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ABSTRACT 

Despite many successes of genome-wide association (GWA) studies, known susceptibility 

variants identified by GWAS have the modest effect sizes and we met noticeable skepticism 

about the risk prediction model building with large-scale genetic data. However, in contrast 

with genetic variants, family history of diseases has been largely accepted as an important risk 

factor in clinical diagnosis and risk prediction though; complicated structures of family history 

of diseases have limited their application to clinical use. Here, we develop a new method which 

enables the incorporation of general family history of diseases with the liability threshold model 

and a new analysis strategy for risk prediction with penalized regression incorporating large-

scale genetic variants and clinical risk factors. An application of our model to type 2 diabetes 

(T2D) patients in Korean population (1846 cases out of 3692 subjects) demonstrates that SNPs 

accounts for 28.6% of T2D’s variability and incorporation of family history leads to additional 

improvement of 5.9%. Our result illustrates that family history of diseases can have an 

invaluable information for disease prediction and may bridge the gap originated from missing 

heritability. 
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INTRODUCTION 

Even though some significant results from genome-wide association studies (GWAS) have 

been successfully translated into clinical utility1, many studies showed that genetic screening 

for the prediction of complex diseases had currently little value in clinical practice2. For 

example, heritability estimates of type 2 diabetes (T2D) from twin and familial studies ranged 

from 40% to 80%3,4. However, the estimated proportions of heritability explained by known 

susceptibility variants of T2D have been from 10% to 27.93%, and it indicates that most 

heritability is still unexplained5-7. In addition to this so-called ‘missing-heritability’ issue, 

GWAS-based common variants tend to mildly predispose to common disease8, which generates 

some doubt about clinical utility of GWAS findings to risk assessment in clinical care9. 

 

Alternatively, family history reflects genetic susceptibility, and also interactions between 

genetic, environmental, cultural, and behavioral factors10,11. Therefore, it has been repeatedly 

addressed that the incorporation of family history of diseases to the risk prediction model might 

implicitly cover effects of uncovered genetic risk factors and shared gene-environment 

interaction12,13, and thus it has been often expected as an important risk factor in clinical 

assessment13.  

 

There have been many investigations for disease risk prediction with large-scale genetic 

data and family history of diseases. Most popular approaches for disease risk prediction are 

based on logistic regression with genotype scores. With train set, regression coefficients of 

some significantly associated SNPs14 are calculated and sums of the weighted genotype scores 

with their regression coefficients are incorporated as a single covariate to the logistic regression 

for test set15. However the accuracy of such disease risk prediction models has been much lower 

than that of expected from the heritability estimates. To overcome the controversy over 

potential clinical usage of GWAS findings, several approaches have been proposed to include 

a large number of SNPs into the prediction model: using penalized regression methods16,17 and 

random effects model18. However, these attempts still have several limitations. For penalized 

approaches, computational intensity linearly or quadratically increases with the number of 

SNPs16 and thus the accuracy of the prediction model with penalized regression depends on the 

initial feature screening step because certain number of SNPs has been chosen from the 

marginal effects of SNPs and joint effects of SNPs are ignored for feature selection. Speed et 

al solved this problem with a random effect model for linear regression where disease statuses 

are considered as continuous response variable. In such a case the substantial bias can be 

observed if the probability of being affected is very small or large18. 

 

In this report, we propose a new disease risk prediction model with penalized regression 

with following features: (i) a certain number of SNPs is selected with best linear unbiased 

prediction, (ii) conduct the penalized logistic regression analyses using both SNPs and clinical 

variables, and (iii) provide a new method to incorporate the general family history of diseases. 

However, in spite of their importance, familial relationships of relatives with known disease 

statuses are usually heterogeneous between subjects, and thus they were limitedly utilized for 

disease prediction model. An application of our model to type 2 diabetes (T2D) patients in 

Korean population (1846 cases out of 3692 subjects) demonstrates that SNPs accounts for 28.6% 

of T2D’s variability and incorporation of family history leads to additional improvement of 

5.9%. Our result illustrates that family history of diseases can have an invaluable information 

for disease prediction and may bridge the gap originated from missing heritability. 

METHODS 

Evaluating posterior mean of disease risk of an subject using family history 

We assume that genotypes are not used to estimate posterior mean of disease risk and 

environmental effects are known. We started our model by evaluating posterior mean of disease 

risk using the standard liability threshold model19. We assume that disease statuses are 
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determined by the unobserved liabilities (denoted as 𝐿) and if they are larger than a threshold 

T, which is determined by the prevalence, he/she becomes affected and they are normally 

distributed. In this section, we let 𝒀𝑖 = (𝑌𝑖0
, 𝑌𝑖1

, … , 𝑌𝑖𝑛−1
)

𝑡
, 𝑳𝑖 = (𝐿𝑖0

, 𝐿𝑖1
, … , 𝐿𝑖𝑛−1

)
𝑡
,  and 

𝒁𝑖 = (𝑍𝑖0
, 𝑍𝑖1

, … , 𝑍𝑖𝑛−1
)

𝑡
 respectively represents phenotypes, liabilities, and environment 

vectors of the subject i and his/her family in order. We used subscript 𝑖𝑗 to indicate each family 

member of the subject 𝑖 (𝑗 = 0 indicates the subject 𝑖 itself).  We further denote by 𝑓𝑗 and 

𝜓𝑗𝑗′  the inbreeding coefficient for relative 𝑗  of the subject 𝑖  and the kinship coefficient 

between two relatives 𝑗 and 𝑗′ of the subject 𝑖, respectively. It should be noted that 𝜓𝑗𝑗′ is 

0 if the subjects 𝑗 and 𝑗′ are in different families. We then define the kinship coefficient 

matrix as 𝚿i where (𝚿i)𝑗𝑗′ is 2𝜓𝑗𝑗′ for 𝑗 ≠ 𝑗′, and 1 + 𝑓𝑗 otherwise. With this notation, 

we assumed that 

 𝑳𝑖 = 𝒁𝑖𝛼 + 𝑷𝑖 + 𝑬𝑖 , 𝑷𝑖~𝑀𝑉𝑁(𝟎𝑛, σ𝑔
2𝚿i)𝑬𝑖~𝑀𝑉𝑁(𝟎𝑛, σ𝜖

2𝑰𝑛) (Eq.1) 

where 𝑰𝑛  is 𝑛 × 𝑛  dimensional identity matrix, 𝟎𝑛  and 𝟏𝑛  are 𝑛  dimensional column 

vectors. Here 𝜎𝑔
2  and 𝜎𝜖

2  indicate the variances of polygenic effect and random effect, 

respectively.  

Based on this liability threshold model, we can calculate the conditional expectation of Li, 

PM, when the family histories of disease are conditioned. We let the subscript 𝑖𝑗 indicates   

relative 𝑗 of the subject 𝑖. We further define a random variable 𝑨𝑖 of the subject i by 

𝑨𝑖 = (𝐴𝑖0
, 𝑨𝑖𝑗

)
𝑡

, 𝐴𝑖𝑗
= {

(𝑇, ∞) if 𝑌𝑖𝑗
= 1

(−∞, 𝑇) if 𝑌𝑖𝑗
= 0

 for 𝑗 = 0, … , 𝑛 − 1. 

let 𝐼𝐴𝑖𝑗
(𝐿𝑖𝑗

) = 1 if 𝐿𝑖𝑗
∈ 𝐴𝑖𝑗

 and otherwise 0, and I𝐴𝑖
(𝑳𝒊) = (I𝐴0

(𝐿𝑖0
), … , I𝐴𝑛−1

(𝐿𝑛−1))
𝑡
, 

then PM becomes 

E(𝐿𝑖|I(𝑳(−𝑖)) = 𝟏n−1). 

PM can be calculated with the moment generating function (mgf) of truncated multivariate 

normal distribution to calculate the conditional distribution. The joint probability density 

function (pdf) can be defined as 

 𝑓(𝑳) = |2𝜋𝚺|−
1

2exp (−
1

2
𝑳𝑡𝚺−1𝑳), (Eq.2) 

where 𝚺 = cov(𝑳). Based on the conditional pdf of 𝑳 given I(𝑳) = 𝟏 and some algebra, we 

can have  

 
𝑚(𝒕) =

exp (
𝒕𝑡𝚺𝒕

2 )

𝑃𝑟(I𝑨(𝑳) = 𝟏)(2𝜋)𝑛/2|𝚺|1/2
∫ exp (−

1

2
𝑳𝑡𝚺𝑳) 𝑑𝑳

𝐴

 
(Eq.3) 

If we let (Σ)jk = 𝜎𝑗𝑘 and 𝐹𝑘(x) be the marginal pdf of Lk, the PM for subject 𝑖 can be obtained 

by 

 𝜇𝑖 =
𝜕𝑚(𝒕)

𝜕𝑡𝑖
= ∑ 𝜎𝑖𝑘

𝑛

𝑘=1

𝐹𝑘
∗ (Eq.4) 

where 

 𝐹𝑘
∗ = {

𝐹𝑘(𝑇) − 𝐹𝑘(∞) if 𝑦𝑘 = 1

𝐹𝑘(−∞) − 𝐹𝑘(𝑇) if otherwise
. (Eq.5) 

Derivation of Fk requires marginal pdf of truncated multivariate normal distribution, and 

it can be derived as follow. First, we partitioned 𝑳 into two parts 𝐿𝑖 and 𝑳(−𝑖) and then 𝑳 

can be rewritten as, 

 𝑳 = (
𝐿𝑖

𝑳(−𝑖)
) ~𝑀𝑉𝑁 ((

0
𝟎𝑛−1

) , (
Σ11 Σ12

Σ22 Σ22
)) (Eq.4) 

If we denote the lower and upper truncated point of 𝑳 as 𝒂 and 𝒃 respectively, then the 

truncated normal distribution function when 𝒂 < 𝐿 < 𝒃 becomes 
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 𝑓𝛼(𝐿𝑖, 𝑳(−𝑖) = 𝒙) = 𝛼−1𝑓(𝑳(−𝑖) = 𝒙)𝑓(𝐿𝑖|𝑳(−𝑖) = 𝒙). (Eq.5) 

By using the marginal pdf of 𝑳(−𝑖) at 𝑳(−𝑖) = 𝒙 and the fact that conditional distribution of 

normal distribution is normally distributed, one can easily show that 𝐿𝑖|𝑳(−𝑖) = 𝒙 follows 

normal distribution with 𝐸( 𝐿𝑖|𝑳(−𝑖) = 𝒙) = 𝚺12𝚺22
−1𝒙  and 𝑉𝑎𝑟( 𝐿𝑖|𝑳(−𝑖) = 𝒙) = 𝚺11 −

𝚺12𝚺22
−1𝚺21. With these results, the multivariate marginal pdf of 𝑳(−𝑖) becomes 

 𝐹𝑳(−𝑖)
(𝑥) = ∫ 𝛼−1𝑓(𝑳(−𝑖) = 𝒙)𝑓(𝐿𝑖|𝑳(−𝑖) = 𝒙)𝑑𝐿𝑖

𝑏𝑖

𝑎𝑖

 (Eq.6) 

The integral can be readily computed by using conventional statistical software and we used 

pmvnorm() function in R package mvtnorm20. 

Prescreening with best linear unbiased predictor  
To select an effective list of SNPs, we considered the best linear unbiased prediction (BLUP) 

of SNP effects using GCTA21. GCTA provides the BLUP of total genetic effect for all 

subjects by considering a mixed linear model with random effects of SNPs, i.e., 𝒚 = 𝒙𝒁𝜷 +
𝒈 + 𝝐 with 𝑣𝑎𝑟(𝒚) = 𝑽 = 𝐀σg

2 + 𝑰𝜎𝜖
2, where 𝒚 and 𝜷 are a vector of phenotypes and 

fixed effect of subjects with genotypes, respectively, and 𝒈 and 𝝐 are vectors of total 

genetic effects of the subjects with 𝑔~𝑁(0, 𝑨𝜎𝑔
2) and and residual effects with 

𝝐~N(0, 𝐈σϵ
2). 𝐀 is the genetic relationship matrix (GRM) between subjects. By estimating 

GRM from all the SNPs, the BLUP of 𝒈 can be provided by the restricted maximum 

likelihood (REML) approach.  

Consider a mathematically equivalent model, 𝒚 = 𝒙𝒁𝜷 + 𝑾𝒖 + 𝝐 with 𝑣𝑎𝑟(𝒚) = 𝑽 =
𝐖𝐖𝐭σg

2 + 𝑰𝜎𝜖
2 , s, where 𝒖 is a vector of random effects with 𝒖~N(0, 𝐈σu

2) and 𝑾 is a 

standardized genotype matrix. The GRM, 𝐀, can be defined by 𝑾𝑾𝒕/𝑝1, where 𝑝1 is the 

number of SNPs. Since these two equations are mathematically equivalent, the BLUP of 𝒈 

can be transformed to the BLUP of 𝒖  by 𝒖̂ = 𝐖t𝑨−1𝒈̂/𝑝1 . Thus the estimate of 𝑢𝑖 

corresponds to the coefficient 𝑤𝑖𝐺𝑙
, which is the 𝐺𝑙th SNP of the 𝑖th subject element of 𝐖. 

Note that 𝑤𝑖𝐺𝑙
= (𝑥𝑖𝐺𝑙

− 2𝑑𝐺𝑙
)/√2𝑑𝐺𝑙

(1 − 𝑑𝐺𝑙
), where 𝑥𝑖𝐺𝑙

 and 𝑑𝐺𝑙
 are the numbers of 

copies of the reference allele and the frequency of the reference allele, respectively. Divided by 

√2𝑑𝐺𝑙
(1 − 𝑑𝐺𝑙

), 𝑢𝑖̂ can be rescaled for the original genotype. 

Penalized regression method  

We let 𝒙𝒊 = (𝒙𝑖𝐺 , 𝒙𝑖𝑍) and 𝑦𝑖  be a covariate vector and a dichotomous phenotype for the 

subject 𝑖, and affected and unaffected subjects are coded as 1 and 0, respectively. We further 

denote 𝑥𝑖𝐺𝑙
 and 𝑥𝑖𝑍𝑚

 be a coded genotypes of the 𝑙th SNP and the 𝑚th clinical covariate, 

respectively. The 𝑝 dimensional coefficient vector 𝜷 = (𝛽1, … , 𝛽𝑝)
𝑡
 consists of 𝑝1 genetic 

variants and 𝑝2 clinical variables. Under this model, 𝜷 can be estimated by minimizing the 

penalized negative log-likelihood: 

 
1

𝑛
∑{−𝑦𝑖𝒙𝒊

𝒕𝜷 + log(1 + exp(𝒙𝒊
𝒕𝜷))}

𝑛

𝑖=1

+ ∑ 𝐽𝜆(|𝛽𝑞|)

𝑝1

𝑞=1

 (Eq.9) 

where 𝐽𝜆 is a penalty function and 𝜆 is a vector of tuning parameter that can be determined 

by a search on an appropriate grid. Note that only genetic variants were penalized in Eq. 9.  

With the different choice of penalty function, lasso22, ridge23, EN24, SCAD25 and TR26 can 

be performed. The penalty of Lasso is  𝐽𝜆(𝑡) = 𝜆𝑡 and it has been often utilized because Lasso 

can conduct both shrinkage and variable selection. Even though lasso has an overfit problem, 

it shows a quite stable performance especially then sample size is small. Ridge uses 𝐽𝜆(𝑡) =
𝜆𝑡2 as its penalty. Similar to lasso, it has shrinkage effect by choosing 𝜆 but no selection of 

variables. Ridge can be conducted even when 𝑝 is much larger than 𝑛. EN, which is a convex 

combination of lasso and ridge, has a penalty of 𝐽𝜆(𝑡) = 𝜆(𝛼𝑡 + (1 − 𝛼)𝑡2) , and we 

considered 20 equally spaced grid points from zero to one for 𝛼 . EN enables us to have 
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balanced estimates, producing a slightly more complex model than lasso but far simpler model 

then ridge. The penalty of SCAD is 
∂Jλ(t)

∂t
= min {𝜆,

(𝑎𝜆−𝑡)+

𝑎−1
} and we used a = 50 for our 

own optimization algorithm. SCAD is known to have the oracle property, i.e., the set of selected 

variables are asymptotically equal to the set of true causal variables. In spite of the theoretical 

optimality, SCAD estimates can be poor unless the sample size is large and the effects of signal 

variables are strong. For TR estimates, we first obtained ridge estimates with tuning parameter 

𝜆 and then truncated them with a level 𝑎, making coefficients whose absolute values smaller 

than 𝑎 as zero. For the appropriate choice of truncating level, 20 grid points equally spaced in 

logarithmic scale from minimum to maximum ridge estimates were considered for 𝑎. All the 

analysis was performed with glmnet27 R package. 

Building disease risk model using penalized regression method  

In this section, we describe how we developed a disease risk model with the estimated PM 

score. Followings are the brief steps. 

 

1. We consider Age, Sex, BMI, SBP, and DBP as clinical covariates, and they are 

included for all regression. 

2. Calculate PM for all subjects with family histories of diseases. 

3. We conduct 10 fold cross validation. That is, we divide dataset into 10 different sub-

data, and one and the other nine subdata are used as test and train set respectively. 

4. Using train set, we select k SNPs with pvalues about the marginal effects of SNPs 

from logistic regression, and the proposed BLUP method. We considered k = 100, 500, 

1000, 5000, 10000, 20000. 

5. Perform Lasso22, Ridge23, Elastic-Net24 (EN), SCAD25 and Truncated Ridge26 (TR) for 

penalized regression and mixed effect model (MultiBLUP18).  

Tuning parameters for each penalized regression are chosen with additional 10 fold 

cross-validation with train set. We divide train set into 10 different subdata, and for 

different choices of tunning parameter, we get the prediction model with 9 subdata. 

Then calculate the AUC with the remaining 1 subdata, and tunning parameters which 

result in the largest AUC are finally chosen. 

6. The prediction models for penalized regressions and multiBLUP are applied to the test 

set, and we calculate AUCs. 

7. Repeat 3-7 for the different combinations of train and test set 

Data Description  

To demonstrate the validity of our proposed model and to illustrate its application to risk 

prediction, we investigated two real datasets: KARE and SNUH. Since SNUH dataset has cases 

only, we merged two datasets by adjusting platform difference (matching SNPs existing in both 

platforms and imputing NAs using Shapeit). Briefly, we analyzed 3692 subjects (1846 cases / 

1846 controls) with 267,063 SNPs.  

KARE cohort was collected to construct an indicator of disease of genetic character in an 

attempt to predict outbreaks of diseases. There are initially 8,842 participants and they were 

genotyped for 352,228 SNPs with the Affymetrix Genome-Wide Human SNP array 6.0. In our 

study, the following SNPs were discarded in further analysis: (1) p-values for Hardy-Weinberg 

equilibrium (HWE) are less than 10-5, (2) genotype call rates are less than 95% and (3) MAFs 

are less than 0.05. We also eliminated subjects with gender inconsistencies, whose identity in 

state (IBS) were more than 0.8 or whose call rates were less than 95%. Participants were asked 

whether they have affected relatives and if so, their ages and familial relatedness. These family 

histories of diseases including T2D are also available for KARE data. Finally, 1,167 T2D cases 

and randomly selected 1846 controls with 267,063 SNPs were used for the analysis. 

For SNUH data, T2D patients were diagnosed as T2D using the World Health 

Organization criteria for Seoul National University Hospital, and 681 subjects with positive 

family history of diabetes in the first-degree relatives were preferentially included. The family 

history of their relatives was based on the recall of the proband. However, family members 
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were encouraged to perform a 75 g oral glucose tolerance test, and subjects positive for glutamic 

acid decarboxylase autoantibodies test were excluded. In total, the disease statuses of 7,825 

relatives were available and among them 2,875 subjects had T2D. T2D patients originally 

diagnosed from Seoul National University Hospital were genotyped with the Affymetrix 

Genome-Side Human SNP array 5.0, and 480,589 SNPs were obtained. The same conditions 

for quality control with KARE were applied, two subjects and a number of SNPs were excluded. 

In total, 679 T2D patients with 267,063 SNPs were used for the analysis. 

Estimating variability in penalized logistic regression 

To estimate the variability of each variable in the penalized regression model, we used residual 

deviance from the penalized log-likelihood. The residual deviance is defined as,  

 Δres = −2 (𝑙𝑝𝑒𝑛𝑎𝑙(𝛽)) (Eq.10) 

where 𝑙𝑝𝑒𝑛𝑎𝑙(𝛽) = 𝑌𝑡 log(𝑃) + (1 − 𝑌)𝑡 log(1 − 𝑃) −
1

2
𝜆 ∑ 𝛽𝑖

2𝑝
𝑖=1  and P =

eXt𝛽

1+eXt𝛽
. Using 

eq.10, we defined variability explained by 𝑖th reduced model as 

 
|Δres,i − Δ𝑟𝑒𝑠,0|

Δ𝑟𝑒𝑠,0
× 100 (Eq.11) 

where Δ𝑟𝑒𝑠,0 denotes the residual deviance of the null model.  

RESULTS 

Characteristics of the variables 

As described previously, established a methodology for estimating the PM for all subjects in a 

pedigree and applied the method to real dataset. As can be seen in the Fig. 1A, mean values of 

PM between T2D cases and controls were not distinct. However, more subjects with T2D have 

high PM (larger than 0.5) compared to control subjects. Boxplot of other clinical covariates 

between cases and control are shown (Fig. 1).  

To find the most effective set of SNPs, we selected SNPs based on p-value obtained from 

logistic regression and BLUP obtained by mixed effect model. Since the selected set of SNPs 

should be applied in penalized regression, we expected it would be more effective if the set of 

SNPs uniformly distributed across the genome. We discretized whole genome with a window 

size of 5M base pair and counted the frequency of SNPs in each window. With varying number 

of SNPs (0.1k to 20k), it is apparent that both set of SNPs selected by p-value and BLUP criteria 

exhibit similar patterns (Fig. 1G). 

A comparison of performances 

The main purpose of this work was to construct a T2D risk prediction model. To find the best 

model, we sought to compare the performances of six methods with different criteria of 

selecting SNPs and varying number of SNPs. We repeated our analysis with family history 

Table I) and without family history (Table II). On the whole and the most interestingly, family 

history (PM) plays a very important role in risk prediction for all methods except MultiBLUP. 

By comparing Table I and II, it is obvious that a significant improvement was obtained with a 

prediction model using PM variables. A striking example can be seen in truncated ridge with 

5000 SNPs selected by BLUP criteria (Table I and II), changing AUC from 0.689 to 0.736. 

In the majority of cases, truncated ridge and ridge revealed a higher prediction 

performance. Interestingly, similar behavior was observed between ridge and truncated ridge, 

and between lasso and elastic net. For a small number of SNPs, p-value criteria showed better 

performance. However, the difference gets negligible (even reversed) as the number of SNPs 

increased.  

The best performance (AUC = 0.736) was observed in ridge and truncated ridge with PM 

and 5000 SNPs selected by BLUP criteria (truncated ridge showed slightly higher AUC O(E-

05). This is consistent with results obtained in previous studies.28,29 To investigate the effect of 

each variables, we built the logistic regression without any SNPs. Based on the nested 10 fold 
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cross validation scheme, which was applied in our model building steps, we measured the 

performance of logistic model without PM and with PM. Without PM, the AUC value was 

0.672, but increased to 0.730 with PM included (Table III). This value is not much different 

from the highest AUC (0.736) obtained with 5000 additional SNPs. 

We measured the time complexity of each method. Table IV shows the result. In general, 

the analysis time increased if the number of SNPs increased, except MultiBLUP. In case of 

MultiBLUP, it has several manual steps to perform a prediction analysis. Therefore, it was 

difficult to measure exact time for the whole analysis steps. However, MultiBLUP was not 

affected much by the number of SNP increment. 

Variability explained by each variable 

To estimate the variability explained by each variable, we investigated the model with 5000 

SNPs selected by BLUP. As described in the method section, we fitted the several reduced 

model to evaluate the residual deviance of each variable. Figure 2 illustrates the findings of this 

analysis. The largest portion (58.9%) remained unexplained, indicating the variables in the 

model is not good enough to explain the data. The second largest portion (28.6%) was from the 

SNPs. Even though the prediction performance was not significantly increased with these SNPs, 

they explained about 30% of variability. In contrast, PM which showed dramatic increase in 

prediction AUC, explained only 5.9% of total variability.  

DISCUSSION & CONCLUSIONS 

Prior works have documented the effectiveness of combining many SNPs using regularization 

methods or incorporating family history in improving prediction performance of disease 

risk10,11,16. However, these studies have either been one-sided studies or not simultaneously 

focused on both sides: combining more SNPs and incorporating family history. In this study 

we tested the extent to which combining SNPs and incorporating family history improved risk 

prediction with a group of T2D patients and controls. For that purpose we first developed a 

method estimating the posterior mean of being affected for the subjects in a pedigree. Then we 

compared the prediction performance of six different methods using SNPs selected by p-value 

obtained from logistic regression and BLUP obtained from mixed effect model. To more 

reliably validate the model, we performed the nested cross-validation scheme. Even though it 

is time-consuming, known to be more reliable.  

What we found in this study is that in virtually all cases, including family history 

(evaluated as PM) greatly improved the prediction performance while SNPs showed slight 

improvement. These findings extend those without SNPs, confirming that family history tends 

to produce more effective genetic or environmental effect on prediction result than on SNPs. 

This study, therefore, indicates that the benefits gained from including PM may address a need 

for finding gene-gene interaction or gene-environmental interaction effects across a wide range 

of complex diseases. 

However, some limitations worth noting. One of the limitations of our study is that we did 

not consider other types of structural variants, such as copy number variation, which might 

affect a risk of T2D but the contribution is poorly known. It is more recommendable to include 

rarer risk alleles with large effects and gene-gene, or gene-environment interaction into the 

prediction model. More of the genetic risk can be explained as more causal risk variants are 

identified. However, rare variant analyses or interaction analyses require more complicated 

statistical methods to effectively analyze the effects. Therefore the ultimate goal of the future 

work is to integrate advanced statistical methods with genetic data and biological knowledge, 

which will further improve the power to detect complex interactions efficiently. 
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FIGURE LEGEND 

Figure 1. Characteristics of variables. Characteristics of the PM (A), age (B), sex (C), BMI 

(D), SBP (E) and DBP (F) are shown in boxplots. Here disease status 1 and 0 indicates T2D 

case and control, respectively. 

Figure 2. Variability pie chart. Variability explained by each variable in the final model is 

shown. For six clinical variables (Age, Sex, BMI, SBP, DBP, PM), variability is shown with 

its own proportion, while the variabilities of 5,000 SNPs is shown with their summed 

proportion.  
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FIGURES & TABLES 

Table I. AUC with clinical variables and SNPs 

CRITERIA # of SNPs RIDGE LASSO EN SCAD T.RIDGE MultiBLUP 

P-value 

100 0.642 0.637 0.637 0.616 0.641 0.532 

500 0.640 0.626 0.626 0.608 0.640 0.542 

1,000 0.640 0.624 0.624 0.608 0.640 0.544 

5,000 0.660 0.635 0.635 - 0.660 0.546 

10,000 0.668 0.640 0.640 - 0.668 0.560 

20,000 0.674 0.640 0.640 - 0.674 0.582 

BLUP 

100 0.611 0.602 0.602 0.585 0.612 0.500 

500 0.614 0.600 0.600 0.594 0.614 0.513 

1,000 0.626 0.611 0.611 0.601 0.626 0.537 

5,000 0.689 0.647 0.647 - 0.689 0.581 

10,000 0.672 0.626 0.626 - 0.672 0.550 

20,000 0.674 0.639 0.639 - 0.674 0.571 
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Table II. AUC with clinical variables, SNPs and PM 

CRITERA # of SNPs RIDGE LASSO EN SCAD T.RIDGE MultiBLUP 

P-value 

100 0.693 0.687 0.688 0.676 0.693 0.534 

500 0.687 0.672 0.672 0.665 0.687 0.544 

1,000 0.685 0.669 0.669 0.664 0.685 0.536 

5,000 0.709 0.687 0.687 - 0.709 0.541 

10,000 0.717 0.690 0.690 - 0.717 0.554 

20,000 0.721 0.689 0.689 - 0.721 0.561 

BLUP 

100 0.669 0.659 0.659 0.643 0.669 0.500 

500 0.659 0.642 0.642 0.639 0.659 0.505 

1,000 0.670 0.651 0.651 0.645 0.670 0.516 

5,000 0.736 0.691 0.691 - 0.736 0.575 

10,000 0.721 0.673 0.673 - 0.721 0.544 

20,000 0.725 0.689 0.689 - 0.725 0.562 
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Table III. AUC without SNPs 

VARIABLES INCLUDED LOGISTIC REGRESSION 

AGE, SEX, SBP, DBP, BMI 0.672 

AGE, SEX, SBP, DBP, BMI, PM 0.730 
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Table IV. Analysis Time 

# of SNPs RIDGE LASSO EN SCAD T.RIDGE MultiBLUP 

100 15.6 sec 13.2 sec 4.7 min 37 min 1.9 min < 20 min 

500 1.2 min 1.2 min 25.1 min 5.2 hour 6.0 min < 20 min 

1,000 2.6 min 2.2 min 43.5 min 12.2 hour 11.1 min < 20 min 

5,000 12.3 min 53.7 min 35.6 min ~ 3 days* 34.4 min < 20 min 

10,000 24.3 min 1.7 hour 1.1 hour ~ 6 days* 1.7 hour < 20 min 

20,000 47.7 min 3.4 hour 3.4 hour ~ 12 days* 3.3 hour < 20 min 

*Not measured but estimated 
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Figure 1 
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Figure 2 
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