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Abstract

The electrophysiological study of learning is hampered by modern
procedures for estimating firing rates: Such procedures usually require
large datasets, and also require that included trials be functionally
identical. Unless a method can track the real-time dynamics of how
firing rates evolve, learning can only be examined in the past tense.
We propose a quantitative procedure, called ARRIS, that can uncover
trial-by-trial firing dynamics. ARRIS provides reliable estimates of
firing rates based on small samples using the reversible-jump Markov
chain Monte Carlo algorithm. Using weighted interpolation, ARRIS
can also provide estimates that evolve over time. As a result, both
real-time estimates of changing activity, and of task-dependent tuning,
can be obtained during the initial stages of learning.

One of the essential analytic procedures in neurophysiology is the conver-
sion of strings of observed action potential discharges (“spike trains”) into
a dynamic estimate of a neuron’s firing rate. To determine whether a neu-
ron fires more vigorously in the presence of a stimulus than in its absence,
comparisons are conventionally made not between spikes within the stimulus
interval, but rather between the estimated rate parameters. A wide variety
of rate estimation procedures have been developed, including autocorrela-
tion (Perkel et al., 1967), spike-triggered averaging (Pillow & Simoncelli,
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2006), kernel density estimation (Shimazaki & Shinomoto, 2010), and spline
smoothing (Kass et al., 2003).

Most estimation procedures produce very poor estimates given small sam-
ples, not only because they are noisy, but also because they are systematically
biased. When estimation procedures are given very little evidence to work
with, their implicit assumptions can dominate the estimate. The most com-
mon bias is dramatic attenuation around abrupt transitions in firing, such
that the true rate consistently falls outside the estimate’s confidence interval.
These limitations are keenly understood by analysts, who have historically
performed their analyses on large sets of data to avoid these problems.

A consequence of this assumption is that traditional spike train analy-
ses are ineffective at uncovering signals that change over the course of the
recording session. This effectively makes the study of the neural codes as-
sociated with learning itself impossible. Instead, researchers typically divide
spike rasters into pre- and post-learning epochs, based on behavioral per-
formance criteria (e.g. Paz et al., 2003; Satoh et al., 2003). Thus, the vast
majority of studies purporting to study the electrophysiology of learning, as
well as simulations of neural networks (Amit & Brunel, 1997), are only able
to reveal the consequences of learning, not the real-time processes that give
rise to learning.

Despite this, there is persuasive evidence that firing rates can change
abruptly during learning. Gale et al. (2014) report spike rasters with trial
number as the explicit vertical axis, and show pronounced changes in firing
near the time of a qualitative shift in performance. Morrison et al. (2011)
also report changes in activity immediately following an abrupt task change.

In this paper, we propose a new method called Adaptive Rate Regression
Involving Steps (ARRIS), which offers several advantages over existing meth-
ods. Chief among these is that ARRIS performs well when estimating firing
rate using very few trials. Because ARRIS does not require large numbers of
trials to obtain a reasonable estimate, it offers the possibility of examining
how firing changes over short intervals.

Full implementation of ARRIS requires several techniques. The following
list outlines the steps needed to obtain instantaneous estimates of firing at
each point in a session, rather than estimates marginalized across entire
sessions that are presently reported.

• A brief survey of current methods demonstrates that even very sophis-
ticated methods perform poorly on small samples. Of these, the most
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promising candidate for modification is BARS (DiMatteo et al., 2001).

• BARS is effective thanks to a procedure called ‘reversible jump Markov
chain Monte Carlo’ (RJMCMC). ARRIS makes unattenuated estimates
in small samples by using step functions instead of the regression splines
used by BARS.

• When trials share features in common, they may be combined in a
weighted fashion. Weighted interpolation permits estimation of activity
at specific times within a session, rather than across the session as a
whole. This allows learning to be identified in real time, rather than
being limited to a pre-learning/post-learning dichotomy.

• Using a temporal weight function introduces the problem of specifying
an appropriate bandwidth over which to smooth the estimates. The
method of generalized cross-validation (GCV) provides a metric for
evaluating which bandwidths would be optimal at each time point.

• Finding the optimal GCV score must be done numerically, and this in-
teracts poorly with RJMCMC’s reliance on stochastically approximate
posterior distributions. A kernel density approximation of ARRIS can
instead be used to identify which bandwidths to give the weight func-
tion.

• When ARRIS is run using GCV-optimized bandwidths for the weight
function, it yields a reliable estimate for the firing rate at each time
point in a session, thus revealing real-time changes in firing dynamics.

Limitations In Existing Methods

One of the standard methods for evaluating the efficacy of density- or
rate-estimation procedures is by evaluating the mean integrated squared er-
ror (MISE) (Silverman, 1986) of a given fit against its generating function.
This entails averaging over all discrepancies between the true function and
the estimate, which is straightforward when using simulated data. Figure 1
showcases how well four rate estimation procedures estimate a simple step
function, given three different samples. Spikes in these simulations were gen-
erated by an inhomogeneous Poisson process, firing at 25Hz between 1s and
3s and firing at 5Hz otherwise. The samples differed in size (consisting of
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Figure 1: Firing rate estimates based on samples of varying size. Spikes were
generated by an inhomogeneous Poisson process (dotted line). Estimate are plotted as
black solid lines and shaded regions represent the 80% and 99% credible intervals of the
estimates. The red line depicts the absolute error (i.e. the distance between the true rate
and the estimate) at each time point. The spike rasters used for all estimates are depicted
at the top of each column. Row 1. Rectangular smoothing function over a 300ms moving
window. Row 2. Kernel rate estimate with an optimized variable bandwidth, using the
method of Shimazaki & Shinomoto (2010). Row 3. BARS estimate, using the methods
of DiMatteo et al. (2001). Row 4. ARRIS estimate, using methods described below.

5, 25, or 125 trials), and while better estimates are always expected as the
sample size increases, it is also important to consider whether an algorithm
can produce reliable small-sample estimates. To facilitate this comparison,
the absolute error of the estimate is also reported, as are the mean integrated
error and MISE.

Row 1 shows smoothing using a 300ms moving window, which is noisy and
unreliable. Although none of its errors endure for very long, they nevertheless
contribute a constant factor. Importantly, the two abrupt changes in firing
(at 1s and 3s) produce unavoidable attenuation even when hundreds of trials
are included. Thus, using an arbitrary fixed moving window will always
produce an incorrect estimate, insofar as any rapid changes will necessarily
be attenuated. This attenuation can be reduced by narrowing the width of
the moving window, but this also increases the noisiness of the estimate.

A moving window estimate can also be interpreted as a kernel rate estima-
tor, where the width of the window corresponds to a “bandwidth” parameter.
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Kernel rate estimators replace each observation with a “kernel,” and an esti-
mate of the rate is achieved by summing the kernel densities. Our choice of
300ms was arbitrary, and another choice could have been made to optimally
minimize the MISE. However, no single bandwidth is simultaneously optimal
for both the abrupt transition and the intervening stable periods.

Row 2 demonstrates a different kernel rate estimator described by Shi-
mazaki & Shinomoto (2010), using a Gaussian kernel. Their approach allows
the bandwidth of the estimator to change over time, letting it fit both abrupt
transitions and broad steady rates. This results in a systematically better fit
(and lower MISE) when many trials are included. However, even when us-
ing a kernel smoother with an optimized variable bandwidth (row 2), small
attenuation effects occur around transition points. Thus, although kernel
smoothers are asymptotically optimal, they will display attenuation effects
that scale as a function of sample size. For even moderately sized samples
consisting of dozens of trials, this attenuation is large enough to predict an-
ticipatory increases in firing rates (e.g. prior to a stimulus onset) that are
entirely artifactual.

Row 3 fits the data according to a powerful method for spline regression,
entitled Bayesian adaptive regression splines (or “BARS”) (DiMatteo et al.,
2001; Kass et al., 2003; Wallstrom et al., 2008). The splines used by BARS are
governed by “knots” whose positions control the curvature of the function. To
achieve a more complex curve, more knots are required. Crucially, BARS not
only provides an estimate of the firing rate, but also provides a full posterior
sampling distribution for the rate estimate at each time point. That is, BARS
effectively tests a representative sample of all the different splines that could
generate the data, and reports the average of this set of estimates. This
permits, among other things, a rate estimate that includes credible intervals
(Chen & Shao, 1999) without relying on parametric assumptions.

BARS fares substantially better than kernel-based methods with moderate-
to-large samples. Abrupt transitions remain somewhat problematic, insofar
as spline regression cannot model discontinuities directly. Nevertheless, for
large samples, BARS not only correctly estimates the function, but does so
with very high confidence. The same cannot be said for its estimate based
on five trials, which shows more attenuation than the kernel estimates do.
This, again, is a result of the tradeoff faced in any model selection paradigm:
Since BARS uses splines, and since splines assume gradual changes in rate
until overwhelming evidence suggests otherwise, attenuation is an inevitable
consequence when samples are small.
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Figure 2: Firing rate estimates based on single trials. Spikes were generated by a
Poisson process (5Hz, 25Hz, 5Hz) plotted as a dotted line. Each algorithm’s estimate of
the firing rate is plotted as a solid line. Shaded regions represent the 80% and 99% credible
intervals of the estimates in all cases. These were obtained from bootstrap resampling of
the original data (for rows 1 and 2) or directly from the simulated posterior distributions
of model estimates (rows 3 and 4). The red line depicts the absolute error. Row 1.
Rectangular smoothing function over a 300ms moving window. Also included are the
raster of spikes used for all estimates in each column. Row 2. Kernel rate estimate with
an optimized variable bandwidth, using the method of Shimazaki & Shinomoto (2010).
Row 3. BARS estimate, using the methods of DiMatteo et al. (2001). Row 4. ARRIS
estimate, using methods described below.

Dramatic attenuation of this sort is rarely reported because it is under-
stood that unbiased estimates require that the data be pooled across many
trials. Spike rasters that depict activity of single neurons typically do so by
stacking multiple trials vertically, often doing so with no label on the verti-
cal axis (e.g. Hahnloser et al., 2002; Gelbard-Sagiv et al., 2008; Jacob et al.,
2013). In other words, rate estimation procedures ordinarily treat trials as
exchangeable, having no intrinsic ordering. The estimated firing rate is then
a kind of marginalized average over the full raster.

Pushing this example to its lower limit, Figure 2 gives five examples of
each algorithm’s performance given spikes during a single trial. The fixed
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moving window (row 1) displays continuous poor performance, whereas an
kernel rate estimation (row 2) and BARS (row 3) both take the form of
slowly-undulating curves that heavily attenuate the source function.

Row 4 in Figures 1 and 2 are estimates obtained with our novel ARRIS
procedure, which is closely related to BARS. ARRIS has the lowest MISE
with single trials because it captures both transitions with only small atten-
uation. BARS emerges victorious when larger samples are used, but ARRIS
performs reliably on even very small samples: In the single-trial cases, AR-
RIS sometimes makes attenuated estimates, but also sometimes does very
well despite the paucity of data. As we will argue, it is this reliability in the
face of small samples that makes ARRIS suitable for uncovering real-time
changes in firing dynamics.

Single Trial Rate Estimation

ARRIS and BARS are closely related, and both address the same prob-
lem: Fitting a model is hard when you do not know a priori how many
parameters the model has. When the number and positions of a spline’s con-
trol knots are unconstrained, any arbitrary cloud of data can be fit exactly by
an overfit curve with no subsequent predictive value. In order to make spline
regression reliable as an inferential method, model selection procedures must
severely constrain the number of knots in order to respect parsimony. Even
with a handful of knots, however, discovering the optimal positions for those
knots is an intractable problem, analogous to that of the traveling salesman.

BARS overcomes this difficulty by rendering the regression splines adap-
tive, using the reversible-jump Markov chain Monte Carlo algorithm (or
“RJMCMC”) (Green, 1995). Like other MCMC algorithms (Geyer, 2011),
RJMCMC uses stochastic methods to discover the contours of complex prob-
ability distributions. However, in addition to assessing the validity of various
model parameter values, RJMCMC also dynamically adjusts the number of
parameters, adding or removing them as part of its simulations (see also Fan,
2011). As applied to spline regression, RJMCMC will add, remove, and re-
locate knots dynamically, doing so in a manner that converges on the most
parsimonious estimate. Once a stable estimate of the model is achieved,
continued simulation maps out the sampling distribution of possible model
estimates.

This technique is very effective in large datasets because the enormous
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flexibility displayed by splines is counterbalanced by RJMCMC’s natural ten-
dency to discard needlessly complex models. However, when limited evidence
is available, BARS favors highly attenuated models. This is demonstrated
by Figures 1 and 2: Although abrupt transitions are evident upon visual in-
spection, BARS favors gradual transitions. Consequently, a different model
specification paradigm is required to obtain reasonable estimates for small
samples.

The simplest alternative to using splines is to employ a model consisting
only of knots, with no smoothing whatsoever. In the models that ARRIS con-
siders, “knots” cease being control points and instead become the coordinates
at which an abrupt discontinuity occurs. Thus, activity is modeled using only
discontinuous changes in rate. The sampling distribution of models is esti-
mated using RJMCMC, just as it is for BARS. Importantly, however, the aim
of ARRIS is not to find the single best series of step functions, but instead
to average over the full sampling distribution of step functions produced by
RJMCMC. Averaging over many different potential knot locations permits
ARRIS to identify gradual changes in rate. This provides an advantage in
small samples: The model average produced by ARRIS has the ability to fit
both gradual and abrupt transitions even when data is scarce.

Let Dr correspond to a time series of events occurring during trial r. Each
individual time bin dt,r consists of a count of the number of spikes observed
during that interval (here assumed to be a discrete 10ms block); typically,
dt,r will equal 0, 1, or occasionally 2. For the purposes of this analysis,
we will assume that spikes arose from a Poisson process with a firing rate
λt,r at time t on trial r. Although this assumption can be problematic,
such problems typically appear in the spectral statistics of very short time
scales (Lindner, 2006). The ARRIS procedure uses RJMCMC to adaptively
sample the various possible step-wise models. For every coordinate in the
dataset, this yields a sampling distribution St,r,1. The mean of this sampling
distribution is denoted by µt,r,1. Thus:

µt,r,1 = ARRIS (D|t, r, 1) ≈ E [St,r,1] = λt,r (1)

Here, the subscript 1 indicates an estimate based on a single trial.

Figure 3 provides an example of ARRIS performing a rate estimate given
two separate trials of simulated data. A Poisson process generated 116 spikes
(Figure 3A) and 90 spikes (Figure 3B) on two trials, according to the firing
rate plotted as a black dashed line. These spikes are depicted as hash marks
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Figure 3: Single trial ARRIS estimates. Spike trains were generated according to the
inhomogeneous Poisson firing rates (dashed lines). These spike trains are plotted along
the top of each graph as hash marks. ARRIS was subsequently used to obtain estimates
(solid lines) for the firing rates. In addition to the estimates, the 80% credible intervals
(dark overlay) and 99% credible intervals (light overlay) are included to display estimate
uncertainties. Because these estimates arise from single trials, they are very uncertain
and, in some cases, far off the mark. In addition, subtle effects (such as the transition at
3s) cannot be detected based on a single trial.

along the top of the figure. The best estimate of the firing rate, according
to ARRIS, is plotted as a solid line. However, this best estimate is merely
the mean of a sampling distribution at each point; also depicted are the 80%
and the 99% credible intervals for the estimate, based on the corresponding
upper and lower percentiles of St,r,1.

The estimates in Figure 3 are noisy and cannot detect subtle changes
(such as the shift in rate at 3.0s). Nevertheless, it performs reasonably well
in identifying the major features of the firing rate, despite being based on a
single trial in each case. In addition, the true firing rates are reliably within
the credible intervals.

Firing Dynamics That Change Over Time

The standard approach in rate estimation is to presume that every trial is
exchangeable with every other trial, and to interpolate an estimate across all
trials (in the style of Figure 1). Any method that relies on this logic makes
a strong assumption that firing rates are stable over the observed period,
and that any features revealed in the session average are representative of
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Figure 4: Firing rate estimation as firing dynamics change. Two simulated sessions
of neural firing in which the pattern of firing changes over the course of the session. Shaded
areas depict the 80% and 99% credible intervals for each estimate. Left. Although each
trial has a peak of activity, the time of the peak drifts from early in the trial to late over
the course of the session. Estimates performed on subsets of the trials (in red and blue)
show these shifting peaks clearly. A marginal estimate using the entire session, however,
shows no change in the firing rate, effectively masking this effect. Right. Again, each
trial has a single peak of elevated activity. This peak occurs early in the trial for the first
half of the session, then abruptly changes to appearing late in the trial. Subsets of trials
(red and blue) can correctly characterize the single peak observed during the epoch from
which they are sampled, but the marginal estimate predicts two peaks.

individual trials.
Figure 4 presents two simulated examples of how this “assumption of

static activity” can lead to invalid estimates. In the left case, activity rises
and falls during each trial, with the peak gradually shifting over consecutive
trials. The shifting peak can be seen clearly in estimates taken from subsets
of trials, but disappears in the marginal estimate. The right simulation also
has only one peak per trial, but the position of this peak shifts suddenly
between trials 25 and 26. Although analyses performed on subsets of trials
show these distinct peaks clearly, the marginal estimate suggests that there
are two peaks. Thus, the unjustified assumption of stable activity during a
session can both conceal patterns of activity, or can produce a session average
that does not resemble any of the individual trials.

The examples provided in Figure 4 show clear changes over time on vi-
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sual inspection, but visual inspection alone does not provide a solution to
the problem of which trials the analyst should group together. Furthermore,
important differences may nevertheless be too subtle to spot visually. Admit-
ting the need to analyze subsets of trials is not enough; a systematic approach
to the problem is required to ensure that decisions of how to subdivide the
analysis are driven by the evidence, and not by subjective interpretation of
a visual impression.

When undertaking an analysis of subsets of trials, the primary tension
that must be resolved is between undersmoothing and oversmoothing. Per-
forming the analysis on very small sets of trials ensures that local features
in the activity can be discovered, but each estimate will be very uncertain
because each subset provides so little evidence. On the other hand, work-
ing with large sets of trials (e.g. first half of the session vs. last half) risks
producing erroneous marginal estimates for the same reasons as full-session
averaging.

One solution is to perform estimates using a moving window (e.g. an
estimate using trials 1-11, then another using trials 2-12, etc.). However,
selecting the width of the window is itself an optimization problem. If an
overly wide window is chosen, then the estimates will be badly attenuated
(as in Figure 1, row 1); if an overly narrow window is chosen, estimates will
be noisy (as in Figure 2, row 1). Additionally, it is reasonable to assume
that if trials 2 and 12 relate to an estimate centered at 7, then trials 1 and
13 probably also have some bearing on the estimate. At the same time, if
an estimate is centered on trial 6, trials 5 and 7 are probably more similar
than are trials 2 and 12. In other words, when interpolating an estimate over
multiple trials, it is reasonable to assume that trials closer to the estimated
time point are more relevant to the estimate than trials that occurred much
earlier or much later in the session. This motivates the use of weighted
ensembles of trials, with trials nearest to the time of interest contributing
more evidence than those that are not as proximate.

Figure 5 presents a simulated example of firing that changes over time.
Spikes are reported over a series of 50 trials, but the activity regularly changes
its character. During the first 10 trials, activity is limited to two narrow
intervals. Then, from trial 11 to trial 40, a broader unimodal distribution of
spikes is evident, which gradually increases its spread over the interval, then
contracts again. Finally, trials 41 to 50 return to restricting activity to two
intervals.

Given firing dynamics like those in Figure 5, it would be impossible to
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ĥr ,ĥs
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ĥ43,ĥs = 3.74

Figure 5: Local estimates of firing rate using variable smoothing bandwidths.
Left. Optimal fixed (dashed line) and variable (solid line) bandwidths, as determined by
optimizing GCV. Left Middle. Spikes observed during 50 trials of a simulated data set.
Right Middle. Spikes near each of three demonstration trials (trials 5, 25, and 43). The
height of the hash mark corresponds to the weight each spike contributes to the estimate
(with very small spikes making very small contributions). Right. ARRIS estimates of
activity for each demonstration trial (colored lines), along with 80% and 99% confidence
intervals (shaded areas) and the original rate parameter used to generate the data (black
dashed lines). Even when the bandwidth is so narrow as to include only a handful of trials,
the original patterns of activity can be reliably recovered.

correctly describe the activity by simply marginalizing over all trials. How-
ever, a fixed-width moving window (e.g. an analysis of 10 trials at a time)
will always blend dissimilar portions of the data (e.g. the discontinuity near
trials 10 and 40). Using weighted interpolation, activity may be sampled
from trials within some ‘bandwidth.’ For example, the estimate at trial 25
(in blue) uses a bandwidth of 8.22. Although fifteen different trials make
a contribution to the estimate, their total weight is only that of about 9.5
trials (because the trials further from trial 25 count for much less than their
full value). However, the estimate at trial 5 (in red) uses a bandwidth of
5.43, because a wider bandwidth would begin to include contributions from
the unimodal middle epoch. This yields an estimate based on what are ef-
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fectively 6.3 trials of evidence. When very close to a boundary (as with trial
43, in green), even narrower bandwidths are needed to avoid including spikes
from a dissimilar epoch.

In order to obtain reliable estimates of firing in highly dynamic scenarios
such as this one, several ingredients are needed:

• A weight function is needed to quantify how “close” any given trial is
to a target time. We have chosen to use the tricube weight function
(Cleveland, 1979).

• An bandwidth parameter h that governs the width of the weight func-
tion. Although an ‘optimal’ value ĥ may be identified that does the best
job across the session, Figure 5 demonstrates that no single bandwidth
will be ideal for the entire session.

• Thus, each trial, in effect, needs its own bandwidth. Borrowing a
strategy from Shimazaki & Shinomoto (2010), we specify a second
optimized ‘smoothing bandwidth,’ ĥs, which ensures that bandwidths
change smoothly over time.

• In order to evaluate the optimality of any given bandwidth h, we need
a model selection criterion that maximizes the quality of our out-
of-sample prediction. We use the generalized cross-validation index
(GCV) (Golub et al., 1979), selecting values of h that minimized GCV.

• Iteratively minimizing GCV is computationally expensive. To facilitate
bandwidth identification, a kernel density approximation to ARRIS is
specified. This permits the discovery of relatively similar epochs of
activity to be identified without requiring repeated ARRIS reanalysis
for every candidate combination of bandwidths.

The Tricube Weight Function

Interpolation over time was accomplished by giving each trial a weight
using the tricube weight function (Cleveland, 1979):

wr,x,h (x) = W

(
r − x
h

)
W (x) =

{ (
1− |x|3

)3
when |x| < 1

0 otherwise

(2)
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Here, h corresponds to the bandwidth of the weight function, r corresponds
to the current trial that is being estimated, and x corresponds to some other
trial whose weight needs to be computed. Every observation dt,x makes no
contribution to the local estimate when |r−x| > h; the rest make a weighted
contribution, based on their proximity to r.

From these, a weighted mean of the firing rate may be computed from
the data, denoted by d̂t,r,h:

d̂t,r,h =

∑
x∈R wr,x,h · dx,h∑

x∈R wr,x,h
(3)

Rather than simply using dt,r as the estimate of firing at time t on trial r
(which is likely to be noisy), the estimate is instead the weighted mean of
those trials closest to r, with only those trials within ±h making a contribu-
tion. We denote the estimate of the underlying rate given a bandwidth of h
as µt,r,h:

µt,r,h = ARRIS (D|t, r, h) ≈ E [St,r,h] = λt,r (4)

Note that, as defined, d̂t,r,h is not limited to integer values of r. If provided
with a value of r that lies between any available observations, a weighted
average will be computed in which none of the data receive a full weight of
1.0. This permits interpolation to arbitrary precision. As h → 1, the data
used in the estimate converges on dt,r; As h → ∞, the data used in the
estimate converges on the exchangeability assumption in which every trial in
the session is included in the estimate and all are given equal weight.

Optimizing the Bandwidth h

When performing the ARRIS procedure over a relatively stable interval,
better estimates of the firing rate can be obtained by using larger values
of h. At the same time, when ARRIS estimates activity during sessions in
which rapid shifts in activity are observed, unattenuated estimates can only
be achieved by using a small values of h. As with the kernel methods of
Shimazaki & Shinomoto (2010), the choice of an appropriate value for h is a
non-trivial optimization problem. There is, in principle, some value of h that
best trades off the noisiness of localized samples of data with the attenuation
that occurs when bandwidths include large swaths of the session.
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A well-established model comparison metric that can measure this trade-
off is the generalized cross-validation score (GCV) (Golub et al., 1979). Ide-
ally, systematic cross-validation of all subsets of the data reveals the degree
to which a model reliably makes out-of-sample predictions, but such meth-
ods require factorial runtime. GCV provides a robust estimate of how well
a given model would fare under cross-validation testing (particularly how
overfit or underfit the model is) without the impossibly demanding compu-
tational burden of performing every cross-validation. GCV’s relative ease of
computation has long made it an effective method for optimizing parameters
that otherwise resist direct analysis (Craven & Wahba, 1979; Jansen et al.,
1997; Josse & Husson, 2012; Jansen, 2015)

In order to identify a parsimonious value for h, one need only compute
the GCV scores associated with various values and select the value of h that
minimizes the GCV. This balances the goodness of fit associated with a given
value of h against the roughness of the estimate:

GCV (D, h) = ntnr

∑
t∈T
∑

r∈R (µt,r,1 − µt,r,h)2(
ntnr −

∑
r∈R tr (Hr)

)2 (5)

Here, tr (Hr) corresponds to the trace of the hat matrix associated with the
smoothing procedure on trial r, which provides an estimate of the effective
number of parameters. nr and nt in turn correspond to the number of trials
and the number of time bins, respectively. Because GCV is calculated across
all R and all T , minimizing it yields a single value for h, applied across
the entire spike raster. Henceforth let ĥ refer to the fixed bandwidth that
minimizes GCV (and is therefore approximately optimal).

When the rate of change in the firing rate is steady from one trial to
the next, ĥ reasonably captures gradual changes. However, activity may
change dramatically over a short interval, while also displaying long periods
of stability in the intervening epochs. Consequently, it may be desirable to
optimize varying values of hr for each trial r. To do this, we adopt a strategy
inspired by the approach to bandwidth optimization described by Shimazaki
& Shinomoto (2010).

One approach that accomplishes this is to perform generalized cross-
validation on each trial separately, optimizing a different hr score for each by
minimizing the corresponding GCVr score:

GCVr(Dr, hr) = nt

∑
t∈T (µt,r,1 − µt,r,hr)2

(nt − tr (Hr))
2 (6)

15

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 26, 2016. ; https://doi.org/10.1101/041301doi: bioRxiv preprint 

https://doi.org/10.1101/041301


The value of hr that minimizes GCVr is considered optimal, and is denoted
by ĥr. However, GCVr depends on far fewer data than GCV . As a result,
ĥr scores fluctuate considerably from one trial to the next as a function of
sampling error. It is therefore desirable to specify an additional smoothing
factor hs, which is used to smooth the volatile series of ĥr values as a function
of their weighted geometric mean.

ĥr,hs = exp

∑x∈R wr,x,hs · log
(
ĥx

)
∑

x∈R wr,x,hs

 (7)

In order to obtain an optimal value for hs, generalized cross-validation may
again be used:

GCVs(D, hs) = ntnr

∑
t∈T
∑

r∈R

(
µt,r,1 − µt,r,ĥr,hs

)2

(
ntnr −

∑
r∈R tr (Hr)

)2 (8)

To summarize: In order to optimize a variable bandwidth, one must first
minimize the GCVr for each trial r in order to identify the optimal value of
ĥr. Then, this noisy vector of smoothing factors must itself be smoothed by
using an optimized bandwidth ĥs. This, in turn, is identified by minimizing
GCVs.

Because RJMCMC is a Monte Carlo method, its estimates are inevitably
noisy and its approximated posterior distributions are jagged. This is true
even when they are expected to be asymptotically smooth. As a final smooth-
ing procedure, the resulting estimate should be smoothed with a bandwidth
of 1

2
ĥ (for fixed bandwidths) or 1

2
ĥr,ĥs (for variable bandwidths). Because this

final smoothing is done at a much finer grain than the original estimation
procedure, it results in only minimal attenuation of the main signal.

In addition to serving a practical function, the time series ĥr,hs can also
be considered a non-parametric measure of the speed with which patterns of
neural activity change over time. Low values of ĥr,hs are needed when firing is

changing rapidly. Examining how ĥr,hs changes over time should thus reveal
when adaptation occurs, as well as its relative speed.

Rapid Evaluation of h

Unfortunately, optimizing GCV , GCVr, or GCVs directly is extremely in-
efficient. Estimates of µt,r,h depend on RJMCMC, and consequently fluctuate
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slightly from one simulation to the next. This precludes the use of greedy
hill-climbing algorithms. Although more error-resistant methods, such as
simulated annealing, can overcome this problem, RJMCMC remains com-
putationally intensive. Consequently, it is desirable to identify an alternate
method for evaluating different values of h that yields reasonable results, but
does so rapidly and reproducibly.

One such approximation is offered by kernel estimation procedures (Bow-
man & Azzalini, 1997). Given a particular kernel bandwidth, the resulting
estimate can be rapidly computed. Furthermore, since kernel methods do not
rely on Monte Carlo methods, they yield identical results every time they are
re-run, enabling hill-climbing algorithms to converge on optimal GCV scores
without being mislead by local minima.

In order to best approximate ARRIS estimates, within-trial firing rates
were estimated using a box kernel with a bandwidth of ĥr,k. Rather than
optimize this kernel bandwidth, we used a plug-in estimator. The most
popular such estimator is Silverman’s rule-of-thumb (Silverman, 1986), which
is defined in terms of the sample size and the estimated standard deviation:

ĥr,k =

(
4σ̂5

3n

)
≈ 1.06

σ̂

n1/5
(9)

We have presumed that the spikes are generated by something approximating
a Poisson process with a rate parameter λ. Poisson processes are expected
to have inter-spike intervals that follow an exponential distribution whose
parameters are also governed by λ. Using this relationship, we anticipate
how many spikes we should expect during an interval of time (effectively,
an estimate n̂), and how dispersed those spikes should be (an estimate σ̂).
Both estimates then can be combined to provide our plug-in estimator of the
bandwidth.

Let ∆Dr denote the set of intervals between consecutive spikes during trial
r. Under the assumption that these inter-spike intervals are exponentially
distributed, a robust estimator of the rate is provided by λ̂ = log(2)

mdn(∆Dr)
, where

mdn() is the median (Forbes et al., 2011). Using the median, rather than the
mean, prevents the estimate from being overly influenced by long periods of
inactivity that might occur between clusters of spikes. Having an estimate
of λ̂ then provides an estimate of the standard deviation (λ̂ ≈ 1

σ̂
) and of the

expected sample size (λ̂ ≈ n̂).
Since λ̂ governs both the dispersion of spikes and their expected frequency

over each unit of time, we can substitute it into Silverman’s rule of thumb
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to yield the following plug-in estimator of the bandwidth:

ĥr,k ≈ 1.06
σ̂

n1/5
≈ 1.06

λ̂6/5
= 1.06

(
mdn (∆Dr)

log (2)

)6/5

(10)

Let κt,r,h correspond to a kernel estimate of the firing rate, using a box kernel

with the above bandwidths ĥr,k. This estimate is analogous to the value
µt,r,h obtained using the ARRIS procedure. When h = 1, this corresponds to
ordinary kernel density estimation. When h > 1, the observed spikes differ
in their weights, requiring a weighted kernel density estimate to be computed
(Guillamón et al., 1998). In either case, this permits rapid approximation of
the corresponding GCV scores:

GCV (D, h) ≈ ntnr

∑
t∈T
∑

r∈R (κt,r,1 − κt,r,h)2(
ntnr −

∑
r∈R tr (Hr)

)2

GCVr(Dr, hr) ≈ nt

∑
t∈T (κt,r,1 − κt,r,hr)2

(nt − tr (Hr))
2

GCVs(D, hs) ≈ ntnr

∑
t∈T
∑

r∈R

(
κt,r,1 − κt,r,ĥr,hs

)2

(
ntnr −

∑
r∈R tr (Hr)

)2

(11)

When values of h, hr, and hs are selected based on optimizing box kernel
estimates rather than ARRIS estimates, they respond to the same general
features of the data that ARRIS would respond to. When the session is
generally stable (i.e. when consecutive trials resemble one another), higher
values of h will be favored. When there are dramatic changes, lower values
of h will instead be favored to avoid mixing trials that are dissimilar. Once
the kernel approximation has provided a map of how narrow or broad the
weighted interpolation needs to be, ARRIS then goes on to provide a more
reliable estimate using the smoothed values of ĥr.

The principle application of the ARRIS procedure is to characterize changes
in the firing rate over the course of a recording session. In order to demon-
strate the efficacy of our approach, we first present two examples using simu-
lated data. This permits comparison of the estimates to the true underlying
rates.

In our first simulation (introduced in Figure 5), spikes were generated
by a Poisson process whose rate ρ was governed by the following function,
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Figure 6: Simulation of discontinuous multimodal firing. 50 trials of simulated spike
trains were generated using a function that changed over time. A. The veridical firing
rate, varying from 0 to 20 Hz, over the 50 simulated trials. B. The spike raster resulting
from the simulation. C. The ARRIS estimate of the firing rate, using optimized dynamic
bandwidths ĥr,ĥs

. D. The optimal fixed (dashed line) and dynamic (solid line) bandwidths
for these data, as determined using kernel density approximation and generalized cross-
validation.

measured in Hz:

f(ρ|t, r) =


20 · exp

(
−(t−1)2

0.18

)
+ 20 · exp

(
−(t−4)2

0.18

)
when r < 11 or r > 40

20 · exp

(
−(t−2.5)2

2·exp
(

−(r−25)2

200

)2

)
otherwise

(12)

Thus, during the first 10 trials and the last 10 trials, firing was governed by
two static Gaussian functions. During the intermediate period, firing was
governed by a single Gaussian function whose standard deviation varied as
a function of trial number. A complete map of the estimated firing rate is
plotted in Figure 6A, and the resulting spike raster is plotted in Figure 6B.
Here it becomes especially clear that the variable bandwidths capture the
broad strokes of the firing reliably, despite the rapidly changing character of
the underlying generating function.

As previously described, Figure 5 depicts how estimates were obtained for
three of these simulated trials. The optimized variable bandwidth favored a
wider sample of trials near trials 25 because the data appeared more stable
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Figure 7: ARRIS estimates of individual simulated trials. Estimates of the firing
rate during three trials (5, 25, 45), given an optimized dynamic smoothing bandwidth.
The firing rate responsible for the data is shown as a dotted line, whereas the ARRIS
estimate is shown as a solid line. The dark and light shaded overlays represent the 80%
and 99% confidence intervals, respectively.

in that interval, whereas much narrower bandwidths were favored near tran-
sitions. The tricube weight function further ensured that each local estimate
was primarily influenced by those trials near the trial of interest, with dis-
tant trials making only small contributions to the estimate. These permitted,
within a single analysis, the detection of the three different epochs of firing.

Optimal bandwidths were obtained for this dataset using kernel density
approximation. This yielded an optimal fixed bandwidth of ĥ = 4.88 and an
optimal smoothing bandwidth of ĥs = 5.75. Figure 6C shows both the esti-
mated firing rate, while Figure 6D shows the varying values of ĥr,ĥs . Despite
being presented with data that (1) display multiple abrupt transitions in the
underlying generating function and (2) show dynamic change in the gener-
ating function, ARRIS nevertheless captures the major patterns of activity
successfully. A factor contributing to this recovery is the large variation in the
values of ĥr over the course of the session. By displaying narrow bandwidths
near the discontinuities after trials 10 and 40, but broad bandwidths during
the comparatively stable firing near trial 25, ARRIS is able to approximate
both varieties of features.

To examine this estimate in more detail, Figure 7A-C plots the estimates
during three different trials: 5, 25, and 45. The estimated function (black
line) compares very favorably with the generating function (dotted line) in
every case. Additionally the 80% credible intervals (dark gray) and 99%
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Figure 8: ARRIS estimates at specific times across trials. Estimates of the firing
rate at four different trial times (1s, 2s, 3s, 4s) across the full session, given an optimized
dynamic smoothing bandwidth. The firing rate responsible for the data is shown as a
dotted line, whereas the ARRIS estimate is shown as a solid line. The dark and light
shaded overlays represent the 80% and 99% confidence intervals, respectively.

credible intervals (light gray) are shown for each estimate, and the true rate
reliably falls within those bounds during all but a handful of time bins.

Although the credible intervals consistently include the true rate, the
estimate is somewhat attenuated near the peaks of the generating function.
This can be credited in part to the small amount of data in this example.
Given that this simulated example makes use of only 50 trials, and that the
frequent discontinuities in firing require a very narrow bandwidth, each of the
estimates in Figure 7 is based on the weighted contribution of less than ten
trials. Under these circumstances, the information available from the spikes
is insufficient to capture those fine details. Consequently, it is important to
report not only the estimate, but the credible interval established from the
sampling distribution St,r.

Another manner in which the estimates may be evaluated is across trials
during a given window of time. Figure 8A-D does so at four trial times: 1s,
2s, 3s, and 4s. The estimate reliably hews close to the true rate, keeping
it within the 80% credible intervals (dark gray) and 99% credible intervals
(light gray). Even the sharp discontinuities at trials 10 and 40 yield fairly
rapid adjustments, although these transitions do display slight attenuation.

The estimates presented in Figure 8 are smooth even between trials. For
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Figure 9: Simulation of smoothly transitioning firing. 500 trials of simulated spike
trains were generated using a function that changed over time. A. The veridical firing
rate, varying from 0 to 55 Hz, over the 500 simulated trials. B. The spike raster resulting
from the simulation. C. The ARRIS estimate of the firing rate, using optimized dynamic
bandwidths ĥr,ĥs

. D. The optimal fixed (dashed line) and dynamic (solid line) bandwidths
for these data, as determined using kernel density approximation and generalized cross-
validation. E-G. Spike raster and ARRIS analysis of a randomly selected subset of 10%
of the original data (50 trials).

example, estimates were obtained not just for trials 1 and 2, but for the
intervening values of 1.2, 1.4, 1.6, and 1.8 as well. The ARRIS procedure can
be used to make estimates for arbitrary values of r, even those in between
integer values.

Our second simulation demonstrates a more ambitious objective: To re-
constitute the underlying changes in firing given only a subset of the available
data. Figure 9A presents the source function of a Poisson process, with rate
ρ (in Hz), governed by the following equation:

f(ρ|t, r) =
1500− r

45
γ (t− 1, 2, 0.25)+

2r

9
γ (t− 1, 2, 2)+

100

3
γ (2, 1.5, 3) (13)

This function was used to generate a spike raster for 500 trials (with trial
number denoted by r) lasting 5 seconds (with trial time denoted by t). The
full spike raster is presented in Figure 9B. From these 500 trials, we selected
50 of the trials at random; these spikes are plotted in Figure 9E. In addition
to using the interpolation procedure to smooth out the error in estimation of
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Figure 10: ARRIS estimates of individual simulated trials. A-C. Estimates of
the firing rate during three trials (50, 250, 450), given an optimized dynamic smoothing
bandwidth. The firing rate responsible for the data is shown as a dotted line, whereas the
ARRIS estimate is shown as a solid line. The dark and light shaded overlays represent
the 80% and 99% credible intervals, respectively. D-F. Estimates of the same trials, this
time based on a random subset of 10% of the trials. Because ARRIS performs a principled
interpolation over gaps in the data, these estimates may be obtained and their credible
interval evaluated even when these trial numbers are not included in the 10% subset.

the full dataset, we also attempted to reconstruct the firing using the 50-trial
subset.

Figure 9C presents the interpolated estimate of the firing rate based on
the full 500 trials, and Figure 9D shows the corresponding values of the op-
timized bandwidths. Figure 9F, in turn, presents the estimate based on the
50-trial subset, and Figure 9G shows the bandwidths optimized for that sub-
set of data. Even with a minority of the trials, the overall form of the source
function can reliably be recovered. In both analyses, the event-related po-
tential after the 1s mark can be seen to decline, whereas the period following
the peak gradually rises.

Note that the rate estimates provided by Figure 9F are continuous over
the entire session, despite the large irregular gaps in the spike raster. For
example, even though there was a wide gap between trials 110 and 160,
weighted interpolation nevertheless permits an estimate for any one of those
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Figure 11: Estimated dynamics of firing across all trials of a transitive inference
task. A rhesus macaque was presented with the 21 possible pairs of stimuli from a 7-item
list. The subject was unfamiliar with the stimuli at the outset, and learned the ordered
list by trial and error over the course of the session. Left. Raster of spikes from a parietal
neuron during completed trials. Right. ARRIS estimate of firing, interpolated across all
trials.

trials, and yields an estimate comparable to that obtained when all trials
were used (albeit with additional uncertainty). Larger values of ĥ or ĥr
are generally required when working with a subset of the full session, as
can be observed by comparing the optimized bandwidths in Figure 9D and
Figure 9G.

Figure 10A-C shows the fit for three specific trials, based on the full data
(top row) and on only 50 trials (bottom row), along with the 80% credible
interval (dark gray) and the 99% credible interval (light gray). When all
the data are available, the source function can be recovered almost exactly,
differing only in the difficulty ARRIS displays capturing the apex of the
peak. In the case using only 10% of the data (Figure 10D-F), the mean rate
reasonably approximates the source function, but broad attenuation effects
persist in the 99% credible intervals. In both cases, ARRIS succeeds at
modeling the abrupt discontinuity at the 1s mark.

To demonstrate learning in an empirical case, ARRIS was used to estimate
firing rates during a transitive inference procedure (Jensen et al., 2013). In
the transitive inference paradigm, subjects are shown pairs of stimuli, drawn
from an ordered list. Choosing the stimulus positioned earlier in the list re-
sults in a reward. Subjects are naive about the list ordering at the beginning
of a session: Over successive trials, they must deduce the full ordering of list
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Figure 12: Estimated dynamics of firing as a function of response accuracy. The
peak estimated firing rate from Figure 11 (black), compared to a smoothed estimate of
response accuracy over the course of the session (red). Shaded regions correspond to the
80% and 99% confidence intervals, respectively. The dashed line corresponds to chance
levels of accuracy.

items on the basis of these pair-wise comparisons.
A rhesus macaque was presented with pairs of images draw from a 7-

item list. Choices were made using eye movements, using equipment and
procedures described by Teichert et al. (2014). Trial times were centered at
stimulus onset (zebra stripe). Some trials were omitted because the subject
did not fixate on the start stimulus (e.g. near trial 460). Despite these gaps,
ARRIS had no difficulty producing an interpolated estimate of activity.

Figure 11 presents both a spike raster and an ARRIS estimate of activ-
ity in a parietal cell, showing a pronounced visual response that grew over
successive trials. Although traditional analyses would reveal a strong visual
response, their assumption of trial exchangeability would obscure this steady
increase in the rate of firing.

Changes in firing that emerge during this process can be compared with
performance to provide insight into the dynamics of learning. Figure 12
shows the correspondence between peak neural activity (occurring approxi-
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mately 120ms after stimulus onset) and overall response accuracy. Even at
the beginning of the session, the stimulus onset evokes a clear 60 Hz response
from the cell. However, as accuracy gradually rises to approximately 85%,
the firing rate rises to as high as 110 Hz.

Discussion

ARRIS permits the firing rate of a neuron to be rigorously evaluated, even
in small samples, thanks to the RJMCMC algorithm. This in turn provides
a way to evaluate how activity changes over the course of a recording session.
It provides an instantaneous estimate of any point during training by drawing
evidence from a weighted ensemble of trials centered on the time of interest.
The set of trials included, and their relative weight, is optimized to ensure
that only small sets of trials are included when firing is changing rapidly,
while larger sets of trials are used when activity is comparatively stable.

The major potential for ARRIS is to assess firing rates in näıve subjects.
Historically, the norm in electrophysiology is to overtrain subjects in order to
ensure that performance is at a stable ceiling. This, in turn, justifies the use of
estimation procedures that require full exchangeability among trials. Because
ARRIS can provide an optimized estimate of changing firing rates, even when
those changes are relatively abrupt, fruitful electrophysiology can now be
done during training. This will enable important questions to be asked, such
as whether changes in performance can be detected before changes in activity.

The smoothed bandwidth used in weighted interpolation (ĥr,hs) also pro-
vides a useful summary of changing activity, as it can be used as an indicator
of how rapidly patterns of firing are changing. For example, in Figure 5,
lower values of ĥr,hs signal moments of abrupt transition, whereas higher
values correspond to relatively stable firing. The slope of the rise and fall
of ĥr,hs effectively models the acceleration and deceleration of change in the
firing dynamics.

ARRIS is also useful when making estimates based on small samples, even
when weighted interpolation is not strictly required. For example, Morrison
et al. (2011) made use of a design in which subjects learned which stimuli
were paired with rewards and punishments, only to have those contingent
relationships suddenly reversed. Changes in firing rates caused by surprisal
are likely to be brief, but could be characterized using an ARRIS analysis
that was limited the trials immediately following each reversal.
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The use of weighted interpolation not only presumes similarity between
temporally proximate trials, but emphasizes similarity while also treating
deviations as resulting from measurement error. This is necessary in neurons
that are involved in learning and memory, but may not be appropriate in
strictly sensory neurons that respond exclusively (and without adaptation
over time) to properties of the stimulus. By treating session time as an
important covariate, weighted interpolation can be used to rule out learning
effects for neurons that do not display them. Having ruled out learning,
ARRIS without weighted interpolation (as implemented in Figure 1) could
then be used to obtain a reliable marginal estimate over the full session, as
could more traditional methods of characterizing firing rate.

ARRIS is used for temporal interpolation, but it is intrinsically a single
unit estimation procedure. Consequently, one open question is how best
to apply ARRIS to simultaneous multi-unit recording. One possibility is
to use weighted mixtures of multiple units to obtain population estimates.
Thus, rather than mixing trials that were recorded at different times (as
in Figures 11 and 12), a weighted mixture of multiple simultaneous units
could be used. Such an analysis would, however, require solving the difficult
problem of discovering the optimal weights by which to combine units. Thus,
another more feasible approach would be to perform the ARRIS analysis on
the individual recording units, then to use integrative techniques, such as
representational similarity analysis (Kriegeskorte et al., 2008), to discover
the patterns of firing among ensembles of neurons.

A limitation of the present implementation of ARRIS is that it does
not incorporate refractory periods into the analysis. This is not a problem
when smoothing over many trials, as the mixture of trials rapidly comes to
resemble that of a Poisson process with respect to their inter-spike interval
distributions (Hanes et al., 1995; Kass et al., 2005; Lindner, 2006). The
concern remains, however, for single-trial estimates. Several potent models
for refractory firing have been proposed, such as the inhomogenous Markov
interval model (Kass & Ventura, 2001) and the point-process likelihood model
(Truccolo et al., 2005). Both of these methods, however, are computationally
intensive and data-hungry.

This raises the as-yet unresolved problem of how to best characterize firing
patterns that violate Poisson assumptions, given very small samples. When
spikes are assumed to be independent random events, the Poisson distribution
is unambiguously the maximum entropy distribution that describes their
frequency (Harremoës, 2001). However, when this assumption is relaxed,
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there are an infinite number of hypotheses explaining how spikes might be
interdependent. Differentiating between such models is only possible with
relatively large bodies of data. In light of the difficulty in distinguishing
between models, the best general approach given small samples is to simply
rely on descriptive inference using the negative binomial distribution (Pillow
& Scott, 2012).

In conclusion, ARRIS has the ability to make sensible estimates of a cell’s
firing rate given only a few trials. This, when combined with a strategy of
weighted interpolation over session time or over perceptual space, makes it
possible to obtain instantaneous estimates of activity. This will permit, for
the first time, a systematic examination of how firing changes in response to
real-time feedback from the environment.

Code

Functions implementing the ARRIS algorithm are available on GitHub
in the /belarius/matlab-ARRIS repository.
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