
NextflowWorkbench: Reproducible and1

Reusable Workflows for Beginners and2

Experts.3

Jason P. Kurs1, Manuele Simi1,2, and Fabien Campagne1,2,3,*
4

1The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational5

Biomedicine, Weill Cornell Medicine, New York, NY, United States of America6
2Clinical Translational Science Center, Weill Cornell Medicine, New York, NY, United7

States of America8
3Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY,9

United States of America10
*To whom correspondence should be addressed: fac2003@campagnelab.org11

ABSTRACT12

Computational workflows and pipelines are often created to automate series of processing steps. For
instance, workflows enable one to standardize analysis for large projects or core facilities, but are also
useful for individual biologists who need to perform repetitive data processing. Some workflow systems,
designed for beginners, offer a graphical user interface and have been very popular with biologists. In
practice, these tools are infrequently used by more experienced bioinformaticians, who may require more
flexibility or performance than afforded by the user interfaces, and seem to prefer developing workflows
with scripting or command line tools. Here, we present a workflow system, the NextflowWorkbench (NW),
which was designed for both beginners and experts, and blends the distinction between user interface and
scripting language. This system extends and reuses the popular Nextflow workflow description language
and shares its advantages. In contrast to Nextflow, NextflowWorkbench offers an integrated development
environment that helps complete beginners get started with workflow development. Auto-completion
helps beginners who do not know the syntax of the Nextflow language. Reusable processes provide
modular workflows. Programmers will benefit from unique interactive features that help users work more
productively with docker containers. We illustrate this tool with a workflow to estimate RNA-Seq counts
using Kallisto. We found that beginners can be taught how to assemble this workflow in a two hours
training session. NW workflows are portable and can execute on laptop/desktop computers with docker,
on a lab cluster, or in the cloud to facilitate training. NextflowWorkbench is open-source and available at
http://workflow.campagnelab.org.

13

Keywords: Workflows, Pipelines, Reproducibility, Docker, Language Workbench, JetBrains MPS14

INTRODUCTION15

A computational workflow or pipeline is a description of a series of computational steps connected to each16

other. Each step accepts one or more input(s) and transforms input(s) to produce one or more output(s).17

Computational workflows are used in many engineering and scientific domains, but are particularly useful18

in fields such as bioinformatics where analysis activities are repetitive and benefit from being automated.19

Workflows can be represented as diagrams and their steps followed manually, but many solutions have20

been developed to represent workflows electronically and automate their execution.21

Automated workflow systems include a way for a user to edit the formal representation of the workflow,22

and its component steps, as well as a runtime system to execute specific workflows. Two broad families23

of workflow systems have been developed and are still in use today.24

The first category is workflows with graphical user interfaces, which often represent workflows25

as connected components on a 2D diagram. There is a long history for such tools, but Galaxy and26

GenePattern are well known examples in Bioinformatics Giardine et al. [2005], Reich et al. [2006].27

Workflow systems with graphical user interfaces are favored by beginners, or by educators who need28

to teach beginners (see this thread, for instance, where these arguments have been made by others29

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2016. ; https://doi.org/10.1101/041236doi: bioRxiv preprint

http://workflow.campagnelab.org
https://doi.org/10.1101/041236
http://creativecommons.org/licenses/by/4.0/

https://www.biostars.org/p/50034/).30

The second category of workflow systems is based on programming and scripting languages. A31

workflow is expressed in a declarative or imperative language, or a combination of both. An example of32

declarative language is the makefile input of the make/gmake tool available in UNIX, which was initially33

developed to automate the compilation of programs, but has been used as well to implement workflows.34

An example of imperative workflow is when bioinformaticians develop a collection of scripts and execute35

these scripts to implement different pipelines.36

While useful, many of these systems fail to fulfill needs that are common in bioinformatics. For37

instance a makefile cannot easily be run in a distributed manner on multiple nodes of a cluster to parallelize38

the processing of large collections of data. Scripts can be run in parallel on a cluster with tools like GNU39

parallel or grid schedulers (e.g., Sun Grid Engine or SLURM), but a recurrent problem with scripts is that40

most of them are not easily portable to new environments. Indeed, most scripts are written to assume a41

specific location for the programs that they use (either the script expects a program to be in the PATH, or42

the script contains a dependency on some location defined in the system where the script was developed).43

When a dependency is not available in the location assumed by the script, the script fails and the user44

needs to resolve the issue before retrying execution. The problem of managing dependencies for scripts45

is often described as “dependency hell”, a term which many people believe adequately describes the46

practical difficulties of getting scripts to run on other systems than where they have been developed.47

Several groups have recently recognized these problems and have developed improved solutions48

targeted at bioinformaticians. Recent developments include BigDataScript Cingolani et al. [2015] and49

Nextflow Di Tommaso et al. [2014] (http://nextflow.io). These solutions address scalability and portability50

problems and are useful to users with programming and/or scripting experience.51

We recently asked the question of whether we could design a hybrid between scripting and user52

interface workflow systems. Such a hybrid system would make it possible for beginners and experts to53

collaborate more closely by using the same platform to represent and execute workflows. This manuscript54

describes the NextflowWorkbench, a workflow platform that addresses this question. We developed55

NextflowWorkbench with Language Workbench Technology implemented in the JetBrains MPS system56

(jetbrains.com/mps) Dmitriev [2004], Campagne [2014, 2015], Simi and Campagne [2014], Benson and57

Campagne [2015].58

This platform leverages Nextflow (see Di Tommaso et al. [2014] and http://nextflow.io), a workflow59

language developed for users familiar with the command line and scripting. NW shares most of the60

advantages of Nextflow, and adds features required for modularity and reuse. Importantly, NW also offers61

interactive features designed to guide new users who are not familiar with the syntax of the Nextflow62

language. We report on the design of NextflowWorkbench and on our experience teaching this new63

platform to biologists and clinicians with no prior scripting experience.64

METHODS65

We have used the MPS Language Workbench (http://jetbrains.com/mps), as also described in Campagne66

[2014] and Campagne [2015]. For an introduction to Language Workbench Technology (LWT) in the67

context of bioinformatics see Simi and Campagne [2014] and Benson and Campagne [2015], Campagne68

and Simi [2015] in the context of data analysis. Methods for this study are similar to those described69

in Campagne et al. [2015].70

Language Design71

JPK designed and developed the core MPS languages of NextflowWorkbench during a three month72

summer internship in the Campagne laboratory. These core languages include functionality to represent73

Processes, Workflow and execution Scripts. Additional developments were conducted by MS and FC to74

extend these languages and add docker (https://docker.com) and GobyWeb functionality. Full language75

development logs are available on the GitHub code repository (https://github.com/CampagneLaboratory/76

NextflowWorkbench). Briefly, we designed abstractions to represent Nextflow scripts in a modular fashion77

(decoupling Processes from Workflows). These abstractions were implemented with the structure, editor,78

constraints and typesystem aspects of MPS languages (described in Campagne [2014]). Importantly,79

the typesystem aspect makes it possible to typecheck a workflow as it is being developed and provide80

feedback to the developer. Nextflow scripts are generated from nodes of the languages using the MPS81

textgen aspect (Campagne [2014]).82

2/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2016. ; https://doi.org/10.1101/041236doi: bioRxiv preprint

https://www.biostars.org/p/50034/
http://nextflow.io
jetbrains.com/mps
http://nextflow.io
http://jetbrains.com/mps
https://docker.com
https://github.com/CampagneLaboratory/NextflowWorkbench
https://github.com/CampagneLaboratory/NextflowWorkbench
https://github.com/CampagneLaboratory/NextflowWorkbench
https://doi.org/10.1101/041236
http://creativecommons.org/licenses/by/4.0/

Workflow Execution83

Workflows can be executed directly from within the MPS LW. Execution is supported on the developers’84

machine (for Linux and Mac OS platforms only, since Nextflow does not run on Windows), on a remote85

Linux node, where one of the execution mechanisms supported by Nextflow must be available (e.g., Sun86

Grid Engine, SLURM, Apache Ignite), or in the Cloud (Google Cloud platform is supported at this time,87

see cluster provisioning). This capability was implemented with Run Configurations (see Campagne88

[2015], Chapter 5). Executing a workflow on a lab cluster or in the cloud is done the same way after89

configuring the IP address or hostname of the cluster front-end, and the necessary credentials to SSH onto90

this server.91

Cluster Provisioning in the Cloud92

We have developed automated methods to provision a cluster in the cloud. Briefly, we use the Google Ge-93

nomics branch of elasticluster (http://googlegenomics.readthedocs.org/en/latest/use cases/setup gridengine94

cluster on compute engine/) to configure a cluster with one front-end and n nodes, where n is configurable95

by the end user of NW. Because Elasticluster has a complicated installation, which most beginners may not96

be able to complete, we prepared a docker image which contains all the necessary tools and customization97

needed to create a cluster. NW offers a language with a user interface to configure the parameters of a98

cluster (e.g., number of compute nodes, type of node, how much storage each node should have, etc.).99

Pressing a button on this user interface (see Figure 8) executes the appropriate script inside the elasticluster100

container and creates or destroys a cluster.101

Scripts102

To implement scripts as text with auto-completion, we used the MPS RichText plugin (developed and103

distributed by members of the MBEDDR project Voelter et al. [2012]). The plugin implements the104

approach described in Voelter [2013].105

Documentation106

Project documentation has been developed with LATEXand the Editor2PDF language and plugin (https:107

//github.com/CampagneLaboratory/Editor2PDF). Complete documentation is available at Kurs and108

Campagne [2015].109

RESULTS110

A Workflow System for Beginners and Experts In this study, we designed a workflow system aimed111

at the full spectrum of workflow users, from beginners to computational experts. Figure 1 presents the112

advantages of this new workflow system across its intended spectrum of users. The following results113

section describes the design of this system and the innovations introduced to help with the development114

and maintenance of reproducible and high-performance workflows. This section also addresses the115

question of whether this system can be taught effectively to beginners with no programming or command116

line experience.117

Evaluation of Workflow Systems We selected Nextflow as the target language for the NextflowWork-118

bench platform after comparing three systems with similar goals. The comparison included BigDataScript119

(http://pcingola.github.io/BigDataScript/, Cingolani et al. [2015]), Nextflow (http://nextflow.io, Di Tom-120

maso et al. [2014]) and the Swift language (http://swift-lang.org/, Wilde et al. [2011]). These systems121

were selected for evaluation because they support parallel execution of workflows on multi-node clusters122

and provide a reasonable level of abstraction to express workflows.123

To compare these systems, two evaluators tried to implement a simple analysis pipeline with each of124

them. One evaluator was an experienced software engineer with decades of programming and scripting125

experience (MS). The second evaluator (JPK) was a sophomore undergraduate student with intermediate126

level programming and scripting experience. Both evaluators completed the implementation of the test127

pipeline with BigDataScript and Nextflow. The more experienced evaluator developed a partial prototype128

workflow with Swift, but reported that locating information in the online documentation was tedious and129

that the semantic of the language was far from intuitive.130

This short evaluation revealed a number of characteristics, advantages and drawbacks of the three131

systems:132

3/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2016. ; https://doi.org/10.1101/041236doi: bioRxiv preprint

http://googlegenomics.readthedocs.org/en/latest/use_cases/setup_gridengine_cluster_on_compute_engine/
http://googlegenomics.readthedocs.org/en/latest/use_cases/setup_gridengine_cluster_on_compute_engine/
http://googlegenomics.readthedocs.org/en/latest/use_cases/setup_gridengine_cluster_on_compute_engine/
https://github.com/CampagneLaboratory/Editor2PDF
https://github.com/CampagneLaboratory/Editor2PDF
https://github.com/CampagneLaboratory/Editor2PDF
http://pcingola.github.io/BigDataScript/
http://nextflow.io
http://swift-lang.org/
https://doi.org/10.1101/041236
http://creativecommons.org/licenses/by/4.0/

Beginner Intermediate Expert

Level of computational and programming experience of a user

Training is recommended to
facilitate first contact with
the platform

Can use graphical user
interface to assemble
Workflows. No need to
know the Nextflow syntax.

Can use language
extensions contributed by
experts

Can develop complex Processes and
Docker images for others to reuse

Can design language extensions and
share with intermediate users and
beginners (e.g., declarative GobyWeb
resource installation)

All users benefit from a unified platform: graphical notations, integrated version control management, plugin system.

With growing command line
experience, develops more
complex Processes

As a user learns elements of
programming, he/she can extend
the languages with intentions to
help with repetitive tasks

Learning is facilitated
by the consistency
and homogeneity of
the platform

Can design micro-languages to
offer interactive features for more
seamless development of
Processes and Workflows (e.g.,
docker path autocompletion)

Advantages of NextflowWorkbench

All the advantages of the Nextflow language: workflows are implicitly parallel & run over several execution systems

Figure 1. Advantages of the NextflowWorkbench workflow system across its intended user
spectrum.

Swift requires that all programs used in the workflow are already installed on each machine of a133

cluster. A text file binds the name of a program used in the Swift script to the path of this program on the134

machine. This requirement means that Swift assumes that dependencies of a workflow are pre-installed135

and fixed, and makes no effort to facilitate the installation of programs and dependencies on cluster nodes.136

BigDataScript was presented in detail in Cingolani et al. [2015]. During our evaluation, we noticed a137

bug report in the forum that indicated a major error in dataflow analysis of the script by the BigDataScript138

compiler/interpreter (see https://groups.google.com/forum/#!topic/bigdatascript-users/r7rQ03LBYIc. The139

magnitude of this error suggested to us that BigDataScript was not, at the time, a robust language for140

developing workflows.141

Nextflow performed as expected and the evaluators found the documentation sometimes difficult142

to follow, but overall fairly complete and sufficient. The language offers direct support for running143

steps of a workflow— called Processes in the Nextflow language— inside a docker container. This144

feature is extremely useful to develop workflows that can execute on other systems without tedious145

dependency installation Di Tommaso et al. [2015]. Negatives were the lack of language modularity,146

making it impossible to develop libraries of reusable processes and the difficulty of knowing at first glance147

—at least for beginners who do not know the language well— what type of data is exchanged between148

processes.149

The evaluators concluded that of the three systems, Nextflow was the more promising system for150

representing workflows as scripts.151

Requirements for an Improved Workflow Language Following up this evaluation, we decided to152

design a variant of the Nextflow language that would directly address the limitations that our evaluation153

had identified. Specifically, we wanted:154

• A modular workflow language that would make it straightforward to reuse processes developed155

by others in new workflows. Modularity can enable experts to develop processes and share these156

processes with beginners.157

• An explicitly typed workflow language. We believe that an explicitly typed language makes it more158

obvious to beginners what data are expected as input to a process and what data will be produced159

as output. Coupled with a mechanism to check type compatibility (a type system) at runtime and160

highlight type errors, explicit types make it easier for beginners to develop correct workflows. A161

4/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2016. ; https://doi.org/10.1101/041236doi: bioRxiv preprint

https://groups.google.com/forum/#!topic/bigdatascript-users/r7rQ03LBYIc
https://doi.org/10.1101/041236
http://creativecommons.org/licenses/by/4.0/

type system is also useful to experts because it highlights errors that could be missed and only162

become apparent when trying to execute the workflow.163

• A language that does not require the user to know or remember its precise syntax to use it. Such164

languages can be built with language workbench technology to provide auto-completion that guides165

beginners and experts. We have shown the effectiveness of these approaches to help beginners in166

the MetaR project (Campagne et al. [2015]) and were curious to find out if they could also help167

with workflow development.168

Process A NexflowWorkbench Process is illustrated in Figure 2. A process consists of a set of inputs,169

a set of outputs, and a script, which implements the processing of inputs to generate outputs.170

Process Download_1M_Reads inutano/sra-toolkit:latest

<<no process option overrides>>

input:
string id

output:
tuple [file '*_1.fastq.gz' , file '*_2.fastq.gz']

script:

fastq-dump -X 1000000 --split-files $id
gzip $id _*.fastq

Figure 2. NextflowWorkbench Process. A Process defines inputs, outputs, an optional docker
container, and a script. In the example shown, the process accepts an input called ‘id’ of type string. The
string is used to query the Short Read Archive with the sra-toolkit and retrieve paired FASTQ files. Inputs
must be available before the script can execute. Similarly to Nextflow, a process only executes
successfully if the outputs it declared have been produced by the script execution. Notice how the Process
incorporates graphical elements and colors to clearly mark different roles of the language elements.
When a docker container is specified, as shown in this figure, the commands shown in the script will be
executed inside the container. This semantic is implemented by the Nextflow execution runtime.
NextflowWorkbench provides autocompletion for input arguments inside the script. This mechanism
reduces the risk of typos in variable names and provides instant refactoring of variable names across the
script when the workflow programmer renames an input variable.

In contrast to Nextflow, Processes in the NextflowWorkbench are created independently from a171

Workflow script (i.e., outside the script). As standalone language constructs (implemented as MPS root172

nodes), Processes can be developed and packaged to be shared with others (for instance as solutions173

provided in MPS plugins).174

As usual when developing a language with LWT, most parts of a Process can be extended by a user of175

NextflowWorkbench using language composition. The next section describes an application of language176

composition where we extended the Script part of a Process with the ability to automatically install data177

resources needed by the script.178

Processes with Variable Data Resources Docker containers are useful to isolate the process from179

the machine where the Process executed, but they have limitations. As we developed bioinformatics180

workflows with the NextflowWorkbench, we found that docker is only a partial solution when a process181

requires variable data resources.182

As an example, consider the process shown in Figure 3. This Process estimates counts for RNA-seq183

reads against a transcriptome. Different species have different transcriptomes, and different reference184

transcriptomes or build versions exist for the same species. With the mechanisms provided by docker,185

one would create different images for different combinations of species and reference build number. This186

is not really practical because there are a large number of these combinations and only a few may be187

5/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2016. ; https://doi.org/10.1101/041236doi: bioRxiv preprint

https://doi.org/10.1101/041236
http://creativecommons.org/licenses/by/4.0/

of practical interest. If a core facility wanted to provide workflows to support multiple species, core188

personnel would have to anticipate the needs of its user base and configure a large number of possible189

images to support any species that the core users could need.190

Process KallistoCountsWithTuples artifacts/kallisto-homo-sapiens :1.0.0

<<no process option overrides>>

input:
tuple [file read1, file read2]

output:
file 'counts-*.tsv'

script:
requires { resource KALLISTO_INDEX 0.42.3 resolved as: KALLISTO_INDEX -> 0.42.3

INDEX.organism = Homo_sapiens
INDEX.reference-build = GRCH38
INDEX.ensembl-version-number = 82

}

#!/bin/bash (with automatic GobyWeb artifact installation)
echo "Processing: " $read1
TRANSCRIPT_INDEX= ${artifact path KALLISTO_INDEX.INDEX }/transcripts_index
echo ${TRANSCRIPT_INDEX}
basename=`basename $read1 `
echo "Basename= ${basename}"

mkdir output
${artifact path KALLISTO.BINARIES }/bin/kallisto quant --index=${TRANSCRIPT_INDEX} $read1 $read2
--output-dir=./output
#touch output/abundance.tsv
ls -ltrR .
cp output/abundance.tsv counts-${basename}.tsv
exit 0

Figure 3. Process with GobyWeb Artifact Installation. This process uses a special type of script
which declares dependencies on GobyWeb resources. GobyWeb resources can automatically install
variable data resources, such as a specific transcriptome index identifier by species, reference build and
Ensembl version number (as shown). In this example, the script requests installation of the
KALLISTO INDEX resource version 0.42.3. This resource was configured to retrieve the human
transcriptome corresponding to GRCH38, in Ensembl version 82. Notice that rather than writing the
complicated steps to download and index this transcriptome, the workflow developer can express the data
dependency declaratively.

Rather than creating static images with all the data packaged in a container and for all possible choices191

of interest, it can be more efficient to provide a mechanism to declare what specific resource is needed, and192

use software already packaged inside the docker image to assemble data resources on demand. In this case,193

assembling the transcriptome resource consists in downloading the appropriate transcriptome reference194

sequence from Ensembl and indexing this reference with the Kallisto program. We have developed195

mechanisms to support this on-demand strategy, and make it easy to construct specific data resources. The196

use of these mechanisms is shown in Figure 3, where a simple requires block declares a dependency197

on the KALLISTO INDEX data resource. The same approach also supports choosing and installing198

specific versions of software resources.199

Resource installation scripts are built with the method previously developed for GobyWeb Dorff200

et al. [2013]. Examples of resources configurations are distributed on GitHub at https://github.com/201

CampagneLaboratory/gobyweb2-plugins/tree/master/plugins/resources (Campagne et al. [2016]).202

Interactive Docker Features Developing scripts that run inside a docker container can be challenging203

because the programmer has to know and remember what programs and data are available inside the204

container and their precise location. The traditional way to build this understanding is to use interactive205

console sessions manually started inside a container. The shell can then be used to inspect the files and206

programs available in the running container and the user has to copy and paste these locations in the207

script. In NextflowWorkbench, we developed an auto-completion feature that shows container directories208

interactively when writing the Process script. With this method, a developer can associate a docker209

image to a Process, start an interactive container, and use auto-completion in the script to locate files210

6/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2016. ; https://doi.org/10.1101/041236doi: bioRxiv preprint

https://github.com/CampagneLaboratory/gobyweb2-plugins/tree/master/plugins/resources
https://github.com/CampagneLaboratory/gobyweb2-plugins/tree/master/plugins/resources
https://github.com/CampagneLaboratory/gobyweb2-plugins/tree/master/plugins/resources
https://doi.org/10.1101/041236
http://creativecommons.org/licenses/by/4.0/

or directories of interest (see Figure 4 for an illustration) without even leaving the workbench. Writing211

correct paths becomes seamless and no longer requires switching between Process editor and console.212

Similar capabilities are available to auto-complete commands in PATH as well as finding the exact location213

of data or programs installed as GobyWeb resources (an example is shown in Figure 3 where $artifact214

paths can be assembled using auto-completion).215

Figure 4. Interactive Path Auto-Completion. This figure illustrates interactive auto-completion of
paths inside a docker container. After starting an interactive docker container, Process developers can
auto-complete paths inside the docker container in the editor. Similar auto-completion functionality is
offered for the GobyWeb data and program resources. These interactive features are implemented with
standard features of the MPS language workbench.

NCBI/SRA Download *.fastq.gz
(two files per sample)

Run QC FastQC HTML outputs

Kallisto counts-*.tsv
(one file per sample)

Output: combined-counts.tsv
(ready for diff-exp, e.g., with MetaR/Limma Voom)

Combine
(R script)

Input: Sample ids

Figure 5. Diagram of Workflow. This diagram is a schematic representation of the analysis workflow
shown in Figure 6.

Workflow A NextflowWorkbench Workflow consists of a set of inputs, references to processes and a216

list of optional report clauses. Assume that a user wishes to program a workflow to automate the analysis217

shown in Figure 5. Figure 6 illustrates how such a workflow can be expressed with the NextflowWorkbench218

language. In contrast to Nextflow, which define Processes inside a workflow script, a NextflowWorkbench219

Workflow accesses to processes by reference. Process references make it possible to name the Process’220

inputs and outputs in the context of the workflow. Such names are used to establish connections between221

process invocations. For instance, in Figure 6, the reference to KallistoCountsWithTuples222

associates the name B to the input of the Process, and associates the name result to its output. When223

the name result is defined in this way, the user becomes able to bind the name result in the input224

role of another process reference.225

In order to prevent cyclic dependencies, output names cannot be set on an input of the same process,226

and can be set on one input at most. When an output needs to be consumed by several downstream227

processes (e.g., to implement the fork after Download in Figure 5), the language offers an intention to228

duplicate a name (an intention is a context dependent menu, see Simi and Campagne [2014]). In Figure 6,229

7/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2016. ; https://doi.org/10.1101/041236doi: bioRxiv preprint

https://doi.org/10.1101/041236
http://creativecommons.org/licenses/by/4.0/

the symbols→ [A, B] indicates that the output of the Download 1M Reads process is duplicated230

and available through the names A and B. Note that the editor supports adding additional names between231

the brackets to replicate the name as many times as needed.232

Download reads from SRA, run FastQC, and estimate counts against the human transcriptome with Kallisto. Produce a
combine counts matrix.
Workflow FastqKallistoCounts

with input:
["SRR1514132", "SRR1514133", "SRR1514134", "SRR1514135", "SRR1514136", "SRR1514137", "SRR1514138", "SRR1514139",

"SRR1514140", "SRR1514141"] ⇢ [IDsToDownload, IDsToCombine]

do:
IDsToDownload << ... >> ⇢ id ▶ Download_1M_Reads▶ ['*_1.fastq.gz', '*_2.fastq.gz'] ⇢ [A, B] will run n times

<<options>> ;

A << ... >> ⇢ [read1, read2] ▶ QC ▶ '*.zip' ⇢ zip will run n times <<options>> ;

B << ... >> ⇢ [read1, read2] ▶ KallistoCountsWithTuples▶ 'counts-*.tsv' ⇢ result will run n times <<options>> ;

result.toList() ⇢ tsvs
IDsToCombine.toList() ⇢ ids

▶ CombineCounts ▶ counts.tsv ⇢ combined will run 1 time <<options>> ;

and report:
<< ... >>

Figure 6. Workflow Example. In this example, a set of SRA identifiers is defined in the input section
of the workflow. The list is then duplicated and fed to two processes: Download 1M Reads and
CombineCounts. The Download 1M Reads will run once for each identifier. When this process
terminates, the output, which consists of the tuple of files [’* 1.fastq.gz’, ’* 2.fastq.gz’], is duplicated to
be fed to the QC and KallistoCountsWithTuple processes. The counts obtained with Kallisto are
fed to CombineCounts along with the list of ids to produce a combined matrix of counts for all the
samples analyzed.

Utility to Non-Programmers An important question is whether the user interface provided by Nextflow-233

Workbench provides sufficient assistance to help non programmers with a biology or clinical background234

develop workflows.235

To address this question we developed training material and started teaching how to develop the work-236

flow shown in Figure 6. In these training sessions, biologists and clinicians develop the Download 1M237

Reads and QC processes and reuse the KallistoCountsWithTuple and CombineCounts pro-238

cesses from a library. Trainees are emailed instructions (http://campagnelab.org/software/nextflow-workbench/239

instructions-for-workflow-tutorial/) to install the software on their laptop prior to the training session.240

The main challenges we have encountered in these training sessions are related to the installation of241

the software on the trainees machines. About 30-45 minutes of the training sessions are spent verifying242

installations and performing some installation steps that the trainees have missed. In few cases, instructors243

are unable to complete an installation because the trainee computers did not meet minimal specifications244

(e.g., outdated operating system version, minimum required is Mac OS 10.8.3, or memory requirements245

not met, minimum needed is 8GB to run Kallisto inside docker on a Mac laptop). Reducing the number246

of installation steps and provisioning a cluster for remote execution of workflows would go a long way to247

make this training more accessible and we are actively developing solutions to this end.248

We found that we could teach trainees whose laptop met requirements how to assemble the workflow249

shown in Figure 6 in less than two hours (including time to troubleshoot installations).250

Advanced Docker Features The NextflowWorkbench can be used as an interactive development251

environment for developing docker images. We have developed a composable Dockerfile language.252

Figure 7 illustrates how docker build files can be written in the workbench to assemble a docker image. In253

this figure, the first two instructions (FROM and MAINTAINER) will be familiar to docker programmers254

who have written or read Dockerfiles. The last instruction, however, is not part of the standard Dockerfile255

language. This instruction was added with language composition to make it easier to install GobyWeb256

software or data resources inside the image.257

Support for Workflow Execution in the Cloud Motivated by the difficulty to install docker and run258

workflows on the trainees laptops, we have experimented with workflow execution in the cloud. A cluster259

8/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2016. ; https://doi.org/10.1101/041236doi: bioRxiv preprint

http://campagnelab.org/software/nextflow-workbench/instructions-for-workflow-tutorial/
http://campagnelab.org/software/nextflow-workbench/instructions-for-workflow-tutorial/
http://campagnelab.org/software/nextflow-workbench/instructions-for-workflow-tutorial/
https://doi.org/10.1101/041236
http://creativecommons.org/licenses/by/4.0/

Build Image images: Kallisto_Image

Dockerfile Kallisto {

FROM artifacts/software-gcc4.8:1.3.0 Pull

MAINTAINER Campagnelab "manuele.simi@campagnelab.org "
install gobyweb artifacts { resource KALLISTO_INDEX 0.42.3 resolved as: KALLISTO_INDEX -> 0.42.3

INDEX.organism = Homo_sapiens
INDEX.reference-build = GRCH38
INDEX.ensembl-version-number = 82

}

}

Figure 7. Support for Building Docker Images. NextflowWorkbench offers a composable language
to help workflow programmers construct Docker images. In this example, we show a DockerFile root
node with a special instruction type called install gobyweb artifacts. This special instruction
generates RUN commands that install GobyWeb resources in the docker image. Pressing the Build
Image button assembles the image. Built images can be used in Processes. Such instructions are useful
to create frozen docker images that contain a specific data resource, for instance for clinical analysis
workflows which must be frozen as required by regulations.

in the cloud is useful for training because clusters can be created specifically for training sessions and260

their configurations tuned to a specific type of training. We extended NextflowWorkbench with features to261

provision a cluster in the Google Cloud. Figure 8 illustrates the user interface available to an instructor, or262

to members of a laboratory who need the provision a cluster for computation.263

DISCUSSION264

Tools to support the development and execution of workflows have been popular among scientists who265

need to automate repetitive execution of programs to process different inputs. Galaxy and GenePattern266

are examples of such tools, which we call graphical workflow systems, designed to help biologists who267

are not programmers take advantage of bioinformatics programs and automate analyses. The tools offer a268

graphical metaphor for a workflow where boxes represent tools and lines connect the tools where data269

feeds from one tool to the other. Graphical workflow systems in wide use today were introduced about 10270

years ago Giardine et al. [2005], Reich et al. [2006], Hull et al. [2006]. While popularity for these tools271

grew among computational beginners, experts have yet to widely adopt these systems. While it is unclear272

what set of reasons explain this lack of interest across the community, understanding these reasons could273

help design improved systems that both beginners and experts would want to use.274

Recent work by others, including Di Tommaso et al. [2014], Cingolani et al. [2015], have developed275

languages to express workflows with scripting or programming languages in an effort to make these tools276

more useful to computational experts, including bioinformaticians, or biologists with a programming277

background. In contrast to graphical workflow systems, scripting workflow systems can be installed very278

quickly and provide strong support for high-performance computation (including support for implicit or279

explicit parallelization). The focus of these systems is on helping expert bioinformaticians build high280

performance parallel data analysis workflows. In addition to the workflow language, these systems offer281

a runtime system to execute the workflow using a range of high-performance grid schedulers (such as282

Sun Grid Engine, SLURM or Apache Ignite). Because these systems require expressing workflows as283

source code, learning how to use them requires becoming familiar with the syntax of a new computational284

language.285

Learning syntax is a difficult part of learning a programming language. For instance, Denny et al.286

[2011] studied the frequency of syntax errors made by 330 students taking an introductory Java course at287

the University of Auckland. They found that the top students made syntax errors in 50% of their coding288

attempts, and that the proportion of students who encountered syntax issues (at least four consecutive289

program submissions with syntax errors) was 2/3 across most student levels. This clearly illustrates that290

syntax is often a substantial barrier for novices who learn a new language. NextflowWorkbench offers291

several interactive features that help novices and guide them while they learn the nextflow syntax. For292

instance, auto-completion is a powerful feature that can be taught to students quickly and that provides293

help in every context of a NW workflow. Because the NW language is developed in MPS, rather than in294

text, it is also much harder to introduce syntax errors by accident. Keywords of the language are treated295

as constants, which cannot be accidentally modified. Errors are highlighted in red and provide immediate296

9/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2016. ; https://doi.org/10.1101/041236doi: bioRxiv preprint

https://doi.org/10.1101/041236
http://creativecommons.org/licenses/by/4.0/

Cluster configuration:

Number of frontend nodes = 1
Number of worker nodes = 2
Compute node type = n1-standard-2
Disk size for worker nodes = 20 GB
Folder with manager credentials = /Users/mas2182/.ssh

Manage your Cloud Cluster:

Create create the cluster

Shutdown shutdown the cluster

List Nodes information about the nodes in the cluster

Login to Frontend open a terminal in the frontend node

Elasticluster Terminal open a terminal to manage the cluster

Grant Access add credentials to the cluster

ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDBXXfR4JGKYWKcKSp+NyxAHOq4WIQf3p7+TSDCqW
manuelesimi@Manueles-MacBook-Pro.local1
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQC07+Yg5a2EoSdcuZ47pTq1nxro8PRGkjrJ/A45ZC
mas2182@macc xx7.med.cornell.edu

Figure 8. User Interface to Provision a Cluster in the Cloud. This user interface is implemented as
an MPS language distributed with NextflowWorkbench. It makes it possible for an instructor to provision
a cluster for a training session, or for a laboratory to provision a cluster for a large computation. The
language exposes a few parameters of the cluster, and provides actions to create and destroy a cluster,
obtain information about the nodes, or login to the cluster front-end. The “Grant Access” button can be
used to configure the sets of users who may submit jobs to the provisioned cluster.

10/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2016. ; https://doi.org/10.1101/041236doi: bioRxiv preprint

https://doi.org/10.1101/041236
http://creativecommons.org/licenses/by/4.0/

feedback to the workflow programmer. These features help guide new users while they learn the language.297

Kronos is a recent workflow system presented in a pre-print Taghiyar et al. [2016]. Kronos supports298

writing workflows as structured text files that get compiled into python scripts for execution on a variety of299

computational platforms (local execution, cluster and cloud). The structured file format makes it possible300

to define tasks (analogous to Nextflow processes) and subsequently connect these tasks using input output301

I/O connections. The Nextflow language supported by NextflowWorkbench seems more flexible than302

simple I/O connections because it is possible to transform data produced by processes with a sequence303

of functions (e.g., see the use of the toList() functions in Figure 6) before the data is provided to304

a process. A large number of pre-defined functions are supported by Nextflow as well as user-defined305

closures that can be used to process data in custom ways. This capability is not clearly apparent in the306

version of the Kronos preprint available as of this writing. Kronos also aims to provide a system that307

both beginners and experts can use, but does not provide a user interface and integrated development308

environment. Despite its simplicity, the Kronos language represents a new text-based language whose309

syntax must be learned by beginners who will find out about errors when running the compiler. In contrast,310

NextflowWorkbench provides an interactive graphical user interface and advanced features, such as real311

time error detection, on top of an expressive workflow language: Nextflow.312

In a broader context, languages to express workflows are essential elements of infrastructures where313

data analyses are moved to the data. Such infrastructures are becoming necessary in situations where314

volumes of data are very large (i.e., a tera-byte and more). When several groups need to make computations315

on the same set of data, transferring the data to the analysis code becomes a bottleneck. In these cases,316

it is more efficient to move the code to the data than to do the opposite. In the USA, the National317

Cancer Institute at the National Institutes of Health has started a series of pilots to evaluate this type of318

infrastructure. The Broad institute, who leads one of these pilot infrastructure projects, has developed319

the Workflow Description Language and supports executing workflows expressed in WDL on the Broad320

infrastructure. Another, similar, but incompatible file format to express workflows is the Common321

Workflow Language (CWL), developed by the Seven Bridges Cancer Genomics Cloud in another NIH/NCI322

cloud pilot. CWL aims to become a widely used standard to express workflows. To this end, the project323

organizers are trying to engage a large community of people in the design of CWL. NextflowWorkbench324

differs from these efforts in several important ways. First, the focus is on user experience to enable325

beginners to develop and use workflows and to make experts more productive. Neither WDL or CWL326

address this need. Second, because we used LWT to develop NextflowWorkbench, others can develop327

extensions of the languages that become immediately integrated with NextflowWorkbench (through328

language composition and micro-language design, as illustrated in Campagne and Simi [2015]). In our329

experience, in most cases, there is no need for coordination with our group to develop simple extensions330

and share them with others. This differs strikingly from a standard development effort, which requires331

numerous formal communications and coordination before any change can be made to the specification of332

the “standard”.333

Execution of workflows in the cloud is a useful feature for training sessions or when the volume of334

analyses grows beyond the capability of a laboratory compute resources. While the feature is useful,335

provisioning a cluster in the cloud can be far from trivial. For instance, the Google Genomics project336

provides instructions for creating a cluster with elasticluster, which requires an instructor to install337

tools and dependencies before configuring several text files (http://googlegenomics.readthedocs.org/en/338

latest/use cases/setup gridengine cluster on compute engine/). Completing these steps and configuring339

elasticluster may require weeks of effort. In contrast, NextflowWorkbench provides a seamless interface340

to provision a cluster in a commercial cloud. This interface is constructed with a language that adds this341

functionality to the MPS user interface, and with docker containers that provide the necessary software342

dependencies.343

CONCLUSION344

In this study, we presented the design and implementation of a workflow system meant for a broad spectrum345

of potential users, ranging from computational beginners to expert bioinformaticians. We applied language346

workbench technology to develop such a system, using Nextflow as underlying workflow execution system.347

We found that we could successfully teach this new workflow system to non-programmers who are able348

to develop and reuse the simple workflow presented in this manuscript in a short training session of two349

hours. The NextflowWorkbench platform supports workflow development from laptop computers to350

11/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2016. ; https://doi.org/10.1101/041236doi: bioRxiv preprint

http://googlegenomics.readthedocs.org/en/latest/use_cases/setup_gridengine_cluster_on_compute_engine/
http://googlegenomics.readthedocs.org/en/latest/use_cases/setup_gridengine_cluster_on_compute_engine/
http://googlegenomics.readthedocs.org/en/latest/use_cases/setup_gridengine_cluster_on_compute_engine/
https://doi.org/10.1101/041236
http://creativecommons.org/licenses/by/4.0/

clusters provisioned on a commercial cloud.351

ACKNOWLEDGMENTS352

The authors thank Paolo Di Tommaso for assistance integrating changes needed for the Nextflow-353

Workbench into Nextflow distributions. We thank the members of Cédric Notredame’s Laboratory354

(http://www.crg.eu/cedric notredame) for developing and maintaining Nextflow as an open-source project.355

This investigation was supported by the National Institutes of Health NIAID award 5R01AI107762-02356

to Fabien Campagne and by grant UL1 RR024996 (National Institutes of Health (NIH)/National Cen-357

ter for Research Resources) of the Clinical and Translation Science Center at Weill Cornell Medical358

College. We thank the training session participants who have provided feedback on earlier versions of359

NextflowWorkbench and help make this new workflow system relevant to computational beginners.360

REFERENCES361

V. M. Benson and F. Campagne. Language workbench user interfaces for data analysis. PeerJ, 3:e800,362

2015.363

F. Campagne. The MPS Language Workbench, volume I. Fabien Campagne, 2014.364

F. Campagne. The MPS Language Workbench, volume II. Fabien Campagne, 2015.365

F. Campagne and M. Simi. MetaR Documentation Booklet. Fabien Campagne, 2015.366

F. Campagne, W. E. Digan, and M. Simi. MetaR: simple, high-level languages for data analysis with the367

R ecosystem. bioRxiv, page 030254, 2015. doi: 10.1101/030254. URL http://biorxiv.org/lookup/doi/368

10.1101/030254.369

F. Campagne, manuelesimi, and nchambwe. gobyweb2-plugins: Gobyweb plugins for nextflowworkbench370

manuscript, 2016. URL http://dx.doi.org/10.5281/zenodo.48271.371

P. Cingolani, R. Sladek, and M. Blanchette. Bigdatascript: a scripting language for data pipelines.372

Bioinformatics, 31(1):10–16, 2015.373

P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx. Understanding the syntax barrier for novices.374

In Proceedings of the 16th annual joint conference on Innovation and technology in computer science375

education, pages 208–212. ACM, 2011.376

P. Di Tommaso, M. Chatzou, P. P. Baraja, and C. Notredame. A novel tool for highly scalable computa-377

tional pipelines. 2014. URL http://dx.doi.org/10.6084/m9.figshare.1254958.378

P. Di Tommaso, E. Palumbo, M. Chatzou, P. Prieto, M. L. Heuer, and C. Notredame. The impact of379

docker containers on the performance of genomic pipelines. PeerJ, 3:e1273, 2015.380

S. Dmitriev. Language oriented programming: The next programming paradigm, 2004. URL http:381

//www.onboard.jetbrains.com/is1/articles/04/10/lop/.382

K. C. Dorff, N. Chambwe, Z. Zeno, M. Simi, R. Shaknovich, and F. Campagne. GobyWeb: Simplified383

Management and Analysis of Gene Expression and DNA Methylation Sequencing Data. PLoS ONE, 8384

(7), 2013. ISSN 19326203. doi: 10.1371/journal.pone.0069666.385

B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski, P. Shah, Y. Zhang, D. Blankenberg,386

I. Albert, J. Taylor, et al. Galaxy: a platform for interactive large-scale genome analysis. Genome387

research, 15(10):1451–1455, 2005.388

D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and T. Oinn. Taverna: a tool for389

building and running workflows of services. Nucleic acids research, 34(suppl 2):W729–W732, 2006.390

S. M. Kurs, Jason P. and F. Campagne. NextflowWorkbench Documentation Booklet. Fabien Cam-391

pagne, 2015. URL https://play.google.com/store/books/details/Jason P Kurs Nextflow Workbench392

Documentation Book?id=VQhVCgAAQBAJ.393

M. Reich, T. Liefeld, J. Gould, J. Lerner, P. Tamayo, and J. P. Mesirov. Genepattern 2.0. Nature genetics,394

38(5):500–501, 2006.395

M. Simi and F. Campagne. Composable languages for bioinformatics: the nyosh experiment. PeerJ, 2014.396

URL https://peerj.com/articles/241/.397

M. J. Taghiyar, J. Rosner, D. Grewal, B. Grande, R. Aniba, J. Grewal, P. C. Buotros, R. D. Morin,398

A. Bashashati, and S. Shah. Kronos: a workflow assembler for genome analytics and informatics.399

Technical report, feb 2016. URL http://biorxiv.org/content/early/2016/02/19/040352.abstract.400

M. Voelter. Integrating prose as first-class citizens with models and code. In MPM@ MoDELS, pages401

17–26. Citeseer, 2013.402

12/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2016. ; https://doi.org/10.1101/041236doi: bioRxiv preprint

http://www.crg.eu/cedric_notredame
http://biorxiv.org/lookup/doi/10.1101/030254
http://biorxiv.org/lookup/doi/10.1101/030254
http://biorxiv.org/lookup/doi/10.1101/030254
http://dx.doi.org/10.5281/zenodo.48271
http://dx.doi.org/10.6084/m9.figshare.1254958
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
https://play.google.com/store/books/details/Jason_P_Kurs_Nextflow_Workbench_Documentation_Book?id=VQhVCgAAQBAJ
https://play.google.com/store/books/details/Jason_P_Kurs_Nextflow_Workbench_Documentation_Book?id=VQhVCgAAQBAJ
https://play.google.com/store/books/details/Jason_P_Kurs_Nextflow_Workbench_Documentation_Book?id=VQhVCgAAQBAJ
https://peerj.com/articles/241/
http://biorxiv.org/content/early/2016/02/19/040352.abstract
https://doi.org/10.1101/041236
http://creativecommons.org/licenses/by/4.0/

M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr: an extensible c-based programming language and403

ide for embedded systems. In Proceedings of the 3rd annual conference on Systems, programming, and404

applications: software for humanity, pages 121–140. ACM, 2012.405

M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and I. Foster. Swift: A language for406

distributed parallel scripting. Parallel Computing, 37(9):633–652, 2011.407

13/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2016. ; https://doi.org/10.1101/041236doi: bioRxiv preprint

https://doi.org/10.1101/041236
http://creativecommons.org/licenses/by/4.0/

	References

