomes will be noisy, so 

large samples will be needed (see Ripke et al., 2014 for an illustration of the striking increase in 

variance explained once sample sizes are large enough to estimate many small effects).  

Cannon and Keller (2006, p. 274) derive from their model various empirical and conceptual 

predictions. These include that endophenotypes (intermediate causes) should be heritable, they 

should be associated with causes rather than effects, and numerous endophenotypes should affect a 

given construct. The model therefore predicts that a more efficient way of studying genetic causes is 

to focus on the endophenotypes of a disorder first, and then examine the genetic antecedents of 

those endophenotypes located further ‘upstream’. Moreover, endophenotypes are expected to vary 

continuously in the population and they should affect multiple disorders. We here adopt the 

watershed model to explain the relationship between fluid intelligence, processing speed and white 

matter by translating the watershed model from conceptual tool into a testable statistical model.  

In our representation, FI is the ‘mouth’ of the river, influenced by upstream endophenotypes 

of PS and WM. This implies a hierarchical relationship, such that greater WM organisation (3a-3h) 

affects PS (2a-2d), which in turn affects fluid intelligence (1). If we examine the predictions by Cannon 

and Keller described above, we can see that both the phenotype and the proposed endophenotypes 

are highly heritable - FI (Deary et al., 2010), PS (e.g. Vernon, 1989) and whole-brain FA (Chiang et al., 

2009) - yet there has been a notable lack of success in establishing replicable genetic markers for FI 

(Chabris et al., 2012). Recent work has shown how, under certain circumstances, reductionist 

hypotheses like that of Cannon and Keller can be translated to formal statistical models, such as 

structural equation models (SEM) of covariance patterns (Kievit, 2014; Kievit et al., 2011a, 2011b; 

Salthouse, 2011). Below, we show how the multiple predictions of the watershed model can be 

translated into statistical tests within a structural equation modelling (SEM) framework. 
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1.3.1 Greater upstream statistical dimensionality 

As one can see in Figure 1, upstream ‘tributaries’ represent partially independent influences on the 

phenotype. This means that if we move up the tributaries of the river and examine the statistical 

dimensionality of the variables at each level, we would expect the dimensionality of the covariance 

pattern between all variables at that level to increase. Although they likely share some environmental 

or genetic influences and so will be correlated to some degree, we expect that the upstream effects 

cannot be fully captured by a single summary statistic. More importantly, we expect these upstream 

effects to be partially independent, such that any one intermediate endophenotype in isolation will 

do worse than a broader set in terms of predicting the downstream outcome. 

1.3.2 Multiple realizability  

As we have seen above, the watershed model suggests that seemingly unitary constructs are 

nonetheless likely to have multidimensional antecedent causes. In other words, a single behavioural 

dimension such as intelligence is likely to have multiple neural determinants; a type of between-

individual degeneracy (Friston and Price, 2003). There is increasing support for such a many-to-one 

brain-behaviour mapping. For example, recent evidence suggests that differences in emotional states 

are better seen as a broad network of regions showing a different activation profile, rather than 

activity in individual regions in isolation mapping onto individual emotional states (Lindquist et al., 

2012). Similarly, many concurrent and partially independent neural properties determine individual 

differences in broad cognitive skills such as general intelligence (Kievit et al., 2012; Ritchie et al., 

2015b). In a SEM framework, this prediction means that variability in each endophenotype will make 

partially independent contributions to variability in the phenotype, in line with a so-called MIMIC 

model (Multiple Indicators, Multiple Causes; see Jöreskog and Goldberger, 1975; Kievit et al., 2012). 

1.3.3 Hierarchical dependence 

A defining characteristic of the watershed model is hierarchical dependence. That is, the influence of 

upstream causes are presumed to ‘flow through’ lower levels (endophenotypes). Statistically, this 

implies that there should be no residual, or direct, relationships between levels separated by a 
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purported endophenotype. In the present context, we hypothesize that the influence of white matter 

is indirect, namely through processing speed. In the SEM formalization of this hypothesis below, any 

direct paths between WM and FI will be a source of model misfit. Taken together, it is possible to 

capture all these statistical predictions in a single structural equation model. This model is a 

hierarchical version of the MIMIC model (shown graphically in Figure 6). This model assumes that a 

latent variable (here FI) represents the phenotypic endpoint. The unidimensionality of this phenotype 

is tested by fitting a confirmatory factor model to the various behavioural measures available (four 

sub-scores of the Cattell test in the present data). At the second level, we hypothesize that various 

measures of PS: a) cannot be captured by a single factor, b) provide partially independent predictions 

of the fluid intelligence, and c) the latent variable of FI ‘shields off’ all direct effects of speed measures 

on the observed Cattell scores. Likewise, the WM tracts should have partially independent influences 

on the PS variables, but there should be no direct paths to FI that would explain away the relation 

between PS and FI. The statistical predictions described above can either be tested as part of the full 

model such that violations will lead to model misfit, or by explicit testing of individual predictions 

using model comparison. We will fit a MIMIC model in stages, so as to build up to the full the 

watershed model, and examine whether the predictions at the various stages described above are 

supported by our data.  

2. Method and Experimental Procedures 

2.1 Sample 

A healthy, population-derived sample was collected as part of Phase 2 (“700”) of the Cambridge 

Centre for Ageing and Neuroscience (Cam-CAN), described in more detail in (Shafto et al., 2014). 

Exclusion criteria included low Mini Mental State Exam (MMSE) (24 or lower), poor hearing, poor 

vision, poor English (non-native or non-bilingual English speakers), self-reported substance abuse and 

current serious health conditions. Prior to analysis, we defined outliers as values for any variable that 

were more than 4 standard deviations from the mean (0.27% of all values) and included all 

participants with scores on all variables. The final sample contained 555 people, 274 female, age 
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approximately uniformly distributed across the age range 18-87 (M=53.96). Table 1 contains 

descriptives of the sample in terms of sex, basic cognitive function and health factors. Note that, 

because our sample is cross-sectional, the findings relate to individual differences that are compatible 

with the watershed model, which may be, but are not necessarily, the same as age-related changes 

within an individual (e.g. Hofer & Sliwinski, 2001). A subset of these data have been reported in (Kievit 

et al., 2014). The covariance matrix is in the Supplementary Table 1. The raw data and analysis code 

are available upon signing a data sharing request form (see http://www.mrc-

cbu.cam.ac.uk/datasets/camcan/ for more detail). As our sample included older participants, we 

report prevalence of common cardiovascular conditions in Table 1.  

Variable Mean (SD) 

Age 53.96 (18.27) 

MMSE 28.85 (1.37) 

    

  % 

Sex (female) 49.29 

Hypertension diagnosis 18.55 

Diabetes diagnosis 3.96 

Myocardial infarct 0.54 

Miscellaneous cardiovascular    

(Cardiac arrhythmia/palpitations/ irregular heartbeat)  7.21% 

 

 

2.2 Processing speed 

Processing speed reaction times on three different cued-response tasks: simple response time (SRT), 

choice response time (CRT) and audio-visual cued response time (AV). These tasks differed in their 

demand characteristics, such as the nature of the cue and the predictability of the stimulus, and so 

may tap different aspects of PS. The AV task in particular differed from the SRT and CRT in that 

participants were not explicitly instructed to respond as quickly as possible, so this variable captures 

the natural response time in the absence of time pressure. For procedural details, see Figure 2A-C 

and Shafto et al., 2014: p. 6 (for SRT and CRT) and p. 16 (for AV). We include the mean and standard 

Table 1: Sample descriptives of the N=555 sample. 
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deviation for all three tasks, leading to a total of 6 measures of. All six variables were scaled to a 

standard normal distribution, log transformed and inverted (1/RT), so that higher scores reflect 

speedier and more consistent responses respectively (henceforth: SRTspeed, CRTspeed, AVspeed, 

SRTcons, CRTcons and AVcons). 

 

2.3 Fluid intelligence 

FI was measured using the Cattell's Culture Fair, Scale 2, Form A (Cattell, 1971), administered 

according to the standard protocol. This is a pen-and-paper test, consisting of four subtests with 

different types of abstract reasoning tasks, including series completion, classification, matrices and 

conditions. These four subtests each yield a sum-score representing the total number of correct 

responses which was scaled to a standard normal distribution prior to further analysis. Figure 2d 

shows an example test item.  

2.4 White matter Organisation 

In order to assess how different white matter tracts contribute to different cognitive functions, we 

computed mean Fractional Anisotropy (FA) values in various regions of interest (ROIs). Nonetheless, it 

should be noted that FA is a complex measure, and the relationship between FA and white-matter 

health is not yet fully understood (Jones et al., 2013; Wandell, 2016). There are a number of 

alternative measures that can be derived from diffusion-weighted MR images, which avoid the 

Figure 2: Behavioural measurements. Simple RT (a), choice RT (b), AudioVisual RT (C) and Cattell (d) (fictional example item 
shown). 
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simplified single-tensor model, but the physiological validity of these is still under development 

(Tournier et al., 2011). A model focused on the contribution of the constituent physiological 

characteristics of white matter would be ideal for future applications of the watershed model, e.g. to 

test the complementary roles of axonal structure vs. myelin fraction (Caspers et al., 2015; Seehaus et 

al., 2015). Because our model does not make specific predictions for specific cellular constituents 

(e.g., water fraction, axonal diameter, myelin density), we favour the use of a simple tensor measure 

of diffusion organization, fractional anisotropy (FA). Most importantly, the vast majority of studies of 

white matter in healthy aging have used FA, and FA has been shown to be a comparatively reliable 

metric (Fox et al., 2012). For more detail on the white matter pipeline, see Appendix A. We computed 

mean FA for ten tracts as defined by the Johns Hopkins University white matter tractography atlas 

(Hua et al., 2008): The Uncinate fasciculus (UNC), superior longitudinal fasciculus (SLF), inferior 

Fronto-occipital fasciculus (IFOF), anterior thalamic radiations (ATR), forceps minor (FMin), forceps 

major (FMaj), cerebrospinal tract (CST), the inferior longitudinal fasciculus (ILF), ventral cingulate 

gyrus (CINGHipp) and the dorsal cingulate gyrus (CING) – see Figure 5A. 

 

2.5 SEM 

All models were fit using the package Lavaan (Rosseel, 2012) in R (R Development Core Team, 2016). 

Prior to model fitting, variables were scaled to a standard normal distribution and log transformed 

where necessary to increase normality. All models were fit using Maximum Likelihood Estimation (ML) 

using robust standard errors and report overall model fit assessed with the Satorra-Bentler scaled test 

statistic. Model fit was also assessed with the chi-square test, RMSEA and its confidence interval, the 

Comparative Fit index and the standardized root mean squared residuals (Schermelleh-engel et al., 

2003). We define good fit as follows: RMSEA<0.05 (acceptable: 0.05-0.08), CFI>0.97 (acceptable: 

0.95-0.97) and SRMR <0.05 (acceptable: 0.05-0.10) and report the Satorra-Bentler scaling factor for 

each model. Models are compared using a chi-square test when nested and using the AIC in other 

cases.  
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3. Results 

To examine the predictions of the watershed model, we will build up the full model, starting at the 

‘top’. First, we fit our measurement model, namely relating the latent variable FI to the four scores on 

the Cattell subtests. This model fit the data well: χ2 = 4.372 (N=555), df =2, p=0.112, RMSEA = 0.046 

[0.000  0.106], CFI = .996, SRMR = 0.011, Satorra-Bentler scaling factor=1.018, suggesting that 

performance could be captured by a single dimension, as predicted by the watershed model. As 

expected, scores on the latent variable showed steep age-related decline. A linear regression 

explained 43.97% of the variance (N=555, F(1,553)=435.8, p < 0.0001, adjusted R^2=43.97%) and a 

second-order polynomial explained (adjusted) 46.82% of the variance (N=555, F(2,552)=244.8, p < 

0.0001), with the AIC slightly favouring the polynomial (steeper decline in later life, AIClinear= 1163.74, 

AICpoly= 1135.82). Furthermore, a Breusch-Pagan test showed that residuals increased slightly with 

age, suggesting greater inter-individual variability in later life (BP= 18.658, df=2, p< 0.0001). Model fit 

and age-related differences are shown in Figure 3.  

Figure 3. A single-factor confirmatory factor analysis for Cattell fits data well (left). Linear and polynomial fit of age-related 
differences in fluid intelligence (right). 
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In order to establish the relationship between PS and FI, we first examined the dimensionality 

of the PS measures. Since the watershed model suggests that variables more ‘upstream’ may be 

partially independent, we first tested whether a single unidimensional model fit the six PS measures 

(see also Babcock, Laguna, & Roesch, 1997).  A single factor model (Supplementary Figure 1A) to the 

six PS measures showed poor fit χ2 = 696.67, df =9, p < 0.0001, RMSEA = 0.371 [0.349  0.394], CFI =  

0.549, SRMR =0.162, Satorra-Bentler scaling factor=1.08. We then examined whether a model with 

two latent variables (Supplementary Figure 1B), one for speed (measured by SRTspeed, CRTspeed, AVspeed) 

and one for consistency (SRTcons, CRTcons and AVcons) would fit better. This model also fit poorly: χ2 = 

663.940, df =8, p < 0.0001, RMSEA = 0.384 [0.361  0.408], CFI = 0.57, SRMR = 0.158, Satorra-Bentler 

scaling factor=1.13 as did an alternative model (Supplementary Figure 1C) with a latent factor for 

each task (SRT, CRT and AV) χ2 = 122.691, df =6, p < 0.0001, RMSEA = 0.187 [0.160  0.216], CFI = 

0.923, SRMR = 0.048, Satorra-Bentler scaling factor=1.084). This suggests that our measures of PS 

cannot be reduced to a single dimension. However, a more crucial question in the context of the 

watershed model is whether the upstream antecedents will make partially independent contributions 

to fluid intelligence. To test this hypothesis, we fit the simple MIMIC model shown in Figure 4.  

Figure 4. MIMIC model for Processing Speed and Fluid intelligence. Below age-related trajectories for each processing speed 
measure ranging from strong CRTspeed, r=-0.64) to absent (AVspeed, r=0.03, n.s..). Residual covariances between PS variables 
are allowed but not shown for simplicity. 
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This showed excellent fit to the data: χ2 = 18.456, df =20, P=.56, RMSEA =0.000 [0.000  

0.033], CFI = 1.00, SRMR =0.010, Satorra-Bentler scaling factor=1.034. Most strikingly, five out of the 

six PS variables (all but SRTspeed) predicted unique variance in fluid intelligence. Next, we compared 

this model, with all PS to FI pathways estimated freely, to more parsimonious competitors. First, a 

simple model where all PS to FI pathways were set to 0 fit considerably worse than a model with PS to 

FI pathways estimated freely (χ2Δ = 331.72, dfΔ =6, p<.0001). Second, a model where all PS to FI 

pathways were constrained to be equal (Supplementary Figure 1D) again fit worse than the full model 

(χ2Δ = 175.5, dfΔ =5, p<.0001), suggesting specificity of the pathways in line with the watershed 

model. Finally, we tested whether only estimating the strongest pathway (CRT-speed) and 

constraining the other pathways to 0 might suffice (Supplementary Figure 1E). This model too showed 

worse fit than estimating all six pathways freely (χ2Δ = 69.668, dfΔ =5, p<.0001). Together these 

comparisons show that the relationship between processing speed is many-to-one, and cannot be 

captured fully by a single pathway, supporting the suggestion by Salthouse (2000) that different 

indicators of PS may reflect ‘somewhat distinct processes’ (p. 41). Figure 4 shows the partially 

independent contributions of the PS measures to FI that together explain 58.6% of the variance in FI. 

Perhaps surprisingly, AVspeed had a modest negative path, suggesting that those with higher FI scores 

are those who had fast response speed when instructed to respond quickly, but slower response 

speed when not so instructed. These findings suggest that different tasks and instructions can tap into 

distinct underlying processes, and that individual differences in these processes combine to explain a 

considerable portion of individual differences in FI. In other words, the results suggest that mental 

speed is multifaceted and that different elements play complementary roles in supporting higher 

cognitive abilities (Schubert et al., 2015).  

Finally, the ‘lowest’ layer of our model pertains to the structural organization of WM as 

evidenced by the isotropy of water diffusion in major WM ROIs. The covariance of WM structure 

across individuals is informative because its dimensionality can suggest possible mechanisms driving 

individual differences, which has been a subject of contention in the literature (e.g. Kievit et al., 2014; 
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Lövdén, Laukka, et al., 2013; Ritchie, Bastin, et al., 2015). We fit SEMs to the mean FA of the ten, 

bilaterally averaged, WM tract ROIs (Figure 5a), which showed different sensitivities to age (Figure 

5B). A single factor model showed poor fit (χ2 = 422.182, df =35, p < 0.0001, RMSEA =0.141 [0.130  

0.153], CFI =0.819, SRMR =0.069, Satorra-Bentler scaling factor=1.138). The poor fit of the single-

factor model was not driven by differential ageing of the tracts (Figure 5B): We refit the model to the 

age-corrected residuals of the 10 tracts, but this also fit the data very poorly (χ2 = 454.917, df =35, 

P<0.0001, RMSEA =0.147 [0.136  0.158], CFI = .747, SRMR =0.079, Satorra-Bentler scaling 

factor=1.132). Inspection of the modification indices showed no simple modifications that would 

show better fit, suggesting covariance in white matter organization in our sample cannot be reduced 

to a single dimension. We now move to fitting the full model, including all levels simultaneously.   
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Figure 5. A) All ten white matter tracts used in our analysis, based on the JHU Atlas. B) Differential ageing of the 
ten tracts, correlations ranging from -0.71 (Forceps Minor) to -.10 (Ventral Cingulum, or CINGHipp). 
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3.1 Full model 

So far, the findings are in line with the predictions of the watershed model. We then fit the 

full watershed model (Figure 6), integrating fluid intelligence, PS and FA in a set of major WM tracts. 

By doing so, we can simultaneously test the hierarchical structure and many-to-one mapping imposed 

by our conceptual framework. In this model, we allow for residual covariances within, but not 

between levels. This model captures the assumption that all influence that WM tracts have on FI 

should go through the PS level (i.e., any residual covariance between WMI and the latent variable of 

FI, or any of the subtests, would be a source of misfit). Finally, any influence of PS on the Cattell 

subtests should go via the latent variable of FI. The full model, as shown in Figure 6 fits the data very 

well: χ2 = 103.201, df =60, P<0.001, RMSEA =0.036 [0.024  0.047], CFI = .986, SRMR =0.034, Satorra-

Bentler scaling factor=1.033. This suggests that the observed covariance pattern in our data is 

compatible with the statistical constraints imposed by the watershed model. In other words, that the 

data are compatible with the hypotheses that the three explanatory levels stand in a hierarchical 

relationship, such that WM determines PS, which in turn determines FI. Given that FA is known to be 

affected by vascular health, we also added four binary cardiovascular/general health conditions in 

Table 1 as covariates (affecting white matter FA). This had little effect on model fit, χ2 = 156.280, df 

=100, P<0.001, RMSEA =0.032 [0.022 0.041], CFI = .989, SRMR =0.039, Satorra-Bentler scaling 

factor=1.122, suggesting that the results from the full model did not simply reflect unmodelled 

differences in vascular health. 

A key prediction from the watershed model is that the relationship between upstream 

measures and downstream consequences is many-to-one. We can test this hypothesis by 

investigating, as we did previously when relating PS to FI, whether more parsimonious accounts of the 

relationship between WM and PS show better fit. First, we found that a model with all WM to PS 

pathways constrained to 0 showed poor fit (χ2Δ = 311.8, df Δ =60, p<0.001). Second, we tested a 

‘strongest path only’ model, estimating the Forceps Minor pathway but fixing all others to 0 

(Supplementary Figure 2A). This model too showed worse fit χ2Δ = 80.31, df Δ =54, p<0.05. Next, we 
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tested a ‘white matter tract specificity’ model. Here we allow the effect of white matter to vary 

between tracts, but to be equal across the six processing speed measures (Supplementary Figure 2B). 

This model also fit worse, χ2Δ = 142.76, df Δ =40, p<0.001). Finally, we tested a ‘processing speed 

specific’ model, in which the effects were allowed to differ across processing speed measures, but 

constrained to be equal for each tract (Supplementary Figure 2C). This model again showed poorer fit 

than the full model (χ2Δ = 142.45, df Δ =54, p<0.001). 

Finally, to establish that the fit of the full model was not merely a consequence of some more 

general property of the covariance matrix, we performed control analyses to test the nature of the 

hierarchical relationship. Firstly, we inverted the two lower levels, such that PS affected WM 

organisation which in turn directly affected FI (again allowing for residual covariances between all 

WM tracts, but precluding direct influence between PS and fluid intelligence). The original watershed 

model fit the data considerably better (AICdiff= 224.28). Secondly, because there are more WM 

Figure 6: Full watershed model. Significant parameters are shown in green and red, R-squared is represented as the degree of 
shading of the variables. Residual covariances between processing speed variables and white matter tracts are allowed, but not 
shown for simplicity. See Supplementary Table 1 for the full covariance matrix, and Supplementary Table 2 for the unstandardized 
parameter estimates and se’s. 
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variables than PS variables (which might affect model comparisons), we exhaustively compared all 

210 combinations of 6 tracts (to match the number of PS variables) to an inverted model with the 

same subset of tracts. In every model comparison, the watershed model outperformed the inverted 

model (AICdiff ranged from 141.76 to 264.85 in favour of the watershed model). Again, including 

cardiovascular factors as WM covariates had little effect, with the watershed model being preferred 

to the inverted model in every combination (AICdiff ranged from 150.41 to 253.03 in favour of the 

watershed model).  

 One notable observation was that the strongest prediction of PS was WM organisation in the 

Forceps Minor (also known as the anterior forceps, which passes through the genu of the corpus 

callosum). This variable explained significant amounts of variance in five of the six response time 

measures. Moreover, this relationship was strongest for the most ‘executive’ of PS variables, the 

speed and consistency of the Choice RT task, in line with previous findings that suggest an important 

role for prefrontal WM in such tasks (Davis et al., 2009). In fact, inspection of the modification indices 

suggested a possible residual, direct pathway from the Forceps Minor to FI, and adding this pathway 

did indeed lead to improved fit (χ2Δ = 36.297, dfΔ =1, p<0.001). This suggests the possibility of a 

cognitive endophenotype between white matter and FI that was not captured by our PS measures. A 

likely candidate for this endophenotype to explore in future work is working memory capacity (e.g. 

Fry & Hale, 1996). Importantly however, adding this direct pathway did not affect (e.g. render non-

significant) the existing PS to FI paths, supporting an independent pathway rather than a violation of 

the proposed hierarchy. 

The second strongest effect was from the cortico-spinal tract, which affected three speed 

measures above and beyond the variance already captured by Forceps Minor (see also Duering et al., 

2013, and Lövdén et al., 2014). Together, these findings provide significant support for the watershed 

model: white matter, processing speed and fluid intelligence stand in a hierarchical, many-to-one 

relationship that requires measuring a broad spectrum of variables at each explanatory level.  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2016. ; https://doi.org/10.1101/041368doi: bioRxiv preprint 

https://doi.org/10.1101/041368
http://creativecommons.org/licenses/by/4.0/


A WATERSHED MODEL FOR FLUID INTELLIGENCE24 

 

24 

 

4. Discussion 

In our population-based, age-heterogeneous sample, we found strong evidence for a hierarchical 

relationship between fluid intelligence, processing speed and white matter. Specifically, individual 

differences in WM anatomy predicted individual differences in processing speed, which in turn 

predicted over 58% of the variance in fluid intelligence scores. This model performed significantly 

better than control models that inverted these explanatory levels, or models that imposed equal or 

summary effects between levels. This watershed model is based on theoretical considerations, is in 

line with a wealth of empirical evidence, and provides an overarching framework for modelling causal 

relationships. All statistical predictions derived from the watershed model were supported by our 

data. First, our outcome measure (fluid reasoning) fit a single factor model, whereas no low-

dimensional models fit for either PS or WM. Second, there was evidence for a many-to-one mapping, 

such that multiple individual variables at the processing speed and WM levels explained unique 

variance in higher explanatory levels. Third, the overall model fit significantly better than various 

alternatives, providing evidence for hierarchical dependency. These findings have important 

implications for both the understanding of age-related declines in intelligence, and for the 

proscriptive ability of cognitive neuroscience to potentially inform successful interventions within 

aged communities. We expand on the findings and implications below. 

Five out of the six processing speed measures predicted unique variance in fluid intelligence, 

supporting the hypothesis that processing speed is a multidimensional construct, and that these 

subtle aspects are important for understanding higher, abstract cognitive abilities. Similarly for WM, 

and in line with recent work (Lövdén et al., 2013a), we found that individual differences in WM are 

multidimensional, and that these different dimensions have partially independent predictions for 

processing speed. The strongest influence was that of the Forceps Minor, which predicted five distinct 

processing speed measures, with the Corticospinal Tract and the Inferior Fronto-Occipital Fasciculus 

also explaining considerable variance in PS measures. In contrast to views that aging represents a 

monolithic decline, the current findings support the idea that distinct brain regions and distinct 
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cognitive abilities change in different ways, and that only models which strive to incorporate this 

multiplicity in their explanations of age-related decline can capture the entirety of age-related 

processes (Andrews-Hanna et al., 2007; Kievit et al., 2014; Lövdén et al., 2014; Tucker-Drob, 2011). 

These findings may have implications for the design and implementation of cognitive training 

interventions. The watershed model suggests that transfer to other cognitive domains (see also 

(Taatgen, 2013) may only be achieved if the intervention is of sufficient length and intensity to affect 

the entire hierarchy of relationships, including the mapping of lower processing speed to higher 

cognitive processes. Such a suggestion is supported by work showing that white matter supports 

many distinct cognitive functions (Burzynska et al., 2013). For example, to truly improve fluid 

reasoning and not just observed scores (Hayes et al., 2015), cognitive training would have to be of 

such duration that lower levels (such as processing speed and WM) are also measurably affected 

(Keller and Just, 2009; Scholz et al., 2009), which can then generalize to other domains (Lövdén et al., 

2010a). Behavioural evidence for such a pattern was found by Edwards et al. (2002), who showed 

transfer of speed of processing training to multiple cognitive domains in older adults. Additional 

evidence for this possibility comes from study by Schmiedek et al. (2010) who observed modest 

cognitive transfer as well as white matter microstructural change (Lövdén et al., 2010b) after a high 

intensity (100 day) cognitive training. Notably, the positive effects remained for up to two years 

(Schmiedek et al., 2014). 

In addition to the empirical findings reported here, there are methodological advantages to 

implementing this model. By visualizing the full model, including statistical quantification of the 

strengths of association such as R2, it immediately emphasizes not just which ties are strong and well-

established, but also shows where our knowledge is lacking. For example, not all variance can be 

explained in either fluid reasoning or processing speed (see also Rabbitt et al., 2007b), suggesting we 

need to explore other metrics of processing speed (e.g. inspection time, or digit-symbol substitution), 

additional cognitive determinants (e.g. working memory; Engle, Tuholski, Laughlin, & Conway, 1999; 

Fry & Hale, 1996), and additional neural markers such as prefrontal activity (e.g. Christoff et al., 2001), 
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and structure (Waltz et al., 1999; Woolgar et al., 2010), grey matter indices (Kievit et al., 2014; Stuss 

et al., 2003) or additional WM metrics such as MD and AD (Tamnes et al., 2012) to obtain a more 

complete picture. 

 One limitation of the model as implemented here is that our sample is cross-sectional, not 

longitudinal. This means that although we can model the extent to which individual differences are in 

line with the watershed model, but we cannot make claims concerning intra-individual changes over 

the lifespan (Raz & Lindenberger, 2011; Salthouse, 2011, Kievit et al., 2013). To truly get at the 

developmental dynamics, it would be necessary to follow people over time, most crucially during the 

critical periods of adolescence and later-life aging. The watershed model would predict that, at 

sufficient temporal resolution, developmental changes in white matter organisation would precede 

changes in processing speed, which in turn precede changes in fluid reasoning. A second limitation is 

the selection of tasks. Although those we included cover four domains of fluid reasoning (series 

completions, odd-one-out, matrices and topology), they are all subtests of a single test. Ideally, a 

model should include additional fluid reasoning tasks (such as Raven’s Matrices) to capture a broader 

spectrum of reasoning abilities. Similarly, all our processing speed measures focus on response time, 

where a broader spectrum of tasks tapping processing speed (e.g. inspection time or digit-symbol 

substation or diffusion model parameters, cf. Deary & Ritchie, 2016; Yang et al., 2014) would allow for 

even more detailed investigation of the key hypotheses tested here, as would expanding the range of 

white matter metrics to include other measures of diffusivity and measures of magnetisation transfer 

(e.g. Penke et al., 2012; Yang et al., 2014).  

 In summary, the watershed model provides a powerful conceptual framework that organizes 

our knowledge and generates testable models of the expected covariance patterns within and across 

individuals. A strength of the model is that it naturally accommodates extensions in both ‘directions’. 

For example, findings in this model could be integrated with the study of other, even broader 

phenotypes. One notable and important extension of the model would be the inclusion of long- and 

short-memory measures, or measures of attention, which assess both an important aspect of higher 
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functioning and also are notable in their age-related loss. By integrating multiple hierarchical models 

the interrelationships between cognitive phenotypes may become clearer. More ambitiously, it may 

be possible to integrate a model fit in a sample like ours with a larger study of psychopathological 

disorders known to be associated with impairments to cognitive abilities similar to fluid intelligence 

(e.g. schizophrenia, Snitz et al., 2006).  

Although we here do not include the ‘lowest’ level of the watershed model, namely genetic 

effects, recent evidence from two large neuroimaging and genetic samples shows striking 

convergence with the predictions that follow from the watershed model with respect to white matter 

and processing speed. Kochunov et al. (2016) use quantitative genetic models to show that, in two 

independent samples (N=145 and N=481), 'Quantitative genetic analysis demonstrated a significant 

degree to which common genes influenced joint variation in FA and brain processing speed.' (p.190), 

and conclude that ‘specific genes influencing variance in FA values may also exert influence over the 

speed of cognitive information processing’ (p. 19). This overlap is precisely what one would expect 

based on the conceptual framework presented here. 

The advent of larger, multimodal neuroimaging cohorts will allow us to integrate previously 

isolated empirical findings into larger explanatory models, thereby mapping the mechanistic 

pathways in increasing detail. Ultimately, mapping the full hierarchy from genotypes to phenotypes 

may provide novel insights into the cascade of developmental effects on complex cognitive abilities in 

health and disease. 
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age cattell1 cattell2 cattell3 cattell4 SRTspeed SRTcons CRTspeed CRTcons AVspeed AVcons ATR CST CING CINGHipp FMaj FMin IFOF ILF SLF UNC 

age 334.0514 -10.2549 -9.36614 -10.8366 -8.75185 -6.32071 -7.61586 -11.3662 -10.4928 0.614443 -3.26972 -7.61455 -5.1145 -2.92023 -1.9006 -5.16363 -12.0934 -9.14884 -7.82955 -5.91601 -6.31008 

cattell1 -10.2549 1.008516 0.525742 0.634577 0.552186 0.278308 0.34254 0.537375 0.528172 -0.08106 0.122258 0.315279 0.17419 0.127317 0.096505 0.204971 0.419928 0.35834 0.293436 0.227084 0.259104 

cattell2 -9.36614 0.525742 0.976242 0.564852 0.511104 0.248089 0.315461 0.502861 0.477232 -0.05423 0.147565 0.294938 0.244512 0.135062 0.166594 0.122581 0.372896 0.311892 0.233897 0.240043 0.204627 

cattell3 -10.8366 0.634577 0.564852 0.982144 0.538095 0.276586 0.371694 0.50264 0.512145 -0.0495 0.161466 0.335607 0.215077 0.146657 0.105157 0.203382 0.46767 0.380358 0.310533 0.259658 0.308776 

cattell4 -8.75185 0.552186 0.511104 0.538095 0.991546 0.242004 0.313125 0.4755 0.485654 -0.05945 0.160406 0.309525 0.200693 0.15918 0.085073 0.152919 0.3997 0.316838 0.246517 0.22572 0.24521 

SRTspeed -6.32071 0.278308 0.248089 0.276586 0.242004 0.916255 0.635715 0.526525 0.335243 0.28062 0.260556 0.214907 0.196732 0.142647 0.060728 0.133269 0.327474 0.258725 0.219337 0.205932 0.192378 

SRTcons -7.61586 0.34254 0.315461 0.371694 0.313125 0.635715 0.910692 0.494334 0.426512 0.117797 0.226462 0.272787 0.191679 0.165075 0.065631 0.126915 0.365904 0.281843 0.238493 0.23145 0.208202 

CRTspeed -11.3662 0.537375 0.502861 0.50264 0.4755 0.526525 0.494334 0.920998 0.744841 0.059523 0.225533 0.367568 0.230475 0.171736 0.086895 0.215377 0.493354 0.406352 0.320487 0.282275 0.282191 

CRTcons -10.4928 0.528172 0.477232 0.512145 0.485654 0.335243 0.426512 0.744841 0.923351 -0.00754 0.207365 0.361796 0.152616 0.203876 0.068002 0.184593 0.462903 0.378202 0.317319 0.252321 0.295929 

AVspeed 0.614443 -0.08106 -0.05423 -0.0495 -0.05945 0.28062 0.117797 0.059523 -0.00754 0.953141 0.650712 -0.01655 0.054487 0.06025 0.014313 0.011221 0.015212 0.033963 0.024775 0.023844 -0.02542 

AVcons -3.26972 0.122258 0.147565 0.161466 0.160406 0.260556 0.226462 0.225533 0.207365 0.650712 0.873757 0.163322 0.12686 0.139782 0.049874 0.103675 0.204707 0.190048 0.12005 0.149826 0.1042 

ATR -7.61455 0.315279 0.294938 0.335607 0.309525 0.214907 0.272787 0.367568 0.361796 -0.01655 0.163322 0.890484 0.240021 0.400037 0.077276 0.208996 0.560993 0.570611 0.36261 0.424691 0.460745 

CST -5.1145 0.17419 0.244512 0.215077 0.200693 0.196732 0.191679 0.230475 0.152616 0.054487 0.12686 0.240021 0.808179 0.244631 0.312649 0.124764 0.280685 0.317736 0.305891 0.372024 0.195309 

CING -2.92023 0.127317 0.135062 0.146657 0.15918 0.142647 0.165075 0.171736 0.203876 0.06025 0.139782 0.400037 0.244631 0.850662 0.116428 0.093792 0.431222 0.370338 0.246405 0.404661 0.411377 

CINGHipp -1.9006 0.096505 0.166594 0.105157 0.085073 0.060728 0.065631 0.086895 0.068002 0.014313 0.049874 0.077276 0.312649 0.116428 0.92232 0.173318 0.156618 0.127062 0.256132 0.2293 -0.01222 

FMaj -5.16363 0.204971 0.122581 0.203382 0.152919 0.133269 0.126915 0.215377 0.184593 0.011221 0.103675 0.208996 0.124764 0.093792 0.173318 0.786461 0.311678 0.349728 0.329825 0.203632 0.284242 

FMin -12.0934 0.419928 0.372896 0.46767 0.3997 0.327474 0.365904 0.493354 0.462903 0.015212 0.204707 0.560993 0.280685 0.431222 0.156618 0.311678 0.860789 0.615351 0.511213 0.47517 0.48335 

IFOF -9.14884 0.35834 0.311892 0.380358 0.316838 0.258725 0.281843 0.406352 0.378202 0.033963 0.190048 0.570611 0.317736 0.370338 0.127062 0.349728 0.615351 0.768242 0.595994 0.522629 0.588434 

ILF -7.82955 0.293436 0.233897 0.310533 0.246517 0.219337 0.238493 0.320487 0.317319 0.024775 0.12005 0.36261 0.305891 0.246405 0.256132 0.329825 0.511213 0.595994 0.792123 0.505552 0.377276 

SLF -5.91601 0.227084 0.240043 0.259658 0.22572 0.205932 0.23145 0.282275 0.252321 0.023844 0.149826 0.424691 0.372024 0.404661 0.2293 0.203632 0.47517 0.522629 0.505552 0.703961 0.388659 

UNC -6.31008 0.259104 0.204627 0.308776 0.24521 0.192378 0.208202 0.282191 0.295929 -0.02542 0.1042 0.460745 0.195309 0.411377 -0.01222 0.284242 0.48335 0.588434 0.377276 0.388659 0.941481 

Supplementary Table 1: Full covariance matrix. 
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Parameter estimate se 

 
Parameter estimate se 

gf=~cattell1 0.50133 0.03070 
 

CRTcons~ATR 0.10967 0.05019 

gf=~cattell2 0.46154 0.02903 
 

CRTcons~CST 0.00408 0.04258 

gf=~cattell3 0.50836 0.02939 
 

CRTcons~CING -0.05019 0.04596 

gf=~cattell4 0.45607 0.02765 
 

CRTcons~CINGHipp -0.01278 0.04102 

gf~SRTspeed -0.05160 0.08572 
 

CRTcons~FMaj -0.00994 0.03940 

gf~SRTcons 0.21473 0.07838 
 

CRTcons~FMin 0.41584 0.06121 

gf~CRTspeed 0.58450 0.12388 
 

CRTcons~IFOF 0.06772 0.09115 

gf~CRTcons 0.45310 0.10639 
 

CRTcons~ILF 0.08362 0.06607 

gf~AVspeed -0.40707 0.08521 
 

CRTcons~SLF -0.08379 0.06589 

gf~AVcons 0.32510 0.08505 
 

CRTcons~UNC 0.02082 0.05591 

SRTspeed~ATR -0.01532 0.06102 
 

AVspeed~ATR -0.10657 0.07467 

SRTspeed~CST 0.13216 0.04895 
 

AVspeed~CST 0.05214 0.05024 

SRTspeed~CING -0.05454 0.04841 
 

AVspeed~CING 0.11468 0.05138 

SRTspeed~CINGHipp -0.04206 0.04479 
 

AVspeed~CINGHipp -0.01839 0.04624 

SRTspeed~FMaj 0.01136 0.04509 
 

AVspeed~FMaj 0.00912 0.04977 

SRTspeed~FMin 0.33476 0.06922 
 

AVspeed~FMin -0.03167 0.07041 

SRTspeed~IFOF 0.03230 0.10333 
 

AVspeed~IFOF 0.20781 0.10469 

SRTspeed~ILF -0.00097 0.06929 
 

AVspeed~ILF -0.03193 0.07308 

SRTspeed~SLF 0.01050 0.06227 
 

AVspeed~SLF -0.03892 0.06643 

SRTspeed~UNC -0.00066 0.05990 
 

AVspeed~UNC -0.13510 0.05845 

SRTcons~ATR 0.06517 0.05725 
 

AVcons~ATR -0.01377 0.06324 

SRTcons~CST 0.10191 0.04260 
 

AVcons~CST 0.05797 0.04756 

SRTcons~CING -0.06104 0.04939 
 

AVcons~CING 0.05048 0.05126 

SRTcons~CINGHipp -0.03547 0.04159 
 

AVcons~CINGHipp -0.00933 0.04669 

SRTcons~FMaj -0.01233 0.04430 
 

AVcons~FMaj 0.04584 0.04870 

SRTcons~FMin 0.36707 0.06678 
 

AVcons~FMin 0.13174 0.06671 

SRTcons~IFOF -0.01815 0.09662 
 

AVcons~IFOF 0.24800 0.09819 

SRTcons~ILF 0.01698 0.06497 
 

AVcons~ILF -0.14182 0.07040 

SRTcons~SLF 0.02887 0.06062 
 

AVcons~SLF 0.03291 0.07023 

SRTcons~UNC -0.00483 0.05895 
 

AVcons~UNC -0.12571 0.05655 

CRTspeed~ATR 0.06524 0.04813 
    CRTspeed~CST 0.10411 0.04112 
    CRTspeed~CING -0.14056 0.04629 
    CRTspeed~CINGHipp -0.02453 0.04053 
    CRTspeed~FMaj 0.02173 0.03944 
    CRTspeed~FMin 0.47897 0.06044 
    CRTspeed~IFOF 0.17490 0.08824 
    CRTspeed~ILF -0.04620 0.06300 
    CRTspeed~SLF -0.02702 0.06140 
    CRTspeed~UNC -0.04108 0.05723 
    

Supplementary Table 2: Unstandardized parameter estimates and SE for the model shown in Figure 6. =~ 
denotes factor loadings, ~ denote structural paths. 
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Appendix A 

Estimating WM ROIs 

Diffusion-weighted images (DWI) were acquired at the MRC Cognition and Brain Sciences 

Unit, using a 3T Siemens TIM Trio MRI scanner, and a 32-channel head coil. A twice-refocused spin-

echo sequence was used to minimise eddy-currents, with 30 uniformly spaced gradient directions for 

each of two b-values (1000 and 2000 s/mm2), and three non-diffusion weighted images (b-value = 0). 

Other imaging parameters were: TR=9100ms, TE=104ms, 2x2x2mm3 resolution, FoV 192x192mm2, 66 

axial slices and GRAPPA acceleration factor of 2. A structural MPRAGE was also acquired for each 

participant (see Shafto et al. (2014) for sequence details). Traditionally, DWI data is motion corrected 

at the postacquisition level by using image registration techniques to co-register each diffusion-

weighted image to the first acquired b=0 image. However, as discussed in Ben-Amitay et al. (2012), 

when high b-values are used, this technique will fail to correct for distortions and motion, and may 

introduce other artefacts. For this reason, we did not apply registration-based motion correction to 

the DWI data in this study. Detection and exclusion of outliers was performed at the analysis level to 

avoid including datasets affected by other artefacts and distortions. All pre-processing and modelling 

of MRI data was performed using a combination of functions from FSL version 5.0.8 (Jenkinson, 

Beckmann, Behrens, Woolrich, & Smith, 2012), SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/), and custom scripts written in C and Matlab, 

integrated in the Automatic Analysis (aa) package (Cusack et al., 2014). After removal of non-brain 

tissue, a non-linear diffusion tensor model was applied to the DWI data. Non-linear fitting of the 

diffusion tensor provides better noise modelling than standard linear model fitting, resulting in more 

accurate and un-biased estimates of the diffusion tensor and its different metrics (Jones & Basser, 

2004). The diffusion tensor’s eigensystem was used to compute the fractional anisotropy (FA) at each 

voxel. The FA maps were then spatially normalised into a standard stereotactic space as follows: 

firstly, the average of the three b=0 images for each subject was coregistered to their MPRAGE; 

secondly, the MPRAGE images were coregistered across participants to a sample-specific template 

using DARTEL (Ashburner, 2007), and the transformations so derived were used to warp each 

participant’s images into standard MNI space, including their FA maps. The resulting FA images in MNI 

space were smoothed with a 1mm FWHM Gaussian kernel to reduce residual interpolation errors.  

 

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 

95–113.http://doi.org/10.1016/j.neuroimage.2007.07.007 

Ben-Amitay, S., Jones, D. K., & Assaf, Y. (2012). Motion correction and registration of high b-

valuediffusion weighted images. Magnetic Resonance in Medicine, 67(6), 1694–702. 

http://doi.org/10.1002/mrm.23186 

Cusack, R., Vicente-Grabovetsky, A., Mitchell, D. J., Wild, C. J., Auer, T., Linke, A. C., & Peelle, J. 

E.(2014). Automatic analysis (aa): efficient neuroimaging workflows and parallel processing using 

Matlab and XML. Frontiers in Neuroinformatics, 8, 90. http://doi.org/10.3389/fninf.2014.00090 

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. 

NeuroImage, 62(2), 782–90. http://doi.org/10.1016/j.neuroimage.2011.09.015 

Jones, D. K., & Basser, P. J. (2004). “Squashing peanuts and smashing pumpkins”: how noise 

distorts diffusion-weighted MR data. Magnetic Resonance in Medicine, 52(5), 979–93. 

http://doi.org/10.1002/mrm.20283 
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Supplementary figures and Captions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1. Competing models for processing speed (A-E). A: unidimensional model of PS. B: Separate latent 
variables for speed and consistency. C: A latent variable for each task. D: An equality constrained model, where the effect of each 
PS variable is constrained to be equal. E: A model where only the strongest effect is estimated freely, all others constrained to be 
zero. All models fit worse than the freely estimated model reported in the text. For models D and E, residual covariance between 
PS variables is allowed but not shown for clarity. 
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Supplementary Figure 2. Competing models for the relationship between white matter integrity and processing speed. A: ‘Strongest 
only’ model, where the strongest standardized path (Forceps minor to PS) is estimated freely, but all others constrained to be zero. B 
White matter tract specific model: the effect of each WM tract is constrained to be equal across PS, but can vary between tracts. C: 
Processing speed specific model: The effect of white matter is allowed to vary across processing speed domains, but presumed to be 
equal for each tract. All models fit worse than the freely estimated model reported in the text. Note: Residual covariance between PS 
variables and WM tracts are allowed but not shown for clarity. 
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